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Fluctuations of electric and magnetic fields in the collisionless plasma
are found as a solution of the initial value linearized problem. The plasma
initial state is on average stationary and homogeneous. When the state
is stable, the initial fluctuations decay exponentially and in the long time
limit a stationary spectrum of fluctuations is established. For the equi-
librium plasma it reproduces the spectrum obtained from the fluctuation-
dissipation relation. Fluctuations in the unstable two-stream system are
also discussed.

PACS numbers: 52.25.Gj

1. Introduction

Spectrum of electromagnetic fluctuations is an important plasma charac-
teristics studied in various contexts. In terrestrial experiments the spectrum,
which is observable through scattering measurements, signals, for example,
an onset of plasma instability or turbulence. Electromagnetic fluctuations in
primordial cosmological plasma are analyzed to explain an origin of magnetic
fields in the Universe.

The fluctuations can be theoretically described using several methods
reviewed in the classical monographs [1, 2]. Modern field-theory techniques
developed for relativistic plasmas are worked out in [3, 4]. Physically most
appealing seems to us the method proposed by Rostoker [5] and Klimon-
tovich and Silin [6] which is clearly exposed in the handbook [7]. The
method, which is applicable to both equilibrium and nonequilibrium plas-
mas, provides the spectrum of fluctuations as a solution of the initial value
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(linearized) problem. The initial plasma state is assumed to be on average
stationary and homogeneous. When the state is stable, the initial fluctua-
tions are explicitly shown to exponentially decay and in the long time limit
one finds a stationary spectrum of fluctuations. In this way one obtains
for the equilibrium plasma the spectrum which is alternatively provided by
the fluctuation-dissipation relation. When the initial state is unstable, the
memory of initial fluctuations is not lost, as the unstable modes, which are
present in the initial fluctuation spectrum, exponentially grow.

The fluctuations of the distribution function, electric charge or longitudi-
nal electric field can be found rather easily, see [5–7]. Analytic computation
of the magnetic field fluctuations appear to be quite lengthy and tedious
while the computation of fluctuation spectrum of the electric field, which
is not constrained to be purely longitudinal, is a real challenge even in the
collionless plasma, as one has to take into account and sort out numerous
terms. Up to our knowledge such calculations have not been published. In
this article we study the fluctuation spectrum of electric and magnetic fields
in detail. In the case of equilibrium, we reproduce the spectrum usually
provided by the fluctuation-dissipation relation. Fluctuations in unstable
systems are also discussed and, as an example, we compute the fluctuation
spectrum of longitudinal field in the two-stream system.

The method under consideration, although physically appealing, is cer-
tainly not the most effective to analyze equilibrium plasmas. And our actual
goal is to set a stage for nonequilibrium calculations similar to those of the
two-stream system. Our particular interests is focused on the quark-gluon
plasma — a highly relativistic system governed by non-Abelian dynamics
which, in spite of important differences, manifests profound similarities to
electromagnetic plasmas discussed at length in [8]. The quark-gluon plasma
produced in relativistic heavy-ion collisions is presumably unstable to chro-
momagnetic modes, see the review [9]. The instability growth is associated
with generation of chromomagnetic fields which in turn strongly influence
transport properties of the plasma [10]. The fluctuation spectrum of chro-
momagnetic fields is an important issue to be settled.

Our paper is organized as follows. In Sec. 2 we present the theoretical
framework to be used in our further considerations. The linearized kinetic
equation are solved together with Maxwell equations by means of the one-
sided Fourier transformation in Sec. 3. The electric and magnetic fields are
expressed through the initial values of the fields and electron distribution
function. Sec. 4 deals with the initial fluctuations. Those of the distribution
function are identified with the fluctuations in a classical system of nonin-
teracting particles. The initial fluctuations of fields are expressed through
the particle fluctuations using the Maxwell equations. The well-known fluc-
tuation spectrum of longitudinal electric field is obtained in Sec. 5 while the
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fluctuation spectra of magnetic and electric fields are derived in Secs. 6 and 7,
respectively. It then becomes clear why the analysis of longitudinal electric
field is much easier than that of the general case. In Sec. 8 we extend our
calculations to nonequilibrium anisotropic plasma, discussing fluctuations
of longitudinal electric field in the unstable two-stream system. Our results
are summarized and concluded in Sec. 9. Throughout the article we use the
CGS natural units with c = kB = 1.

2. Preliminaries

We consider a classical plasma where ions are assumed to be a passive
background which merely compensate the charge of electrons. However, the
ions can be easily included in the considerations. The time scale of fluctu-
ations of interest is much shorter than that of inter-particle collisions, and
consequently the starting point of our analysis is the collisionless transport
equation of electrons

(

(

∂

∂t
+ v · ∇

)

− e (E(t, r) + v × B(t, r)) · ∇p

)

f(t, r,p) = 0 , (1)

where f(t, r,p) is the distribution function; E(t, r) and B(t, r) denote the
electric and magnetic fields in the plasma.

The transport equation (1) is supplemented by the Maxwell equations

∇ · E(t, r) = 4πρ(t, r) , ∇ · B(t, r) = 0 ,

∇× E(t, r) = −
∂B(t, r)

∂t
, ∇× B(t, r) = 4πj(t, r) +

∂E(t, r)

∂t
, (2)

with the electric charge density and current given as

ρ(t, r) = −e

∫

d3p

(2π)3
f(t, r,p) + e nions , (3)

j(t, r) = −e

∫

d3p

(2π)3
v f(t, r,p) . (4)

The distribution function is assumed to be of the form

f(t, r,p) = f0(p) + δf(t, r,p) , (5)

with

f0(p) ≫ δf(t, r,p) , |∇pf
0(p)| ≫ |∇pδf(t, r,p)| , (6)
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and
∫

d3p

(2π)3
f0(p) − nions = 0 ,

∫

d3p

(2π)3
v f0(t, r,p) = 0 . (7)

The transport equation linearized in δf is

(

∂

∂t
+ v · ∇

)

δf(t, r,p) − e(E(t, r) + v × B(t, r)) · ∇pf
0(p) = 0 . (8)

and

ρ(t, r) = −e

∫

d3p

(2π)3
δf(t, r,p) , (9)

j(t, r) = −e

∫

d3p

(2π)3
v δf(t, r,p) . (10)

3. Initial value problem

We are going to solve the linearized transport equation (8) and Maxwell
equations (2) with the initial conditions

δf(t = 0, r,p) = δf0(r,p) ,

E(t = 0, r) = E0(r) , B(t = 0, r) = B0(r) . (11)

We apply to the equations the one-sided Fourier transformation defined as

f(ω,k) =

∞
∫

0

dt

∫

d3rei(ωt−k·r)f(t, r) . (12)

The inverse transformation is

f(t, r) =

∞+iσ
∫

−∞+iσ

dω

2π

∫

d3k

(2π)3
e−i(ωt−k·r)f(ω,k) , (13)

where the real parameter σ > 0 is chosen is such a way that the integral
over ω is taken along a straight line in the complex ω-plane, parallel to the
real axis, above all singularities of f(ω,k).

We note that

∞
∫

0

dt

∫

d3rei(ωt−k·r) ∂f(t, r)

∂t
= −iωf(ω,k) − f(t = 0,k) . (14)
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The linearized transport (8) and Maxwell (2) equations, which are trans-
formed by means of the one-sided Fourier transformation, read

−i(ω−k ·v)δf(ω,k,p)−e(E(ω,k)+v×B(ω,k))·∇pf
0(p)=δf0(k,p) , (15)

ik · E(ω,k) = 4πρ(ω,k) ,

ik · B(ω,k) = 0 ,

ik × E(ω,k) = iωB(ω,k) + B0(k) ,

ik × B(ω,k) = 4πj(ω,k) − iωE(ω,k) − E0(k) . (16)

One finds the solution of the transport equation as

δf(ω,k,p)=
i

ω−k · v

(

e(E(ω,k)+v×B(ω,k)) ·∇pf
0(p)+δf0(k,p)

)

. (17)

3.1. Electric field

Substituting the solution (17) into the Fourier transformed current (10)
and using the third Maxwell equation (16) to express the magnetic field
through the electric one, the current gets the form

j(ω,k) =

− ie2

∫

d3p

(2π)3
v

ω−v · k

((

1−
k · v

ω

)

E(ω,k)+
1

ω
(v ·E(ω,k))k

)

·∇pf
0(p)

+ e2

∫

d3p

(2π)3
v

ω − v · k

(

1

ω
v × B0(k)

)

· ∇pf
0(p)

− ie

∫

d3p

(2π)3
v

ω − k · v
δf0(k,p) . (18)

Since the dielectric tensor εij(ω,k) in the collisionless limit equals [1]

εij(ω,k) = δij +
4πe2

ω

∫

d3p

(2π)3
vi

ω−v · k + i0+

×

((

1−
k · v

ω

)

δjk +
vjkk

ω

)

∇k
pf

0(p) , (19)

the current can be written as

ji(ω,k) =
−iω

4π
(εij(ω,k) − δij)Ej(ω,k) + e2

∫

d3p

(2π)3
vi

ω−v · k

×
( 1

ω
v×B0(k)

)j

∇j
pf

0(p)−ie

∫

d3p

(2π)3
vi

ω−k·v
δf0(k,p) . (20)
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Combing the third and fourth Maxwell equations (16), one finds

[

(ω2 − k2)δij + kikj
]

Ej(ω,k) = −4πiω ji(ω,k) + iωEi
0(k)

− i(k × B0(k))i . (21)

Substituting the current (20) into Eq. (21), one obtains

[

−k2δij + kikj + ω2εij(ω,k)
]

Ej(ω,k)

= − 4πie2

∫

d3p

(2π)3
vi

ω − v · k
(v × B0(k))j∇j

pf
0(p)

− 4πeω

∫

d3p

(2π)3
vi

ω−k · v
δf0(k,p) + iωEi

0(k)−i(k × B0(k))i . (22)

Denoting the matrix in left-hand-side of Eq. (22) as

Σij(ω,k) ≡ −k2δij + kikj + ω2εij(ω,k) , (23)

the electric field given by Eq. (22) can be written down as

Ei(ω,k) = −4πe

∫

d3p

(2π)3
(Σ−1)ij(ω,k)vj

ω − v · k

×
[

ie(v × B0(k)) · ∇pf
0(p) + ωδf0(k,p)

]

+ iω(Σ−1)ij(ω,k)Ej
0(k) − i(Σ−1)ij(ω,k)(k × B0(k))j , (24)

which is the main result of this section.
When the plasma stationary state described by f0(p) is isotropic, the

dielectric tensor can be expressed through its longitudinal and transverse
components

εij(ω,k) = εL(ω,k)
kikj

k2 + εT(ω,k)
(

δij −
kikj

k2

)

, (25)

where εL(ω,k) and εT(ω,k) are well known [7] to be equal to

εL(ω,k) = 1 +
4πe2

k2

∫

d3p

(2π)3
1

ω − k · v + i0+
k ·

∂f0(p)

∂p
, (26)

εT(ω,k) = 1 +
2πe2

ω

∫

d3p

(2π)3
1

ω − k · v + i0+

×

[

v ·
∂f0(p)

∂p
−

k · v

k2 k ·
∂f0(p)

∂p

]

. (27)
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The matrix Σij(ω,k), which then equals

Σij(ω,k) = ω2εL(ω,k)
kikj

k2 + (ω2εT(ω,k) − k2)
(

δij −
kikj

k2

)

, (28)

can be inverted as

(Σ−1)ij(ω,k) =
1

ω2εL(ω,k)

kikj

k2 +
1

ω2εT(ω,k) − k2

(

δij −
kikj

k2

)

. (29)

When the momentum distribution f0(p) is isotropic, ∇pf
0(p) ∼ p, and

consequently (v × B0(k)) · ∇pf
0(p) = 0. Therefore, the first term in the

right-hand-side of Eq. (24) vanishes and the electric field is found as

Ei(ω,k) = −4πeω

(

1

ω2εL(ω,k)

kikj

k2 +
1

ω2εT(ω,k) − k2

(

δij −
kikj

k2

)

)

×

∫

d3p

(2π)3
vj

ω − k · v
δf0(k,p)

+ iω

(

1

ω2εL(ω,k)

kikj

k2 +
1

ω2εT(ω,k)−k2

(

δij−
kikj

k2

)

)

Ej
0(k)

−
i(k × B0(k))i

ω2εT(ω,k) − k2 . (30)

If the field is purely longitudinal,

E(ω,k) = (k · E(ω,k))
k

k2 , E0(k) = (k · E0(k))
k

k2 ,

Eq. (30) gives

k · E(ω,k) = −
4πe

ωεL(ω,k)

∫

d3p

(2π)3
k · v

ω − k · v
δf0(k,p) +

ik · E0(k)

ωεL(ω,k)
. (31)

Taking into account that

ik · E0(k) = 4πρ0(k) = −4πe

∫

d3p

(2π)3
δf0(k,p) ,

Eq. (31) can be rewritten as

k · E(ω,k) = −
4πe

εL(ω,k)

∫

d3p

(2π)3
δf0(k,p)

ω − k · v
. (32)

Eq. (32) can be obtained directly by substituting the solution of transport
equation (17) (with B = 0) into the first Maxwell equation. Then, the initial
electric field does not show up.
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3.2. Magnetic field

Using again the third Maxwell equation (16) to express the magnetic
field through the electric one, Eq. (24) immediately provides

Bi(ω,k) =
1

ω
ǫijkkj(Σ−1)kl(ω,k)

(

− 4πie2

∫

d3p

(2π)3
vl

ω − v · k
(v × B0(k)) · ∇pf

0(p)

− 4πeω

∫

d3p

(2π)3
vl

ω−k · v
δf0(k,p)+iωEl

0(k)−i(k×B0(k))l

)

+
i

ω
Bi

0(k) . (33)

When the plasma stationary state is isotropic and (Σ−1)ij(ω,k) is given by
Eq. (29), one finds

ǫijkkj(Σ−1)kl(ω,k) =
ǫijlkj

ω2εT(ω,k) − k2 . (34)

The first term in the right-hand side of Eq. (33) vanishes, because
(v × B0(k)) ·∇pf

0(p) = 0, and thus

B(ω,k) = −
4πe

ω2εT(ω,k) − k2

∫

d3p

(2π)3
k × v

ω − k · v
δf0(k,p)

+
ik × E0(k)

ω2εT(ω,k) − k2 +
iωεT(ω,k)

ω2εT(ω,k) − k2 B0(k) . (35)

4. Initial fluctuations

The correlation functions of electric or magnetic fields, 〈Ei(t1, r1)
Ej(t2, r2)〉, 〈B

i(t1, r1)B
j(t2, r2)〉 (〈· · ·〉 denotes averaging over statistical en-

semble), are determined by the fields E(t, r), B(t, r) found in the previous

section and the initial correlations 〈δf0(r1,p1)δf0(r2,p2)〉, 〈E
i
0(r1)E

j
0(r2)〉,

〈Bi
0(r1)B

j
0(r2)〉, 〈δf0(r1,p1)Ej

0(r2)〉, 〈δf0(r1,p1)B
j
0(r2)〉 and 〈Ei

0(r1)B
j
0(r2)〉

which are discussed in this section.
We identify the initial correlation function 〈δf0(r1,p1)δf0(r1,p1)〉 with

the correlation function 〈δf(t1, r1,p1)δf(t2, r2,p2)〉free taken at t1 = t2 = 0
of the system of free classical particles (obeying Boltzmann statistics) in
a stationary homogeneous state described by the distribution function f0(p).
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As well known [7],

〈δf(t1, r1,p1)δf(t2, r2,p2)〉free = (2π)3δ(3)(p2 − p1)

× δ(3)(r2−r1−v1(t2−t1))f
0(p1) . (36)

Then,

〈δf0(r1,p1)δf0(r1,p1)〉 = 〈δf(t1 = 0, r1,p1)δf(t2 = 0, r2,p2)〉free

= (2π)3δ(3)(p2−p1)δ
(3)(r2−r1)f

0(p1) , (37)

and

〈δf0(k1,p1)δf0(k2,p2)〉 = (2π)3δ(3)(p2−p1)(2π)3δ(3)(k2+k1)f
0(p1) . (38)

The correlation function kj
2〈δf0(k1,p1)E

j
0(k2)〉 can be also expressed

through 〈δf0(k1,p1)δf0(k2,p2)〉. Using the first Maxwell equation, one finds

kj
2〈δf0(k1,p1)E

j
0(k2)〉 = −4πi〈δf0(k1,p1)ρ0(k2)〉

= 4πie

∫

d3p2

(2π)3
〈δf0(k1,p1)δf0(k2,p2)〉

= 4πie(2π)3δ(3)(k2 + k1) f0(p1) . (39)

And finally,

ki
1k

j
2〈E

i
0(k1)E

j
0(k2)〉 = −16π2〈ρ0(k1)ρ0(k2)〉

= −16π2e2

∫

d3p1

(2π)3
d3p2

(2π)3
〈δf0(k1,p1)δf0(k2,p2)〉

= −16π2e2(2π)3δ(3)(k2 + k1)

∫

d3p

(2π)3
f0(p) . (40)

When the electric field is not purely longitudinal, the computation of
the initial correlations 〈Ei

0(r1)E
j
0(r2)〉, 〈δf0(r1,p1)E

j
0(r2)〉 is more compli-

cated, as the electric field E0(r) is not fully determined by δf0(r,p) but

δf(t, r,p) enters here. To compute 〈Ei
0(r1)E

j
0(r2)〉, 〈δf0(r1,p1)E

j
0(r2)〉 as

well as 〈Bi
0(r1)B

j
0(r2)〉, 〈δf0(r1,p1)B

j
0(r2)〉, and 〈Ei

0(r1)B
j
0(r2)〉, we use

the Maxwell equations transformed using the Fourier transformation not
the one-sided Fourier transformation. Actually, the Fourier transformed
Maxwell equations are very similar to the one-sided Fourier transformed
Maxwell equations (16). The initial electric and magnetic fields are simply
absent in the former ones. However, it should be clearly stated that the
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one-sided Fourier transformation is not mixed up with the Fourier transfor-
mation. The latter is used to compute only the initial fluctuations which
are independent of ω.

Combing the third and the fourth Maxwell equation, one gets the equa-
tion as Eq. (22) but the terms with E0(k) and B0(k) are absent. Inverting
the matrix in the right-hand side of the equation, we get the electric field
expressed through the current

Ei(ω,k) = −4πiω

[

1

ω2

kikj

k2 +
1

ω2 − k2

(

δij −
kikj

k2

)

]

jj(ω,k) . (41)

The magnetic field is given as

B(ω,k) = −
4πi

ω2 − k2 k × j(ω,k) . (42)

The correlation function 〈Ei
0(k1)E

j
0(k2)〉 is derived as

〈Ei
0(k1)E

j
0(k2)〉 =

∫

dω1

2π

dω2

2π
〈Ei(ω1,k1)E

j(ω2,k2)〉

= −(4π)2
∫

dω1

2π

dω2

2π

[

1

ω1

ki
1k

k
1

k2
1

+
ω1

ω2
1 − k2

1

(

δik −
ki
1k

k
1

k2
1

)

]

×

[

1

ω2

kj
2k

l
2

k2
2

+
ω2

ω2
2 − k2

2

(

δjl −
kj
1k

l
1

k2
1

)

]

×〈jk(ω1,k1)j
j(ω2,k2)〉

= −(4πe)2
∫

dω1

2π

dω2

2π

d3p1

(2π)3
d3p2

(2π)3
vk
1vl

2

×

[

1

ω1

ki
1k

k
1

k2
1

+
ω1

ω2
1 − k2

1

(

δik −
ki
1k

k
1

k2
1

)

]

×

[

1

ω2

kj
2k

l
2

k2
2

+
ω2

ω2
2 − k2

2

(

δjl −
kj
1k

l
1

k2
1

)

]

×〈δf(ω1,k1,p1)δf(ω2,k2,p2)〉 . (43)

As previously, we identify 〈δf(ω1,k1,p1) δf(ω2,k2,p2)〉 with
〈δf(ω1,k1,p1) δf(ω2,k2,p2)〉free which equals
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〈δf(ω1,k1,p1)δf(ω2,k2,p2)〉free = (2π)3δ(3)(p2 − p1) 2πδ(ω1 + ω2)

× (2π)3δ(3)(k1 + k2)

× 2πδ
(ω1 − ω2

2
−

k1 − k2

2
v1

)

f0(p1) .

(44)

Then, after performing trivial integrations, 〈Ei
0(k1)E

j
0(k2)〉 equals

〈Ei
0(k1)E

j
0(k2)〉 = −(4πe)2(2π)3δ(3)(k1 + k2)

×

∫

d3p

(2π)3
f0(p)

((k1 · v)vi−ki
1)((k2 · v)vj−kj

2)

((k1 · v)2−k2
1)((k2 · v)2−k2

2)
. (45)

Computing ki
1k

j
2〈E

i
0(k1)E

j
0(k2)〉, one reproduces the result (40). Analo-

gously to the correlation function 〈Ei
0(k1)E

j
0(k2)〉, one finds

〈Ei
0(k1)δf0(k2,p2)〉 = 4πie (2π)3δ(3)(k1 + k2) f0(p2)

(k1 · v2)v
i
2−ki

1

(k1 · v2)2−k2
1

. (46)

Starting with Eq. (42), we obtain

〈Bi
0(k1)B

j
0(k2)〉 = −(4πe)2(2π)3δ(3)(k1 + k2) ǫiklǫjmnkk

1km
2

×

∫

d3p

(2π)3
f0(p)

vlvn

((k1 · v)2−k2
1)((k2 · v)2−k2

2)
, (47)

and

〈Bi
0(k1)δf0(k2,p2)〉 = 4πie (2π)3δ(3)(k1 + k2) f0(p2)

ǫijkkj
1v

k
2

(k1 · v2)2 − k2
1

. (48)

Finally, one computes

〈Ei
0(k1)B

j
0(k2)〉 = −(4πe)2(2π)3δ(3)(k1 + k2)

×

∫

d3p

(2π)3
f0(p)

((k1 · v)vi − ki
1)ǫ

jklkk
2vl

((k1 · v)2−k2
1)((k2 · v)2−k2

2)
. (49)
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5. Fluctuations of longitudinal electric field in isotropic plasma

We first consider a special case of purely longitudinal electric field in the
isotropic plasma when the electric field is given by Eq. (31). Then,

ki
1k

j
2〈E

i(ω1,k1)E
j(ω2,k2)〉 =

1

ω1ω2εL(ω1,k1) εL(ω2,k2)

×

[

16π2e2

∫

d3p1

(2π)3
d3p2

(2π)3
k1 · v1

ω1 − k1 · v1

k2 · v2

ω2 − k2 · v2
〈δf0(k1,p1)δf0(k2,p2)〉

− 4πie

∫

d3p1

(2π)3
k1 · v1

ω1 − k1 · v1
kj
2〈δf0(k1,p1)E

j
0(k2)〉

−4πie

∫

d3p2

(2π)3
k2 · v2

ω2−k2 ·v2
ki
1〈E

i
0(k1)δf0(k2,p2)〉−ki

1k
j
2〈E

i
0(k1)E

j
0(k2)〉

]

. (50)

Substituting the formulas of initial fluctuations (38, 39, 40) into Eq. (50),
one finds

ki
1k

j
2〈E

i(ω1,k1)E
j(ω2,k2)〉 = 16π2e2 (2π)3δ(3)(k2 + k1)

ω1ω2εL(ω1,k1) εL(ω2,k2)

×

∫

d3p

(2π)3

[

k1 · v

ω1−k1 ·v

k2 · v

ω2−k2 ·v
+

k1 · v

ω1−k1 ·v
+

k2 · v

ω2−k2 ·v
+1

]

f0(p) . (51)

It appears that

k1 · v

ω1−k1 · v

k2 · v

ω2−k2 · v
+

k1 · v

ω1−k1 · v
+

k2 · v

ω2−k2 · v
+1=

ω1

ω1−k1 · v

ω2

ω2−k2 · v
,

and consequently Eq. (51) simplifies to

ki
1k

j
2〈E

i(ω1,k1)E
j(ω2,k2)〉 = 16π2e2 (2π)3δ(3)(k2 + k1)

εL(ω1,k1) εL(ω2,k2)

×

∫

d3p

(2π)3
f0(p)

(ω1−k1 ·v)(ω2−k2 ·v)
. (52)

This equation could be easily obtained directly from Eq. (32) where the
initial electric field is already eliminated.

Taking into account that the electric fields are parallel to their wave
vectors, and consequently ki

1k
j
1 〈E

i(ω1,k1)Ej(ω2,−k1)〉 = k2
1〈E

i(ω1,k1)×
Ei(ω2,−k1)〉, one finally finds
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〈Ei(ω1,k1)E
i(ω2,k2)〉 = −16π2e2 (2π)3δ(3)(k2 + k1)

k2
1εL(ω1,k1) εL(ω2,−k1)

×

∫

d3p

(2π)3
f0(p)

(ω1− k1 · v)(ω2 + k1 · v)
. (53)

Let us now compute 〈Ei(t1, r1)E
i(t2, r2)〉 given by

〈Ei(t1, r1)E
i(t2, r2)〉 =

∞+iσ
∫

−∞+iσ

dω1

2π

∞+iσ
∫

−∞+iσ

dω2

2π

∫

d3k1

(2π)3

∫

d3k2

(2π)3

× e−i(ω1t1−k1·r1+ω2t2−k2·r2)〈Ei(ω1,k1)E
i(ω2,k2)〉 . (54)

Zeros of εL(ωi,ki) and of the denominators (ωi − ki · v + i0+) with i = 1, 2
contribute to the integrals over ω1 and ω2. However, once the plasma system
under consideration is stable with respect to longitudinal modes, all zeros of
εL lie in the lower half-plane of complex ω. Consequently, the contributions
associated with these zeros exponentially decay in time and they vanish in
the long time limit of both t1 and t2.

We are further interested in the long time limit of 〈Ei(t1, r1)E
i(t2, r2)〉

and then, the only non-vanishing contribution corresponds to the poles at
ω1 = k1 · v and ω2 = k2 · v. This contribution reads

〈Ei(t1, r1)E
i(t2, r2)〉∞ = 16π2e2

∫

d3k

(2π)3

∫

d3p

(2π)3
e−ik·(v(t1−t2)−(r1−r2))

×
f0(p)

k2εL(k · v,k) εL(−k · v,−k)
. (55)

Keeping in mind that εL(−ω,−k) = ε∗L(ω,k) for real ω and k, it can be
rewritten as

〈Ei(t1, r1)E
i(t2, r2)〉∞ = 32π3e2

∫

dω

2π

d3k

(2π)3
e−i(ω(t1−t2)−k·(r1−r2))

k2|εL(ω,k)|2

×

∫

d3p

(2π)3
δ(ω − k · v)f0(p) . (56)

As seen, 〈Ei(t1, r1)E
i(t2, r2)〉∞ given by Eq. (56) depends on t1, t2 and

r1, r2 only through (t1 − t2) and (r1 − r2) and it can be written as

〈Ei(t1, r1)E
i(t2, r2)〉∞=

∫

dω

2π

d3k

(2π)3
e−i(ω(t1−t2)−k·(r1−r2))〈EiEi〉ωk , (57)
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where the fluctuation spectrum 〈EiEi〉ωk is

〈EiEi〉ωk =
32π3e2

k2|εL(ω,k)|2

∫

d3p

(2π)3
δ(ω − k · v)f0(p) . (58)

In the case of equilibrium plasma, the formula (58) provides the result
which can be obtained directly by means of the fluctuation-dissipation the-
orem. Let us derive the result. Due to the identity

1

x ± i0+
= P

1

x
∓ iπδ(x) , (59)

the imaginary part of εL(ω,k), which is given by Eq. (26), equals

Im εL(ω,k) = −
4π2e2

k2

∫

d3p

(2π)3
δ(ω − k · v) k ·

∂f0(p)

∂p
. (60)

In equilibrium f0(p) ∼ e−βEp and ∂f0(p)/∂p = −βvf0(p). Therefore,
Im εL equals

Im εL(ω,k) =
4π2e2

Tk2

∫

d3p

(2π)3
δ(ω − k · v) (k · v) f0(p)

=
4π2e2ω

Tk2

∫

d3p

(2π)3
δ(ω − k · v) f0(p) . (61)

Using the expression (61), the formula (58) is rewritten as

〈EiEi〉ωk = 8π
T

ω

Im εL(ω,k)

|εL(ω,k)|2
, (62)

which agrees with Eq. (51.25) from [7] which is obtained there in essentially
the same way.

6. Fluctuations of magnetic field in isotropic plasma

As seen in Eq. (35), the magnetic field in isotropic plasma is given by
three terms. Therefore, nine terms enter the correlation function 〈Bi(ω1,k1)
Bj(ω2,k2)〉. Substituting into these terms the initial fluctuations derived in
Sec. 4, one finds after an elementary but lengthy and tedious analysis the
following expression:
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〈Bi(ω1,k1)B
j(ω2,k2)〉 =

(4πe)2(2π)3δ(3)(k1 + k2)ǫ
iklǫjmnkk

1km
2

(ω2
1εT(ω1,k1)−k2

1))(ω
2
2εT(ω2,k2)−k2

2))

×

∫

d3p

(2π)3
f0(p)

vlvn

(ω1−k1 · v)(ω2−k2 · v)((k1 ·v)2−k2
1)((k2 · v)2−k2

2)

×
[

(ω1(k1 · v) − k2
1) + ω1εT(ω1,k1)(ω1 − k1 · v)

]

×
[

(ω2(k2 · v) − k2
2) + ω2εT(ω2,k2)(ω2 − k2 · v)

]

. (63)

We now compute 〈Bi(t1, r1)B
j(t2, r2)〉 given by

〈Bi(t1, r1)B
j(t2, r2)〉 =

∞+iσ
∫

−∞+iσ

dω1

2π

∞+iσ
∫

−∞+iσ

dω2

2π

∫

d3k1

(2π)3

∫

d3k2

(2π)3

× e−i(ω1t1−k1·r1+ω2t2−k2·r2)〈Bi(ω1,k1)B
j(ω2,k2)〉 . (64)

Zeros of (ω2
i εT(ωi,ki) − k2

i ) and of ωi − ki · v + i0+) with i = 1, 2 con-
tribute to the integrals over ω1 and ω2. However, once the plasma system
under consideration is stable with respect to transverse modes, all zeros of
(ω2

i εT(ωi,ki) − k2
i ) lie in the lower half-plane of complex ω. Consequently,

the contributions associated with these zeros exponentially decay in time
and they vanish in the long time limit of both t1 and t2.

We further consider the long time limit of 〈Bi(t1, r1)B
j(t2, r2)〉 and then,

the only non-vanishing contribution corresponds to the poles at ω1 = k1 · v
and ω2 = k2 · v. This contribution reads

〈Bi(t1, r1)B
j(t2, r2)〉∞ = −

∫

d3k1

(2π)3
d3k2

(2π)3
d3p

(2π)3
f0(p)

× e−i(ω1t1−k1·r1+ω2t2−k2·r2)

×
(4πe)2(2π)3δ(3)(k1 + k2) ǫiklǫjmnkk

1km
2

(ω2
1εT(ω1,k1) − k2

1))(ω
2
2εT(ω2,k2) − k2

2))

×
vlvn

((k1 · v)2 − k2
1)((k2 · v)2 − k2

2)

× (ω1(k1 · v)−k2
1)(ω2(k2 · v)−k2

2)

∣

∣

∣

∣

∣

ω1=k1·v, ω2=k2·v

(65)
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and it can be easily expressed as

〈Bi(t1, r1)B
j(t2, r2)〉∞ =

∫

dω

2π

d3k

(2π)3

× e−i(ω(t1−t2)−k·(r1−r2))〈BiBj〉ω k , (66)

where the fluctuation spectrum is

〈BiBj〉
ω k =

32π3e2ǫiklǫjmnkkkm

(ω2εT(ω,k) − k2)(ω2εT(−ω,−k) − k2)

×

∫

d3p

(2π)3
f0(p) δ(ω − k · v) vlvn . (67)

When both ω and k are real εT(−ω,−k) = ε∗T(ω,k). Therefore, the fluctu-
ation spectrum can be rewritten as

〈BiBj〉ω k =
32π3e2ǫiklǫjmnkkkm

|ω2εT(ω,k) − k2|2

×

∫

d3p

(2π)3
f0(p) δ(ω − k · v)vlvn . (68)

One observes that the matrix function

M ij(ω,k) ≡

∫

d3p

(2π)3
f0(p) δ(ω − k · v) vivj , (69)

which enters the correlation function (68), can be decomposed as

M ij(ω,k) = ML(ω,k)
kikj

k2 + MT(ω,k)
(

δij −
kikj

k2

)

, (70)

because the plasma is assumed to be isotropic. Comparing Eq. (70) to
Eq. (69), one finds

ML(ω,k) ≡

∫

d3p

(2π)3
f0(p) δ(ω − k · v)

(k · v)2

k2 , (71)

MT(ω,k) ≡
1

2

∫

d3p

(2π)3
f0(p) δ(ω − k · v)

[

v2 −
(k · v)2

k2

]

. (72)

Using the decomposition (70), the correlation function (68) can be written
down as

〈BiBj〉
ω k =

32π3e2(δijk2 − kikj)

|ω2εT(ω,k) − k2|2
MT(ω,k) . (73)
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For equilibrium plasma the correlation function 〈BiBj〉
ω k can be ex-

pressed in the form of fluctuation-dissipation relation. One first observes
that due to the identity (59), the imaginary part of εT(ω,k), which is given
by Eq. (27), is

Im εT(ω,k) = −
2π2e2

ω

∫

d3p

(2π)3
δ(ω − k · v)

×

[

v ·
∂f0(p)

∂p
−

k · v

k2 k ·
∂f0(p)

∂p

]

. (74)

With the equilibrium distribution function, Im εT equals

Im εT(ω,k) =
2π2e2

Tω k2

∫

d3p

(2π)3
δ(ω − k · v) (k2v2 − (k · v)2) f0(p) . (75)

Consequently, the function MT (72) can be expressed through Im εT (75) as

MT(ω,k) =
Tω

4π2e2
Im εT(ω,k) , (76)

and finally,

〈BiBj〉ω k =
8π T

ω3
(δijk2 − kikj)

Im εT(ω,k)

|εT(ω,k) − k
2

ω2 |
2

. (77)

Eq. (77) coincides with the formula (11.2.2.7) from [1] obtained there directly
from the fluctuation-dissipation theorem.

7. Fluctuations of electric field in isotropic plasma

The analysis of electric field fluctuations is much more complicated than
that of the magnetic field. First of all, there are five terms which enter the
formula of electric field given by Eq. (30), and consequently, the correlation
function 〈Ei(ω1,k1)E

j(ω2,k2)〉 includes 25 terms. The magnetic field is
purely transverse and some terms automatically drop out but the electric
fields have longitudinal and transverse components. Using the formulas of
initial fluctuations, which are derived in Sec. 4, and patiently analyzing term
by term, one obtains after an elementary but very lengthy calculation the
correlation function of the form:



958 S. Mrówczyński

〈Ei(ω1,k1)E
j(ω2,k2)〉 = 16π2e2(2π)3δ(3)(k1 + k2)

∫

d3p

(2π)3
f0(p)

×

{

ki
1

ω2
1εL(ω1,k1)

kj
2

ω2
2εL(ω2,k2)

ω2
1ω

2
2

k2
1(ω1 − k1 · v) k2

2(ω2 − k2 · v)

+
ki
1

ω2
1εL(ω1,k1)

vjk2
2 − kj

2(k2 · v)

ω2
2εT(ω2,k2) − k2

2

×
ω2

1[ω2(ω2(k2 · v) − k2
2) − k2

2(ω2 − k2 · v)]

k2
1(ω1 − k1 · v) k2

2(ω2 − k2 · v) ((k2 · v)2 − k2
2)

+
vik2

1 − ki
1(k1 · v)

ω2
1εT(ω1,k1) − k2

1

kj
2

ω2
2εL(ω2,k2)

×
ω2

2[ω1(ω1(k1 · v) − k2
1) − k2

1(ω1 − k1 · v)]

k2
1(ω1 − k1 · v) ((k1 · v)2 − k2

1) k2
2(ω2 − k2 · v)

+
ki
1(k1 · v) − vik2

1

ω2
1εT(ω1,k1) − k2

1

kj
2(k2 · v) − vjk2

2

ω2
2εT(ω2,k2) − k2

2

×
ω1(ω1(k1 · v) − k2

1) − k2
1(ω1 − k1 · v)

k2
1(ω1 − k1 · v)((k1 · v)2 − k2

1)

×
ω2(ω2(k2 · v) − k2

2) − k2
2(ω2 − k2 · v)

k2
2(ω2 − k2 · v)((k2 · v)2 − k2

2)

}

. (78)

We now compute 〈Ei(t1, r1)E
j(t2, r2)〉 given by

〈Ei(t1, r1)E
j(t2, r2)〉 =

∞+iσ
∫

−∞+iσ

dω1

2π

∞+iσ
∫

−∞+iσ

dω2

2π

∫

d3k1

(2π)3

∫

d3k2

(2π)3

× e−i(ω1t1−k1·r1+ω2t2−k2·r2)〈Ei(ω1,k1)E
j(ω2,k2)〉 . (79)

Zeros of (ω2
i εT(ωi,ki) − k2

i ), ω2
i εL(ωi,ki) and of (ωi − ki · v + i0+) with

i = 1, 2 contribute to the integrals over ω1 and ω2. However, once the
plasma system under consideration is stable, all zeros of (ω2

i εT(ωi,ki)−k2
i )

and ω2
i εL(ωi,ki) lie in the lower half-plane of complex ω. Consequently, the

contributions associated with these zeros exponentially decay in time and
they vanish in the long time limit of both t1 and t2.
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We further consider the long time limit of 〈Ei(t1, r1)E
j(t2, r2)〉 and then,

the only non-vanishing contribution corresponds to the poles at ω1 = k1 · v
and ω2 = k2 · v. This contribution reads

〈Ei(t1, r1)E
j(t2, r2)〉∞ = −16π2e2

∫

d3k1

(2π)3
d3k2

(2π)3
(2π)3δ(3)(k1 + k2)

×

∫

d3p

(2π)3
f0(p) e−i(ω1t1−k1·r1+ω2t2−k2·r2) ω1ω2

k2
1k

2
2

×

[

ω1k
i
1

ω2
1εL(ω1,k1)

+
ki
1(k1 · v) − vik2

1

ω2
1εT(ω1,k1) − k2

1

]

×

[

ω2k
j
2

ω2
2εL(ω2,k2)

+
vjk2

2 − kj
2(k2 · v)

ω2
2εT(ω2,k2) − k2

2

]
∣

∣

∣

∣

∣

ω1=k1·v, ω2=k2·v

. (80)

The correlation function (80) can be rewritten as

〈Ei(t1, r1)E
j(t2, r2)〉∞=

∫

dω

2π

d3k

(2π)3
e−i(ω(t1−t2)−k·(r1−r2))〈EiEj〉ωk , (81)

where the fluctuation spectrum is

〈EiEj〉
ωk = 16π2e2

∫

d3p

(2π)3
f0(p)2πδ(ω − k · v)

ω2

k4

×

{

ki

ω2εL(ω,k)

kj

ω2εL(−ω,k2)
ω2 +

ki

ω2εL(ω,k)

vjk2 − kj(k · v)

ω2εT(−ω,k) − k2 ω

+
vik2 − ki(k · v)

ω2εT(ω,k)−k2

kj

ω2εL(−ω,k)
ω +

ki(k · v) − vik2

ω2εT(ω,k) − k2

kj(k · v) − vjk2

ω2εT(−ω,k)−k2

}

.

(82)

One easily proves that the second and third contribution to the fluctuation
spectrum (82) vanish due to the plasma isotropy. Taking into account that
for real ω and k, the dielectric function obeys εs(−ω,−k) = ε∗s(ω,k) with
s = L, T , the fluctuation spectrum (82) can be written as

〈EiEj〉ωk = 16π2e2

∫

d3p

(2π)3
f0(p) 2πδ(ω − k · v)

ω2

k4

×

{

ω2kikj

|ω2εL(ω,k)|2
+

(ki(k·v)−vik2)(kj(k · v)−vjk2)

|ω2εT(ω,k)−k2|2

}

. (83)
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Due to the plasma isotropy, the expression, which enters the transverse
contribution, can be further rewritten as

∫

d3p

(2π)3
f0(p)2πδ(ω − k · v)(ki(k · v) − vik2)(kj(k · v) − vjk2)

=
1

2

(

δij−
kikj

k2

)

k2

∫

d3p

(2π)3
f0(p)2πδ(ω−k · v)((k2v2−(k·v)2) . (84)

In the equilibrium plasma, the imaginary parts of εL(ω,k) and εT(ω,k)
are given by the formulas (61, 75) and the fluctuation spectrum (83) can be
expressed as

〈EiEj〉ω k = 8πTω3

×

[

kikj

k2

Im εL(ω,k)

|ω2εL(ω,k)|2
+
(

δij−
kikj

k2

) Im εT(ω,k)

|ω2εT(ω,k)−k2|2

]

, (85)

which for the longitudinal fields reproduces the formula (62). The result (85)
agrees with Eq. (11.2.2.6) from [1] derived using the fluctuation-dissipation
relation.

8. Fluctuations of longitudinal electric field

in the two-stream system

Nonequlibrium calculations are usually much more difficult than the
equilibrium ones. The first problem is to invert the matrix Σij(ω,k) defined
by Eq. (23). In the case of longitudinal electric field, which is discussed here,
it is solved trivially. We start with Eq. (22) projecting it on k and assuming
that E and E0 are purely longitudinal. Then, the matrix (23) is replaced
by the scalar function.

Further, we neglect the first term in the r.h.s. of Eq. (22). This term
vanishes in isotropic systems; it is of order e2 higher than the second term;
it is also expected to be small in nonrelativistic regime due to the smallness
of particle velocity. So, there are good reasons to neglect it. Eliminating
E0 by means of the first Maxwell equation we obtain Eq. (32) which was
previously derived for the case of isotropic plasma. In the following we
consider fluctuations of longitudinal electric fields in the nonrelativistic two-
stream system.

The distribution function of the two-stream system is chosen to be

f0(p) = (2π)3n
[

δ(3)(p − q) + δ(3)(p + q)
]

, (86)
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where n is the electron density in a single stream. To compute εL(ω,k)
we first perform integration by parts in Eq. (26) and then, substituting
the distribution function (86) into the resulting formula, we obtain in the
nonrelativistic approximation

εL(ω,k) =
(ω2 − (k · u)2)2 − 2µ2(ω2 + (k · u)2)

(ω2 − (k · u)2)2
, (87)

where u is the stream velocity (nonrelativistically u = q/m with m being
the electron mass) and µ2 ≡ 4πe2n/m. There are four roots ±ω±(k) of the
dispersion equation εL(ω,k) = 0 which read

ω2
±(k) = µ2 + (k · u)2 ± µ

√

µ2 + 4(k · u)2 . (88)

As seen, 0 < ω+(k) ∈ R for any k but ω−(k) is imaginary for (k ·u)2 < 2µ2

when it represents the well-known two-stream electrostatic instability. For
(k · u)2 > 2µ2, the mode is stable, 0 < ω−(k) ∈ R.

The correlation function 〈Ei(ω1,k1)E
i(ω2,k2)〉 as given by Eq. (53)

equals

〈Ei(ω1,k1)E
i(ω2,k2)〉 = −16π2e2n

(2π)3δ(3)(k1 + k2)

k2
1

×
[

(ω1 + k1 · u)(ω2 + k2 · u) + (ω1 − k1 · u)(ω2 − k2 · u)
]

×
ω2

1 − (k1 · u)2

(ω1 − ω−(k1))(ω1 + ω−(k1))(ω1 − ω+(k1))(ω1 + ω+(k1))

×
ω2

2 − (k2 · u)2

(ω2 − ω−(k2))(ω2 + ω−(k2))(ω2 − ω+(k2))(ω2 + ω+(k2))
. (89)

One observes that the poles of the correlation function 〈Ei(ω1,k1)E
i(ω2,k2)〉

at ω1 = k1v and ω2 = k2v, which give the stationary contribution to the
equilibrium fluctuation spectrum, have disappeared in Eq. (89) as the inverse
dielectric functions vanish at these points.

The correlation function 〈Ei(t1, r1)E
i(t2, r2)〉 is given by Eq. (54) with

〈Ei(ω1,k1)E
i(ω2,k2)〉 defined by Eq. (89). Performing the trivial integra-

tion over k2 and taking into account that ω±(−k) = ω±(k), one finds:
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〈Ei(t1, r1)E
i(t2, r2)〉 = 32π2e2n

∞+iσ
∫

−∞+iσ

dω1

2πi

∞+iσ
∫

−∞+iσ

dω2

2πi

×

∫

d3k

(2π)3
e−i(ω1t1+ω2t2−k(r1−r2))

k2 [ω1ω2 − (k · u)2]

×
ω2

1 − (k · u)2

(ω1 − ω−(k))(ω1 + ω−(k))(ω1 − ω+(k))(ω1 + ω+(k))

×
ω2

2 − (k · u)2

(ω2 − ω−(k))(ω2 + ω−(k))(ω2 − ω+(k))(ω2 + ω+(k))
. (90)

There are 16 contributions to the integrals over ω1 and ω2 in Eq. (90) related
to the poles at ±ω±. Summing up the contributions, we get after lengthy
calculation

〈

Ei(t1, r1)E
i(t2, r2)

〉

= 16π2e2n

∫

d3k

(2π)3
eik(r1−r2)

k2

1

(ω2
+ − ω2

−)2

×

{

(

ω2
+ − (k · u)2

)2

ω2
+

×
[

(ω2
+ − (k · u)2) cos (ω+(t1 + t2)) + (ω2

+ + (k · u)2) cos (ω+(t1 − t2))
]

−
(ω2

+ − (k · u)2)(ω2
− − (k · u)2)

ω+ω−

[

(ω+ω− − (k · u)2) cos(ω+t1 + ω−t2)

+ (ω+ω− + (k · u)2) cos(ω+t1 − ω−t2)

+ (ω+ω− − (k · u)2) cos(ω−t1 + ω+t2)

+ (ω+ω− + (k · u)2) cos(ω−t1 − ω+t2)
]

+
(ω2

−− (k · u)2)2

ω2
−

×
[

(ω2
−−(k · u)2) cos (ω−(t1 + t2)) + (ω2

− + (k · u)2) cos (ω−(t1−t2))
]

}

.

(91)

Let us now consider the domain of wave vectors (k · u)2 < 2µ2 when
ω−(k) is imaginary and it represents the unstable electrostatic mode.
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We write down ω−(k) as iγk with 0 < γk ∈ R,

γk ≡

√

µ
√

µ2 + 4(k · u)2 − µ2 − (k · u)2 . (92)

We are interested in the contributions to the correlation function coming
from the unstable modes. The contributions, which are the fastest growing
functions of (t1 + t2) and (t1 − t2), correspond to the last term in Eq. (91).
The contributions provide

〈Ei(t1, r1)E
i(t2, r2)〉unstable = 4π2e2n

×

∫

d3k

(2π)3
eik(r1−r2)

k2µ2(µ2 + 4(k · u)2)

(γ2
k

+ (k · u)2)2

γ2
k

×
[

(γ2
k+(k · u)2) cosh (γk(t1+t2))+(γ2

k−(k · u)2) cosh (γk(t1−t2))
]

,

(93)

where we have taken into account that ω2
+ − ω2

− = 2µ
√

µ2 + 4(k · u)2. As
seen, the correlation function (93) is invariant with respect to space trans-
lations — it depends on the difference (r1 − r2) only. The initial plasma
state is on average homogeneous and it remains like this in course of the
system’s temporal evolution. The time dependence of the correlation func-
tion (93) is very different from the space dependence. The electric fields
exponentially grow and so does the correlation function both in (t1 + t2) and
(t1− t2). The fluctuation spectrum also evolves in time as the growth rate of
unstable modes is wave-vector dependent. After sufficiently long times the
fluctuation spectrum is dominated by the fastest growing modes. It should
be remembered, however, that our results hold for times which are not too
long. Otherwise, the perturbation, which exponentially grows, violates the
condition (6) justifying the linearization procedure.

9. Summary and conclusion

The calculations presented here show how to obtain a spectrum of elec-
tromagnetic fluctuations in equilibrium or nonequilibrium plasmas as a so-
lution of an initial value problem. We first linearize the transport equation
around the state which is on average stationary and homogenous. The lin-
earized transport equation is solved together with the Maxwell equations by
means of the one-sided Fourier transformation. The time dependent fluc-
tuation spectrum is expressed through the fluctuations in the initial state.
Electromagnetic initial fluctuations are determined by the initial fluctuations
of the distribution function. The later are identified with the fluctuations
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in a classical system of noninteracting particles. We compute fluctuation
spectrum of longitudinal electric fields in isotropic plasma, and then there
are considered fluctuations of magnetic and electric fields. Our equilibrium
results coincide with those obtained by means of the fluctuation-dissipation
theorem. However, the method adopted here clearly shows how the system
looses its memory and how the stationary equilibrium spectrum of fluctu-
ations emerges. As an example of unstable systems, the fluctuations of
longitudinal electric field in the two-stream system are considered. The
fluctuation spectrum appears to be qualitatively different than that of the
equilibrium plasma.

The scheme of calculation, which is worked our here in detail, can be
applied to a variety of plasma nonequilibrium states. Our actual objective
is, however, to generalize the scheme to study fluctuations in the quark-gluon
plasma mentioned in the Introduction. Such a generalization is not quite
trivial. The problem is that chromodynamic fields are, in contrast to their
electromagnetic counterparts, gauge dependent, but physically meaningful
correlation functions have to be gauge independent. A treatment of color
charges needs to be different as well.
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