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The exactly solvable quantum model of the homogeneous, isotropic and
closed universe in the matter-energy production epoch is considered. It is
assumed that the universe is originally filled with a uniform scalar field
and a perfect fluid which defines a reference frame. The stationary state
spectrum and the wave functions of the quantum universe are calculated. In
this model the matter-energy in the universe has a component in the form of
a condensate of massive zero-momentum excitation quanta of oscillations of
primordial scalar field. The mean value of the scale factor of the universe in
a given state is connected with the mass of a condensate by a linear relation.
The nucleation rate of the universe from the initial cosmological singularity
point is calculated. It is demonstrated that the process of nucleation of the
universe can have an exponential (explosive) nature. The evolution of the
universe is described as transitions with non-zero probabilities between the
states of the universe with different masses of a condensate.

PACS numbers: 98.80.Qc, 04.60.–m, 04.60.Kz

1. Introduction

The method of constraint system quantization can be taken as a basis
of quantum theory of gravity suitable for the investigation of cosmological
systems [1]. As is well known the structure of constraints in general rela-
tivity is such that variables which correspond to true dynamical degrees of
freedom cannot be singled out from canonical variables of geometrodynam-
ics. The reason behind this difficulty is the absence of predetermined way
of identifying spacetime events in generally covariant theory [2].
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In contrast to gravitational field in a void, the consideration of grav-
itational field coupled with matter allows to use matter in order to give
an invariant meaning to spacetime points [2–4]. Using material reference
systems, one can address conceptual problems of not only classical, but also
quantum gravity [5].

In Ref. [2] a scheme to include reference frames in general relativity by
means of an introduction of coordinate conditions was developed. A task
at this point is to find a material source in the Einstein equations which
determines a reference frame and has no unphysical properties. This ap-
proach was applied in Refs. [6,7] in order to solve the problems of quantum
theory of gravity in the mini-superspace model with a material source in
the form of relativistic matter (radiation) which defines the reference frame.
The variables which describe radiation mark spacetime events, since the ref-
erence frame is considered as a dynamical system. These variables play the
role of the canonical coordinates which determine an embedding in the en-
compassing spacetime. At the same time the new constraints turn out to be
linear with respect to the momenta canonically conjugate with them. Such
an approach allows to obtain the time-dependent Schrödinger equation and
to define a conserved positive definite inner product.

On the other hand it is well known that during the quantization of dif-
ferent model systems in gravity one can use a perfect fluid as a reference
frame [3,8,9]. In this case one deals directly with a physical medium without
coordinate conditions as an intermediate under the construction of a material
source. This leaves aside problems connected with the necessity to ensure
that the action is coordinate invariant and that a material source which
determines a reference frame has correct physical properties. Relativistic
matter is a special case of a perfect fluid and as the simplest physical system
can be used to define a reference frame.

In Section 2 the summary of ideas that lead to the fundamental equations
of quantum model of the universe is given.

In Section 3 the stationary state spectrum and the wave functions of
the quantum universe filled with primordial matter in the form of a uni-
form scalar field and a perfect fluid (radiation) which defines a reference
frame are calculated. It is shown that the matter-energy in the universe
has a component in the form of a condensate of massive zero-momentum
excitation quanta of oscillations of a primordial scalar field. The mean value
of the scale factor in a given state of the universe is calculated. This mean
value is determined by the mass of a condensate and the mean deviation
from an equilibrium state that can be neglected in the semi-classical limit.
It is shown that the universe with the Planck mass of a condensate in the
ground (vacuum) state has the mean value of the scale factor that practically
coincides with the Planck length.
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In Section 4 the nucleation rate of the universe from the initial cosmolog-
ical singularity point is calculated and it is demonstrated that the process of
nucleation of the universe can have an exponential (explosive) nature. This
phenomenon can be identified with the initial moment of the Big Bang. It
is shown that the greater masses of a condensate of the nucleating universe
correspond to its larger initial sizes.

In Section 5 the probabilities of transitions between the states of the
universe with different masses of a condensate are calculated. It is shown
that the probability of transition from the vacuum state of the universe to
another state obeys the Poisson distribution.

In Section 6 a conclusion is given.

2. Constraint system quantization in the presence of a medium

which defines a reference frame

Let us consider a cosmological system (universe) with the action

S = SE−H + SM + SPF , (1)

where

SE−H = − c3

16πG

∫
d4x

√− g R (2)

is the Einstein–Hilbert action for gravitational field, SM is the action of
matter fields,

SPF =
1

c

∫
d4x

√−g{−ρ(ρ0, s) + λ[gµνUµUν − 1]

+ ρ0U
ν [sΘ,ν − λ̃,ν + βiα

i
,ν ]} (3)

is the action of a perfect fluid (macroscopic bodies) [10–14], which defines
material reference frame, where ρ is the energy density as a function of
the density of the rest mass ρ0 and the specific entropy s, Uν is the four-
velocity, λ is a Lagrange multiplier that ensures normalization of Uν . The

Θ, λ̃, βi, α
i are scalar fields. Here Θ has a meaning of the thermasy or the

“potential” for the temperature T , T = Θ, νU
ν . The λ̃ is the “potential” for

the specific free energy f taken with an inverse sign, f = − λ̃, νU
ν . The

βi and αi are Lagrange multipliers and Lagrangian coordinates for a fluid
on a space-like hypersurface respectively (one should introduce them into
the action in order to describe rotational flows and, generally speaking, an
incorporation of one pair of the variables βi and αi into the action would
be enough, but then their direct physical interpretation will be lost). The
thermodynamic variables are related via the first law of thermodynamics

dρ = hdρ0 + ρ0Tds , (4)
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where h = ρ+p
ρ0

is the specific enthalpy which plays the role of inertial mass,

p is the pressure.
The components of the metric tensor gµν , the matter fields contained in

SM, and the values ρ0, s, U
ν , Θ, λ, λ̃, βi and αi play the role of generalized

variables. All equations of classical theory of gravity follow from the principle
of least action

δS = 0 , (5)

where all independent variables are varied [14].
Let us assume that the universe is homogeneous, isotropic, closed and

described by the Robertson–Walker metric

ds2 = N2(t)c2dt2 − a2(t)dΩ2, (6)

where a(t) is the cosmic scale factor, N(t) is the lapse function that specifies
the time reference scale, t is the time variable, dΩ2 is an interval element on
a unit three-sphere. We choose the uniform scalar field φ with the potential
energy density (potential) V (φ) as a matter. The choice of such a field as
a primordial matter seems to be reasonable, since any other fields (vector
or spinor, for instance), being non-averaged over all space variables at ev-
ery instant of time, can destroy the supposed property of homogeneity and
isotropy of the universe.

In the model of the universe under consideration the action (1) can be
reduced to the form [14]

S =

∫
dt

(
πa
da

dt
+ πφ

dφ

dt
+ πΘ

dΘ

dt
+ πeλ

dλ̃

dt
−H

)
, (7)

where πa, πφ, πΘ, πeλ
are the momenta canonically conjugate with the vari-

ables a, φ, Θ, λ̃, and it is taken into account that the momenta conjugate
with the variables ρ0, s and N , vanish identically. In this model U0 = 1

N ,

U i = 0, the condition gµνUµUν = 1 is contained explicitly in the variational
principle and, therefore, the term with λ should be dropped. Since the vari-
ables βi and αi describe rotational flows which would create a preferential
direction in space, the terms with βi and αi should be dropped as well and
one should consider irrotational (potential) flows of a perfect fluid only.

The H in Eq. (7) is the Hamiltonian

H = N

(
−3πc4

4G

)
1

a

{(
2G

3πc3

)2

π2
a + a2 − G

3π3c2
π2
φ

a2
− 8πG

3c4
a4[ρ+ V (φ)]

}

+λ1

{
πΘ − 1

c
2π2a3ρ0s

}
+ λ2

{
πeλ

+
1

c
2π2a3ρ0

}
, (8)
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where λ1 and λ2 are Lagrange multipliers. The function N in (8) plays
also the role of a Lagrange multiplier (like in ADM-formalism [15]). The
variation of the action (7) with respect to N , λ1 and λ2 leads to three
constraint equations.

In quantum theory these constraint equations become, in accordance
with a procedure proposed by Dirac [1], constraints on the wave function Ψ .
Replacing the momenta by the operators

πa → π̂a = −i~∂a , πφ → π̂φ = −i~∂φ ,
πΘ → π̂Θ = −i~∂Θ , πeλ

→ π̂eλ
=−i~∂eλ

,

which satisfy the commutation relations

[a, π̂a] = i~ , [φ, π̂φ] = i~ , [Θ, π̂Θ] = i~ , [λ̃, π̂eλ
] = i~ ,

while all other commutators vanish, we obtain

{
−
(

2G~

3πc3

)2

∂2
a + a2 +

G~
2

3π3c2
1

a2
∂2
φ −

8πG

3c4
a4[ρ+ V (φ)]

}
Ψ = 0 , (9)

{
− i~∂Θ − 1

c
2π2a3ρ0s

}
Ψ = 0 , (10)

{
− i~∂eλ

+
1

c
2π2a3ρ0

}
Ψ = 0 . (11)

In Eq. (9) the factor ordering parameter associated with a possible ambiguity
in the choice of an explicit form of the operator π̂2

a is assumed to be zero.

It is convenient to pass from the generalized variables Θ and λ̃ to the
non-coordinate co-frame

hdτ = sdΘ − dλ̃ ,

hdy = sdΘ + dλ̃ , (12)

where τ is proper time in every point of space. It is easy to prove that the
corresponding derivatives commute between themselves,

[∂τ , ∂y] = 0 .

Then Eqs. (10) and (11) reduce to the form

{
− i~∂τc −

1

c
2π2a3ρ0

}
Ψ = 0 , ∂yΨ = 0 , (13)

where dτc = hdτ .
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From the variation of action with respect to λ̃ it follows the conservation
law

a3ρ0 = const . (14)

It describes a conserved macroscopic value which characterizes the number
of particles. For example, if a perfect fluid is composed of baryons, then
Eq. (14) describes the conservation of baryon number.

From the variation of action with respect to Θ it follows that the specific
entropy is conserved

s = const.

From Eq. (9) one can see that it is convenient to take the matter component
ρ in the form of relativistic matter (radiation) with the equation of state
p = 1

3ρ. In this case

a4ρ = const . (15)

Denoting the constant in Eq. (15) as E, while in Eq. (14) as E0, we obtain
the equations

{
−i~∂τc −

1

c
2π2E0

}
Ψ = 0 , (16)

{
−
(

2G~

3πc3

)2

∂2
a + a2 +

G~
2

3π3c2
1

a2
∂2
φ −

8πG

3c4
[a4V (φ) + E]

}
Ψ = 0 , (17)

where, according to Eq. (13), the wave function Ψ does not depend on y.
Eq. (16) describes the evolution of the state Ψ with respect to the time

variable τc. Eq. (17) does not contain τc explicitly. At this point there is
a close analogy with properties of closed systems in quantum mechanics.

The constants E0 and E are dimensional quantities, [E0] = energy,
[E] = energy × length. It is convenient to rewrite Eqs. (16) and (17) for
dimensionless quantities. With that end in view we bring in correspondence

a→ a

lP
, φ→ φ

φP
, τc→

τc
lP
, V → V

ρP
, E0→

4π2

mPc2
E0 , E → 4π2

~c
E ,

where we have dimensionless quantities from the left, and

lP =

√
2G~

3πc3
, φP =

√
3c4

8πG
, tP =

lP
c
, ρP =

3c4

8πGl2P
, mP =

~

lPc

are the Planck values of length, scalar field, time, energy density and mass,
respectively. Then Eqs. (16) and (17) in new dimensionless variables take
the form {

−i∂τc −
1

2
E0

}
Ψ = 0 , (18)



The Big-Bang Quantum Cosmology: The Matter-Energy Production Epoch 985

{
−∂2

a +
2

a2
∂2
φ + a2 − a4V (φ) − E

}
Ψ = 0 . (19)

Eq. (18) has a particular solution in the form

Ψ = e
i

2
E0τcψ , (20)

where ψ is a function which depends on a and φ only and is determined by
Eq. (19). If we pass from the time variable τc to τ = E0/2E τc, as a result
we arrive in Eqs. (19) and (20) to an analogy with the Schrödinger equation
for stationary states. We have obtained Eqs. (19) and (20) previously in
Refs. [6, 7] within the bounds of the scheme for incorporating of a refer-
ence system in general relativity through the introduction of a coordinate
condition.

Let us note that we can obtain Eqs. (18) and (19) even without an intro-
duction of proper time by means of Eqs. (12). It is possible to build a time
variable from the matter variables (e.g. Refs. [8,9]). We can consider e.g. Θ
as a time variable [14]. (On the correspondence between the thermasy and
proper time see Ref. [16].)

Second order partial differential equation (19) is given on the intervals
0 ≤ a < ∞ and −∞ < φ < ∞. It should be supplemented with boundary
conditions. We suppose that at a → 0 the function ψ(a, φ) → const. At
a → ∞ its form depends on the properties of the potential V (φ). It will
determine the behaviour of ψ on the boundaries φ→ ±∞.

As is well known, the energy density of a uniform scalar field can be
written as

ρφ =
2

a6
π2
φ + V (φ) , (21)

where we have used an explicit form of the momentum πφ canonically con-
jugate with φ [7],

πφ =
1

2
a3dφ

dτ
. (22)

By analogy we determine the energy density operator for the field φ,

ρ̂φ = − 2

a6
∂2
φ + V (φ) . (23)

Then the operator of the total energy density in the quantum system under
consideration will have the form

ρ̂tot = ρ̂φ + ρ , (24)

where ρ is the same as in Eq. (15), and Eq. (19) after multiplying from the
left by a−4 and averaging over the state Ψ normalized in one way or another
(see below), can be written as

〈Ĝ00〉 = 3〈T̂00〉 , (25)
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where the operators are

Ĝ00 =
3

a4

(
π̂2
a + a2

)
, T̂00 = ρ̂tot . (26)

Comparing Eqs. (25) and (26) with the Einstein equations in general rela-

tivity we arrive at a conclusion that the operator Ĝ00 can be considered as
a generalization to quantum theory of the correspondent component of the
Einstein tensor, while T̂00 is the operator of (00)-component of the energy-
momentum tensor (stress tensor) of matter. The relation (25) can be used
to find quantum corrections to the Einstein–Friedmann equation of classical
theory of gravity.

3. Stationary states of the quantum universe

Let us study the properties of the quantum universe described by the
steady-state Eq. (19). Since the universe is supposed to be closed, then one
can introduce a notion of the mass of the universe as a product of its matter
density and a comoving volume. In the units under consideration the mass
of a scalar field in the universe with the scale factor a is equal to

Mφ =
1

2
a3ρφ . (27)

This value will be associated with the operator

Ĥφ =
1

2
a3 ρ̂φ , (28)

where ρ̂φ is (23), while 1
2 a

3 is a comoving volume. Then Eq. (19) takes the
form (

− ∂2
a + a2 − 2aĤφ − E

)
ψ = 0 . (29)

Further let us suppose that the potential V (φ) is a smooth function of φ.
Let there exists a value of the field φ = σ at which the function V (φ) has
a minimum, while the value σ itself corresponds to the true vacuum of the
field φ, V (σ) = 0 (an absolute minimum [17]). Then near the point φ = σ
the following representation is valid

V (φ) =
m2
σ

2
(φ− σ)2 , (30)

where m2
σ = [d2V (φ)/dφ2]σ > 0.
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Let us make a scaling transformation of the field φ and introduce a new
variable x which describes a deviation of the field φ from its vacuum state σ,

x =

(
mσa

3

2

)1/2

(φ− σ) . (31)

The operator (28) takes the form

Ĥφ =
mσ

2

(
−∂2

x + x2
)
. (32)

Let us introduce the eigenfunctions of harmonic oscillator uk(x) as a solution
of the equation (

−∂2
x + x2

)
uk(x) = (2k + 1)uk(x) , (33)

where k = 0, 1, 2, ... is the number of the state of the oscillator,

uk(x) =
[√
πk!2k

]−1/2
e−x

2/2Hk(x) ,

Hk(x) are the Hermitian polynomials. Then we find

Ĥφuk = Mkuk , (34)

where

Mk = mσ

(
k +

1

2

)
. (35)

The value Mk can be interpreted as an amount of matter-energy (or
mass) in the universe related to a scalar field. In the second quantiza-
tion formalism this energy is represented in the form of a sum of excitation
quanta of the spatially coherent oscillations of the field φ about the equilib-
rium state σ, k is the number of these excitation quanta. Such oscillations
correspond to a condensate of zero-momentum φ quanta with the mass mσ.
The mass mσ is determined by the curvature of the potential V (φ) near
φ = σ.

Taking into account (34) we shall look for the solution of Eq. (29) in
the form of the superposition of the states with all possible values of the
quantum number k (and, correspondingly, with all possible masses Mk)

ψ(a, φ) =
∑

k

fk(a)uk(x) . (36)

Substituting (36) into (29) and using the orthonormality condition for the
states uk(x), 〈uk|uk′〉 = δkk′ , we obtain the equation for fk(a),

(
−∂2

a + a2 − 2aMk −E
)
fk(a) = 0 . (37)
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This equation has an analytical solution decreasing at a → ∞ which has
the form of the wave function of an oscillator perturbed by the mass term
−2aMk,

fk(a) ≡ fn,k(a) = Nn,ke
− 1

2
(a−Mk)2Hn(a−Mk) (38)

at
E ≡ En,k = 2n+ 1 −M2

k , (39)

where n = 0, 1, 2, ... is the number of the state of the quantum universe at
a given k-state of a condensate (with the mass Mk) in the potential well

U(a) = a2 − 2aMk . (40)

For the states fn,k(a), normalized by the condition 〈fn,k|fn′,k〉 = δnn′ , the
normalization factor Nn,k is equal to

Nn,k =
{

2n−1n!
√
π[erfMk + 1]

− e−M
2

k

n−1∑

l=0

2ln!

(n − l)!
Hn−l(Mk)Hn−l−1(Mk)

}− 1

2

, (41)

where

erfM =
2√
π

M∫

0

dte−t
2

is a probability integral. From the properties of the function erfM and the
properties of the Hermitian polynomials Hn(M) it follows that the normal-
ization factor (41) for Mk > 1 is equal to

Nn,k =
{
2nn!

√
π −O

(
(2Mk)

2n−1 e−M
2

k

)}− 1

2

. (42)

One can neglect the exponential addition for the states of the quantum
universe with the large enough masses Mk of a condensate. In this case Nn,k

does not depend on k, and its numerical value coincides with the numerical
value of the normalization factor of the wave function of ordinary harmonic
oscillator in the state n.

According to (38) and (39) the quantum states of the universe are char-
acterized by two quantum numbers n and k. The mean value of the scale
factor a in the state (38),

ā = 〈fn,k|a|fn,k〉 , (43)

equals to
ā = Mk + ξ̄ , (44)
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where

ξ̄ = N2
n,k2

n−1n!e−M
2

k

{
1 +

n−1∑

l=0

2l−n

(n− l)!
Hn−l(Mk)Hn−l−1(Mk)

}

=
N2
n,k

2
n! e−M

2

k

{
2n +O

(
(2Mk)

2n−1
)}

. (45)

According to (44) and (45) the universe with the Planck mass of a conden-
sate, Mk = 1, in the ground (vacuum) state, n = 0, is characterized by
the mean value ān=0 = 1.11 which coincides with the Planck length by an
order of magnitude. For the states with Mk > 1 the mean value (44) does

not depend on n to within a small summand ∼ O((2Mk)
2n−1 e−M

2

k ) and is
determined by the mass Mk only,

ā = Mk at Mk ≫ 1 . (46)

The mass Mk determines also the value of an absolute minimum of the
effective potential U(a) (40) of Eq. (37), U(Mk) = −M2

k .

4. The nucleation rate of the universe from the initial

cosmological singularity point

The wave function fn,k(a) describes the universe in the state with the
quantum numbers n and k and depends on the scale factor a. The ground
state of the quantum universe is characterized by the Planck parameters.
The wave function fn,k(a) itself can be considered at the point a = 0.
According to quantum field theory a particle decay rate is determined by
the expression

Γψ = vσr |ψ(0)|2 , (47)

where v is the relative velocity of decay products, σr is the reaction cross-
section, and a bar means an averaging over non-recording parameters (e.g.,
over initial spin states), ψ(0) is the wave function of a particle before the
decay in the origin (at zero distance). In accordance with that the value

Γn,k = vσr|fn,k(0)|2 , (48)

can be interpreted as a rate of nucleation of the universe in the n, k-state
from the initial cosmological singularity point a = 0. In accordance with
classical view the nucleation of the universe is the process in time with
an expansion initiation at some instant τ which it is convenient to choose
as τ = 0. The velocity v can be naturally identified with the expansion rate
v = da/dτ at τ = 0, where τ is some time parameter which ensures the
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boundary condition a(τ = 0) = 0. The cross-section σr will be set equal
to σr = π a2. The dependence a(τ) can be found from the condition of
finiteness of v σr at the point a = 0. We put

vσr ≡ lim
a→0

(
da

dτ
πa2

)
= const . (49)

It is easy to make sure that at const 6= 0 the single possible case is a(τ) ∼ τ1/3

which is realized when primordial matter is described by the extremely rigid
equation of state at the point a(τ = 0) = 0,

pin = ρin ,

where pin and ρin are the pressure and energy density of a primordial scalar
field at the moment of nucleation of the universe. From the point of view
of semi-classical approximation such an equation of state is realized in the
primordial scalar field φ taken in the state of its true vacuum φ = σ, where
V (σ) = 0,

ρσ =
1

2

(
dφ

dτ

)2

σ

= pσ , (50)

when all energy of the field φ is concentrated in its kinetic part. Such
a state is unstable and should turn into the state with a condensate of φ
quanta. This transition will look like a nucleation of the universe from the
point a = 0 with the extremely rigid equation of state (50) and the wave
function fn,k(0), the square of which determines the rate of such a process
in accordance with (48). (Physics of transition from a = 0 to ā 6= 0 is
considered below at the end of this section.)

Using an explicit form of the function fn,k(a) (38) and keeping the main
term in Nn,k (42) only, we find

Γn,k ≃ const
2n√
π
P (n) , (51)

where

P (n) =
〈n〉n
n!

e−〈n〉

is the Poisson distribution with the mean value 〈n〉 = M2
k of the quantum

number n. The total nucleation rate of the universe Γ =
∑

n Γn,k is given
by the mean value 〈2n〉 over the Poisson distribution. It appears to be
exponentially high

Γ ≃ const√
π

exp{M2
k} . (52)
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According to quantum theory the square of modulus of the wave function
at the origin determines the particle number density at this point. In the
case of the quantum universe

|fn,k(0)|2 ∼ L−3
n,k , (53)

where Ln,k is the linear dimension of the region from which the universe
nucleates. Hence we find that

Ln,k ∼
(√

πn!

2nM2
k

)1/3

exp

{
M2
k

3

}
. (54)

For n = 0 and Mk = 1 we have L0,k ∼ 1.69. This value is consistent
with the mean value ān=0 = 1.11 calculated above for the universe with the
Planck mass of a condensate.

Given estimations show that the universe nucleates with a finite rate
into the state with the Planck parameters (mass and spatial dimensions).
The larger masses of a condensate of nucleating universe correspond to the
larger primordial dimensions. The total nucleation rate of the universe obeys
an exponential law and corresponds to an “explosion” from the point a = 0.
It can be identifies with zero time of the Big Bang.

As we have shown in Ref. [18] a condensate of φ quanta with the total
mass Mk 6= 0 has an antigravitating property and is described by the vac-
uum equation of state pk = −ρk, where ρk = 2Mk/ā

3. The universe from
an unstable state with the extremely rigid equation of state at the point
a = 0 passes into the ground state with the Planck mass of a condensate
and the Planck scale factor. As soon as the mass of a condensate reaches
nonzero values the equation of state of a primordial scalar field changes from
the extremely rigid equation of state to the vacuum one and a condensate
acquires an antigravitating property. The growth of Mk leads to the growth
of antigravitation and as a consequence triggers a subsequent growth of ā of
the quantum universe which at that undergoes an accelerating expansion.

5. Probabilities of transitions between the states of the universe

with different masses of a condensate

According to (36), (38) the function fn,k(a) can be interpreted as a state
vector which describes the universe in the n-th state with the mass of a con-
densate Mk. The states fn,k are orthogonal with respect to the quantum
number n. If the states fn,k and fn′,k′ correspond to different masses,
Mk 6= Mk′ , then they are eigenfunctions of different operators and therefore,
generally speaking, are nonorthogonal between themselves. The correspon-
dent overlap integral is 〈fn,k|fn′,k′〉 6= 0. The evolution of the universe takes
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place in such a way that it passes from, say, the n, k-state in one potential
well U(a) (40) into the state with the quantum numbers n′, k′ in another
well, where the number of the state n′ may differ from n or be equal to it,
but an index k′ that numbers a quantity of φ quanta differs from k.

Eq. (37) describes the stationary states. Therefore, when calculating the
transition probability w(n, k → n′, k′) we use the model of the instantaneous
change of the state of quantum system. Then

w(n, k → n′, k′) = |〈fn′,k′ |fn,k〉|2 . (55)

It is easy to show that the normalization condition

∑

n′

w(n, k → n′, k′) = 1 (56)

is satisfied.
Using the explicit form of the function fn,k(a) (38), integrating by parts,

and neglecting the terms ∼ exp{−M2
k} for Mk ≫ 1 we find

〈fn′,k′ |fn,k〉 = 2
√
πNn′,k′Nn,kξ

n−n′

0 e−ξ
2

0

n′∑

i=0

(−1)i
2n

′−in′!n!ξ2i0
i!(n′ − i)!(n − n′ + i)!

(57)
for n 6= 0 and

〈fn′,k′ |f0,k〉 = 2
√
πNn′,k′N0,kξ

n′

0 e
− 1

4
ξ2
0 , (58)

where we denote ξ0 = Mk′ −Mk. The transition probability (55) at n′ >
n ≥ 1 is equal to

w(n, k → n′, k′) ≃ 1

2n′−n−2

n′!

n![(n′ − n)!]2
ξ
2(n′−n)
0 e−2ξ2

0 , (59)

where we have used the expression (57) and keep only the main term with
i = n′ − n. The probability of transition between the states with n′ < n
follows from (59) after the substitution n↔ n′ and it can be obtained from
(57) keeping the main term with i = 0.

According to (59) when the difference ξ0 = mσ(k
′ − k) grows the transi-

tion probability falls almost exponentially. For the φ quanta with the masses
mσ ∼ 1 the transitions between the states of a condensate with the close
numbers k and k′ in different potential wells U(a) have the highest proba-
bility. For the mass mσ ∼ 10−19 (∼ 1 GeV) the parameter ξ0 ∼ 1 for the
difference (k′ − k) ∼ 1019.
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Nonzero transition probability points to a possibility in principle for the
universe to evolve as a result of transitions between quantum states. An in-
crease (decrease) in the mass of a condensate means an increase (decrease)
in the mean value of the scale factor of the universe. From the point of view
of semi-classical theory the universe will expand (contract).

Using Eq. (58) one can calculate the probability of transition of the
universe from the ground (vacuum) state, n = 0, to any other state. It
obeys the Poisson distribution

w(0, k → n′, k′) =
〈n′〉n′

n′!
e−〈n′〉 , (60)

with the mean value 〈n′〉 = ξ20/2 of the quantum number n′. If 〈n′〉 ≪ 1,
then this probability is small and it decreases rapidly with an increase in n′.
The highest probability in this case has the transition 0, k → 1, k′,

w(0, k → 1, k′) = 〈n′〉 −O(〈n′〉2) . (61)

The transition vacuum → vacuum from different potential wells U(a) is given
by an exponent

w(0, k → 0, k′) = e−〈n′〉 . (62)

It means that the transitions from vacuum to non-vacuum states occur
with the overwhelming probability. The total probability of such transitions
equals to

w(vac → nonvac) ≡
∑

n′ 6=0

w(0, k → n′, k′) = 1 − e−〈n′〉 . (63)

The ratio of the total transition probability (56) at n = 0 to probabilities of
transitions between the vacuum states is equal to

∑
n′ w(0, k → n′, k′)

w(0, k → 0, k′)
= e〈n

′〉 , (64)

ie against a background of vacuum–vacuum transitions the probabilities of
transitions into non-vacuum states look like exponentially high.

6. Conclusion

In this paper we calculate the spectrum of stationary states (39) and the
wave functions (36), (38) of the homogeneous and isotropic universe in the
epoch of matter-energy production from a primordial uniform scalar field on
basis of the exact solution of Eq. (19) of quantum model. Produced matter-
energy represents itself a condensate of excitation quanta of oscillations of
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a scalar field above its true vacuum state. The mass of a condensate (35)
and the mean value of the scale factor (43) in a given state of the universe
are connected between themselves by the linear expression (44). Let us note
that the condition (46) is a mathematical formulation of the Mach’s prin-
ciple proposed by Sciama [19] (see also [20]). The universe in an arbitrary
state (36) is described by the superposition of the states with all possible
masses of a condensate. The nucleation rate of the universe from the ini-
tial cosmological singularity point (51) appears to be non-zero, while the
total nucleation rate obeys the exponential (explosive) law (52). The nucle-
ation of the universe takes place as a result of its transition from the initial
cosmological singularity point with the extremely rigid equation of state of
a primordial scalar field into the state with the non-zero mass of a conden-
sate with the vacuum equation of state. The universe being nucleated in
the ground (vacuum) state has the Planck parameters. The evolution of
the universe is described as transitions with the non-zero probability (59)
between the states of the universe with different masses of a condensate.
An increase (decrease) in this mass leads to an expansion (contraction) of
the universe.

The classical universe can be imagined as a ball which is situated in the
minimum of the effective potential U(a) (40) and moves together with this
minimum in the direction of large a with grows of its mass. From the point
of view of classical theory such a motion (expansion of the universe) can
continue for an arbitrary long period of time. System has no restrictions in
dimensions and mass.
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