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We discuss the early investigations of Brownian motion as a stochas-
tic process by surveying contributions by Fick and Rayleigh developed
later in works of Einstein, Smoluchowski, Langevin, Fokker, Planck, Klein,
Kramers and Pauli. In particular, we are interested in the influence of
the theory of probability in the development of the kinetic theory and we
briefly analyze the origin of fundamental equations used in the mathemat-
ical description of the stochastic processes.
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1. Introduction

Due to the increasing role of stochastic processes in physics — we men-
tion just their importance for the dynamics and functionality of biological
macromolecules — more and more researchers enter the field. Just to give an
example, the Smoluchowski Symposia have collected over 20 years leading
and young researchers in the field and give summaries of the latest results
and achievements. In this connection our experience shows, that there is
some need to go back to the roots and make clear, who was involved in
the most important ideas and to whom we should give the credits for the
developments of the most important concepts and equations.

The observation of an erratic motion of small particles imbedded into liq-
uids goes back already to Ingenhousz and Brown [1, 2]. These observations
led to the concept of Brownian motion which is fundamental to Statistical
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Physics [6]. Moreover, the discussion of Brownian motion introduced quite
new concepts of microscopic description, pertinent to stochastic approaches.
The description put forward by Einstein in 1905/1906, Smoluchowski in
1906 and Langevin in 1908 is so much different from the one of Boltzmann
and Gibbs: it dispenses from the description of the system’s evolution in
phase space and relies from the very beginning on probabilistic concepts [7].
Mark Kac, in an essay about Smoluchowski, put it as follows: “. . . while
directed towards the same goal how different the Smoluchowski approach is
from Boltzmann’s. There is no dynamics, no phase space, no Liouville the-
orem — in short none of the usual underpinnings of Statistical Mechanics.
Smoluchowski may not have been aware of it but he begun writing a new chap-
ter of Statistical physics which in our time goes by the name of Stochastic
processes” [6]. The synthesis of the approaches leading to the understanding
of how the properties of stochastic motions are connected to deterministic
dynamics of the system and its heat bath were understood much later in
works by Mark Kac, Robert Zwanzig and others. Stochastic processes are
growing in importance. Further, we are having in mind the anniversaries of
the fundamentals of stochastic theory to be noticed in the years 2005–2008.
And for all these reasons we will discuss now the history of these important
concepts here in some more detail, however as we have to say, not from
the point of view of professional historians and being aware of other useful
surveys with related aims [3–6,8].

2. Early works on Brownian motion

The perpetual erratic motion of small particles immersed in a fluid was
first observed as early as in 1785 by a Dutch physician Jan Ingenhousz;
however, the phenomenon remained unknown to the non-Dutch speaking
community until it was rediscovered and studied in some detail by the Scot-
tish botanist Robert Brown in 1827. Working on mechanisms of fertilization
in plants, he turned his attention to the structure of pollen and concentrated
at their microscopical characterization. Having observed the unceasing mo-
tion of the pollen in water, he thought at first that the movement must be
due to the living nature of the particles under observation. However, being
a cautious scientist, he repeated his experiments with pollen kept in alcohol
for several months (presumably dead) and with nonorganic particles, which
all showed similar behavior. One can find one of the Brown’s original re-
ports “Additional Remarks on Active Molecules” (1829) in the Internet [1].
A discussion of the first observations was given by Ford [2].
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A next step of progress coming from a different direction was the work
of Fick on diffusion which led to the diffusion equation

∂n(x, t)

∂t
= D

∂2

∂x2
n(x, t) , (1)

where D is the diffusion coefficient [9] and n(x, t) describes time-dependent
concentration of the solute at the distance x from the solvent. We men-
tion the structural (mathematical) identity to Fourier’s law of heat conduc-
tion [10] (which was a guideline for Fick when putting down the theory
of molecular diffusion) and the extensive mathematical literature on this
equation. Fick’s approach was purely phenomenological, and did not relate
molecular diffusion to a Brownian motion discussed above.

The qualitative explanation of the Brownian motion as a kinetic phe-
nomenon was put forward by several authors. In 1877 Desaulx wrote:
”In my way of thinking the phenomenon is a result of thermal molecular
motion in the liquid environment (of the particles).” In 1889 G. Gouy gave
an account of detailed qualitative studies of the phenomenon [11]. He found
that the Brownian motion is really a phenomenon which is not due to ran-
dom external influences (vibration, electric or magnetic fields) and that the
magnitude of the motion depends essentially only on the two factors: on the
particles’ size and on the temperature. In 1900 F.M. Exner undertook the
first quantitative studies, measuring how the motion depends on these two
parameters.

Motivated by the need to give a comprehensive description of Brownian
motion and the increasing number of experiments, since 1905 several dif-
ferent (but strongly interconnected) approaches to Brownian motion were
developed. The ingenious microscopic derivation of the diffusion equation
by A. Einstein (which contained, in a nutshell, several different approaches)
and the discussion by P. Langevin put forward the two different approaches:
one based on the discussion of the deterministic equations for the probability
densities, another one based on the discussion of single, stochastic realiza-
tions of the process. These approaches, refined both from physical and from
the mathematical points of view build now the main instrument of descrip-
tion of both equilibrium and nonequilibrium processes on a mesoscopic scale.

3. Random walk approaches:

Einstein, Smoluchowski, Pearson, Rayleigh, Bachelier

The first theory of Brownian motion was put forward by Einstein in
1905 [12]. Albert Einstein’s first theoretical work was carried out during
his employment at the Bern patent office. Einstein started his work on
statistical physics in 1902–1903 with two very interesting papers published
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in his favorite journal Annalen der Physik. Here, independently of Gibbs,
Einstein developed the basic ideas of ensemble theory and the statistics
of interacting systems. In 1906 he presented a dissertation to the Zürich
University which contains a theory of Brownian motion. Einstein’s work
which appeared in 1905/1906 in the Annalen der Physik is the origin of
stochastic theory in physics, one of the corner stones of modern statistical
thermodynamics [12, 13].

In fact, Einstein’s paper was a theoretical discussion of one of possible
consequences of the molecular-kinetic theory of heat: ”Über die von moleku-
larkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen”. In this work Einstein discusses that
the kinetic theory of heat predicts the unceasing motion of small suspended
particles [12]. He was not sure that the phenomenon discussed is exactly
the Brownian motion, but considered this as a reasonable hypothesis. It
was pointed out to him later (by Gouy) that the effect he discussed was re-
ally the Brownian motion, since not only the qualitative properties, but also
the predicted orders of magnitude of the effect were correct, as discussed in
the Einstein’s second work [13]. Let us briefly discuss now the Einstein’s
approach. In his conjecture he has connected the motion of suspended par-
ticles with diffusion and showed that this diffusive behavior follows from the
three postulates. First, the particles considered are assumed not to interact
with each other: their trajectories are independent. Second, one assumes
that the motion of the particles lacks long-time memory: one can choose
such a time interval τ , that the displacements s of the particle during two
subsequent intervals are independent. Third, the distribution of a particle’s
displacements s during the subsequent time intervals φ(s) possesses at least
two lower moments. Moreover, for the force-free situation φ(s) is symmetric.
The displacement of the particle can thus be considered as a result of many
tiny, independent, equally distributed steps. The mathematical model be-
hind this motion is thus a simple random walk with a given tact frequency
of steps and a given, symmetric step length distribution.

The further line of his reasoning is very close to what we will call now
a Kramers–Moyal expansion. For the simplicity, following Einstein, we an-
alyze a one-dimensional problem:

The concentration of particles n in vicinity of point x is proportional to
the probability density f(x, t) to find one particle at this point. Comparing
the probabilities at time τ and at time t+τ we get (due to the independence
of the new displacement of the previous position and to the fact that x(t+τ)
= x(t) + s)

f(x, t + τ) =

∫

f(x − s, t)φ(s) ds . (2)
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Now, since both τ and s are both small compared to the time- and space-
scales of interest, one can expand the function f in Taylor series on both
sides of the equation. On the left-hand side it is enough to expand up to the
first order in t, on the right-hand side we need the second order in s.We get:

f+

(

∂f

∂t

)

τ+... = f+

(

∂f

∂x

)
∫

sφ(s)ds+
1

2

(

∂2

∂x2
f

)
∫

s2φ(s)ds+... . (3)

The integral
∫

sφ(s)ds vanishes due to the symmetry. In the lowest order
we thus get:

∂f

∂t
=

σ2

2τ

∂2

∂x2
f , (4)

where σ2 =
∫

s2φ(s)ds. Here we recognize the Fick’s diffusion equation, and
associate σ2/2τ with the diffusion coefficient D. The solution of Eq. (4) is,
clearly, a Gaussian

f(x, t) =
1√

4πDt
exp

(

− x2

4Dt

)

, (5)

so that the mean squared displacement of the particle along the x-axis
would be

〈x2〉 = 2Dt , (6)

which gives the direct way of experimental measurement of D.
The derivation of the diffusion equation by Einstein was the very first

step of statistical physics into the new domain of non-equilibrium phenom-
ena. Note however, that it was not the derivation of the diffusion equation,
which seemed to Einstein to be the main topic of this work: The discus-
sion of the diffusion of particles in the solution gave the way to determine
the Avogadro number NA through the macroscopic measurements on large
particles, the measurement performed by Perrin some 3 years later. Such
measurements were necessary to provide solid basement for atomistic theory
of matter. The corresponding theoretical considerations were summarized
in Einstein’s PhD thesis “Eine neue Bestimmung der Moleküldimensionen”
(New method for determination of molecular sizes) presented on April 30,
1906 at the University of Zürich.

Essential contributions, independently of Einstein, to this line of research
we owe to the work of the great Polish physicist Marian Smoluchowski (1872–
1917) published in subsequent contributions to the Annalen der Physik be-
ginning with 1906 [14–17].

Marian Smoluchowski was born May 28, 1872 near Vienna as the son of
a high Polish official in the chancellery of emperor Franz Joseph [3]. He stud-
ied at the Vienna University where he received his Ph.D. in 1894. Afterwards
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he was traveling and spent two years in Paris working with Lipmann, next in
Glasgow where he met Lord Kelvin, and eventually in Berlin where he spent
several months working in the laboratory of Prof. Warburg. In 1899 Marian
Smoluchowski accepted a position of a lecturer at the University of Lwów
(at the time part of the province Galicia of Austria, now Lviv in Ukraine).
In 1900, at the age of 28 he was promoted there a professor of theoretical
physics. In 1913 he got an appointment from the Jagellonian University in
Kraków where he served up to his premature death in 1917, just after being
elected to the honorable post of the rector of the University.

As pointed out by Stanislaw Ulam, “. . . It is interesting to see how it was
possible for a person of his exceptionally high ability, to get to the forefront
of European thought in physics, even though the milieu in which he worked
as a young professor was relatively isolated and without tradition in science”.
Smoluchowski’s most significant achievements regarding the kinetic theory
of matter concentrated on what we now know as the theory of stochastic
processes, where his contributions were of central importance. Apart from
his pioneering works on the theory of Brownian motion, he made other im-
portant contributions to the theory of nonequilibrium processes, and can be
considered as one of the founding fathers of modern theory of chemical ki-
netics, where his line of thought was continued by Lars Onsager and Hendrik
Anthony Kramers.

The formulation of the quantitative theory by A. Einstein and by
M. Smoluchowski motivated new, quantitative experiments performed by
J.-B. Perrin (starting from 1908), A. Westgren, E. Kappler and many others.
Perrin’s work was crowned by the Nobel prize in 1926. The macroscopically
measurable fluctuations gave new experimental possibilities and a series of
famous experimentalists were attracted by the behavior of mesoscopic par-
ticles (Perrin measured Loschmidt’s number and determined Planck’s con-
stant, Millikan and Ehrenhaft made experiments to define the elementary
charge, Houdijk and Zeeman observed the motion of platinum wires). These
works put the firm fundament to the modern understanding of both equi-
librium and non-equilibrium phenomena. Further theoretical developments
were given in the dissertations of two young scientists, L. Ornstein and
G. Uhlenbeck, presented in 1908 and 1927, respectively, to the University of
Leiden as well as their subsequent publications.

Let us mention another line of investigations which lead to the very simi-
lar models which did not lose their popularity in physics and in mathematics
during the whole century afterwards. This one starts with the question to
the readers of Nature put by Karl Pearson in 1905 (“The problem of random
walk”):
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Can any of your readers refer me to a work wherein I should
find a solution of the following problem, or failing the knowledge
of any existing solution provide me with an original one? I should
be extremely grateful for aid in the matter.

A man starts from point 0 and walks l yards in a straight line;
he then turns through any angle whatever and walks another l
yards in a straight line. He repeats this process n times. I require
the probability that after these n stretches he is at a distance
between r and r + δr from his starting point 0.

The question was answered within a week by Rayleigh, who pointed out
that essentially the same problem, encountered in the theory of oscillations,
was solved by him in 1880, and that the result was given by a Gaussian
(2/n)e−r2/nrdr for n large enough. Pearson’s inquiry was motivated by
a problem of animal motion, and in his reply he admits that “one does not
expect to find the first stage in a biometric problem provided in a memoir on
sound”. This reply is also the first source where the description of the walk
model is connected with a metaphor of a drunken man’s motion [18,19]. The
fact, that on the very dawn of stochastic methods so much different practical
problems ought for the same, revolutionary type of descriprion, stresses the
power and universality of the approach.

However, still another source of our knowledge has to be mentioned,
now laying far outside of physics. This is connected with the name of Louis
Bachelier (although also he seems to have a predecessor in person of Thor-
wald Nicolai Thiele, the inventor of the method of least squares (in 1880),
who formulated clearly some mathematical aspects of the problem). Indeed
the first random walk model was put forward five years before Einstein’s and
Smoluchowski’s work in the doctoral thesis of Louis Bachelier (1870–1946),
defended and published in Paris in 1900. The thesis worked out mathemat-
ically the idea that the stock market prices with their unceasing ups and
downs are essentially sums of independent, bounded random changes [20].
The report on this thesis written by H. Poincaré can be found in the article
by Taqqu [21]. It is sometimes claimed that the thesis was written under
the supervision of H. Poincaré; this statement does not seem to be, how-
ever, true: Bachelier worked and studied at the same time, he took courses
occasionally, and probably presented his thesis as the ”external” candidate.
On the other hand, Poincaré, who disliked probabilistic approaches, made
a positive note that the author ‘ ‘does not exaggerate the range of his re-
sults, and I do not think that he is deceived by his formulas”. The range of
Bachelier’s results was hard to exaggerate.
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Bernard Bru comments the situation as follows: ‘ ‘It was a thesis on
mathematical physics, but since it was not physics, it was about the Stock
Exchange, it was not a recognized subject” [21]. We note here that applica-
tion of physical methods to analysis of economical systems is now a rather
well established branch of statistical physics and a word “Econophysics” was
coined to describe this field. The results put forward by Bachelier were of
highest importance, and (partly used, partly rediscovered by later workers)
lead to a flash of interest to stochastic processes and corresponding proba-
bilistic approaches in mathematics. The mathematical approaches (culmi-
nating in work by Norbert Wiener, Paul Lévy and Andrei Nikolaevich Kol-
mogorov) in the direction of formulating and refining stochastic approaches
lead to a large body of knowledge giving a solid basis for modern applications
in statistical physics.

4. Stochastic differential equations: Langevin’s legacy

Smoluchowski, who followed essentially the same random walk line of
argumentation as Einstein, claimed that his approach is more direct and
therefore simpler than the one of Einstein. Still, Paul Langevin in his ar-
ticle published in Comptes Rendus in 1908 proposed a completely different
approach to description of Brownian motion, than the ones of Einstein and
Smoluchowski, and also claimed it to be ”infinitely simpler” than the Ein-
stein’s one. Here we repeat the main argumentation of his original work [22]:

Let us consider the motion of the Brownian particle in fluid. On the
average this motion is governed by the Newtonian dynamics under friction,
mv̇ = −γv, where γ is the friction coefficient (for a macroscopic spherical
particle this friction follows the Stokes law, so that γ = 6πηr, where r is the
particle’s radius). However, this equation, leading to the continuous decay
of the particle’s velocity, holds only on the average. In order to describe
the erratic motion of the particle, resulting from random, uncompensated
impacts of the molecules of surrounding fluid, we have to introduce addi-
tional, fluctuating force ξ(t) (called otherwise ”noise”). We assume only that
this force has a zero mean (so that it does not lead to the net motion on
average), and that it is independent on x, which reflects the homogeneity of
the whole system. We thus write

mv̇ = −γv + ξ(t) . (7)

Our first task will be to find the mean squared displacement of the par-
ticle. Let us now multiply both sides of Eq. (7) by x(t) and use the evident
fact that xv̇ = xẍ = d

dt(xẋ) − ẋ2. We thus get

m
d

dt
(xẋ) = mẋ2 − γxẋ + xξ . (8)
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Let us now average this equation over the realizations of the process. Divid-
ing both parts of the equation by m we arrive at:

d

dt
〈xẋ〉 = − γ

m
〈xẋ〉 +

〈

ẋ2
〉

+
1

m
〈xξ〉 . (9)

The last mean value vanishes due to the (assumed) independence of x and
ξ and due to the fact that the mean value of ξ is zero: 〈xξ〉 = 〈x〉 〈ξ〉 = 0.
Moreover, by use of the equipartition theorem, the mean squared velocity
of the particle in our one-dimensional model fulfills the relation m

〈

ẋ2
〉

/2 =
kT/2, i.e.

〈

ẋ2
〉

=
kT

m
. (10)

Thus, for the mean 〈xẋ〉 one has

d

dt
〈xẋ〉 = − γ

m
〈xẋ〉 +

kT

m
. (11)

Let us now assume that the initial particle’s position is taken to be at the
origin of coordinates. Then 〈x(0) ẋ(0)〉 = 0. Under this initial condition
Eq. (11) can easily be solved and delivers

〈x(t)ẋ(t)〉 =

t
∫

0

exp
[

− γ

m
(t − t′)

] kT

m
dt′ =

kT

γ

[

1 − exp
(

− γ

m
t
)]

. (12)

As a next step, we note that 〈x(t)ẋ(t)〉 = 1

2
d/dt

〈

x2(t)
〉

, so that the mean
squared displacement of the particle can be found by an additional integra-
tion of Eq. (12):

〈

x2(t)
〉

= 2

t
∫

0

〈

x(t′)ẋ(t′)
〉

dt′ = 2
kT

γ

[

t − m

γ

(

1 − exp
(

− γ

m
t
))

]

. (13)

For large time the leading term corresponds to

〈

x2(t)
〉

= 2
kT

γ
t , (14)

i.e. to the diffusive behavior, Eq. (6) with the diffusion coefficient D = kT/γ.
Although the Langevin’s approach seems to be based only on the equipar-

tition theorem, this is not quite true: Additional assumptions are hid-
den in the argumentation about correlations’ decoupling. May be the pio-
neers overlooked the mathematical difficulties connected with this approach.
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The Langevin’s approach, however, is very popular in physics due to its intu-
itive transparency and beauty. The further development and mathematical
refinement of this line of argumentation took place in the works of Kiyoshi
Ito, Ruslan Leontievich Stratonovich, Yuri L’vovich Klimontovich and many
others.

5. Partial differential equations in phase space — the work of

Fokker, Planck, Smoluchowski, Klein, Kramers and Rayleigh

Adrian D. Fokker (1887–1972) was born as the son of the president of the
Netherland Trading Society on Java. One of his cousins was the known aero-
plane builder Fokker. Fokker studied mining technology in Delft and then
physics at the Leiden University, where he earned his doctorate with Hen-
drik Lorentz. Later he left the field of Brownian motion and worked with
Einstein, Rutherford and Bragg. After the second world war he devoted
his life to music-theoretical research. The subject of Fokker’s dissertation
is connected with the publications of Einstein, who considered already, for
the stationary case, the balance of probability currents in Brownian motion.
Fokker studied in his dissertation directed by Lorentz in Leiden the a prob-
ability distribution W (q, t) of a quantity which is influenced by fluctuations.
Fokker was thinking about the angular momentum of a dipole but the con-
sideration is so general that q could be any other fluctuating quantity as
a coordinate or a velocity. In his dissertation which Fokker defended in 1913
he derived the equation

0 = − ∂

∂q
f(q)W (q, t) +

1

2

∂2

∂q2
g(q)W (q, t) . (15)

This equation was published in Annalen der Physik in a short paper with-
out a detailed proof [23], which was announced for some later publication.
Fokker’s equation corresponds to a stationary process, it was shown that the
coefficients are related as in Einstein’s theory to the mean displacements

f(q) =
∆q

∆t
, g(q) =

(∆q)2

∆t
. (16)

Planck was interested in Fokker’s work and waited for the announced longer
publication containing a detailed proof of Fokker’s equation. After waiting
two years Planck made the decision to derive the equation on his own and
published an equation which goes far beyond the work of Fokker [24]

∂W (q, t)

∂t
= − ∂

∂q
f(q)W (q, t) +

1

2

∂2

∂q2
g(q)W (q, t) . (17)
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By this time a similar equation was already proposed by Smoluchowski [15],
as a continuation of his own line of thoughts and without evident connection
to the Fokker’s work.

The generalization of this equation to the phase space, i.e. taking into
account both the coordinate and the velocity of the particles, whose mass
cannot be neglected, was put forward in 1921 by Oskar Klein (the famous
co-author of the Klein–Gordon equation and of the Kaluza–Klein theory) in
his work “Zur statistischen Theorie der Suspensionen und Lösungen” [25]:

∂W (x, v, t)

∂t
= − ∂

∂x
vW (x, v, t)

− ∂

∂v

f(x) − γv

m
W (x, v, t) + kBTγ

1

2

∂2

∂v2
W (x, v, t) , (18)

which is put here for exactly the same system as the one discussed by
Langevin. The corresponding equation was rederived by Hendrik Anthony
Kramers in his famous work Brownian Motion in a Field of Force and
the Diffusion Model of Chemical Reactions (1940) [26], where especially his
highly nontrivial solution for the underdamped case has to be mentioned [27].
Eq. (18) is therefore often referred to as a Klein–Kramers equation.

However, also here the forgotten predecessors were in play. Evidently, the
first researcher who studied Brownian motion as a stochastic process, and
followed the lines very close to the ones discussed here, was Lord Rayleigh
[28]: apparently, already in 1891 Rayleigh formulated an equation for the
probability distribution W (v, t) of the velocity v of a particle of mass m
which is subject to friction γ and moves in a heat bath:

∂W (v, t)

∂t
= γ

[

∂

∂v
vW (v, t) +

kBT

m

∂2

∂v2
W (v, t)

]

. (19)

Rayleigh’s equation which was not given credit for a long time up to a hint
given to this forgotten work by another pioneer in the field, Nicolas van
Kampen [29]. The reason for overlooking Rayleigh’s contribution is perhaps
related to the fact that the velocity of the Brownian particle could not be
tracked experimentally at that time; in contrary, the Einstein’s or Langevin’s
emphasis on the displacement changed the situation dramatically and gave
rise to almost a flood of excellent experiments.

6. Stochastic description of transitions between discrete levels —

Einstein and Pauli’s master equations

Planck mentioned in the title of his work on stochastic processes “Über
einen Satz der statistischen Dynamik und seine Erweiterung in the Quan-
tentheorie” explicitely “quantum theory” but in fact there was not much
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quantum theory in it. However the work that Albert Einstein presented
even a bit earlier to the Physical Society and the Academy in Berlin was
a real breakthrough in the quantum theory of stochastic processes. Trying to
connect the Planck’s formula for a blackbody radiation with the postulates
of the quantum theory of atoms put forward by Niels Bohr, Einstein put
down the balance equation for the numbers of atoms N1 and N2 being in
the two quantum states 1 and 2 with energies E1 and E2 under the influence
of the resonant electromagnetic field E2 − E2 = hν. This work lead to the
discovery of induced radiation, the main ingredient of the modern physics
of lasers. Nowaday we would describe the mathematics of this approach as
a stationary master equation description of a two-level system in an external
field [30].

The full master equation as we know it today was for the first time
derived in 1928 by Pauli [31]. Pauli considered a quantum system with
a discrete spectrum. His method is based on perturbation theory which he
applied to a Hamiltonian

H ′ = H + λV , (20)

where H is the Hamiltonian of the unperturbed system with the eigenstates
|n〉 and λV is the perturbation. An essential point is that H is dominant
and is so simple that we can find the eigenstates. The perturbation should
be small but sufficiently complicated to mix the unperturbed states so that
it can give rise to irreversible behavior. Pauli defined the probabilities of
being in the state n by

pn(t) = |cn(t)|2 ,

where cn are the amplitudes of the quantum state at time t and derived the
master equation

∂pn

∂t
=

∑

m

[Wnmpm − Wmnpn] (21)

with the transition probabilities given by the Fermi golden-rule rates

Wnm =
2π

~
λ2δ(Em − En)|〈m|V |n〉|2 . (22)

It is very essential that this matrix is symmetric, what is due to the micro-
scopic reversibility. The procedure to derive Eq. (22) is rather simple but
contains several essential assumptions, in particular we have to assume ran-
dom phases at any time which amounts to dropping the non-diagonal terms.
The Pauli master equation is the most commonly used model of irreversible
processes in simple quantum systems. As mentioned, it can be derived from
elementary quantum mechanics (with an additional Markov assumption).
Despite a number of conceptual problems with the Pauli equation (like e.g.
violation of the continuity equation), it is widely employed, in almost all
semi-classical treatments of electron transport in semiconductors.
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7. On terminology of stochastic dynamics

In a stochastic system (i.e. on the stochastic level of description of the
physical system which might or might not have some underlying determin-
istic dynamics) the present state of the system, as described by the vector

x(t) = [x1(t), x2(t), . . . , xn(t)] (23)

of whatever relevant variables of the system, does not fully determine its
future state. The dynamics is introduced as a map from the state at the
initial time to a time later by a shift δt

x(t0 + δt) = T (x(t0),u, δt) , (24)

where u is a set of parameters describing the process. The map T can
be unique (so that the effective dynamics is deterministic) or probabilistic,
meaning that there are several possibilities of the future state occurring with
different probabilities. This kind of dynamics is called stochastic. A deter-
ministic dynamics is often defined by a set of differential equations

ẋi(t) = Fi(x1, ..., xn(t)) , i = 1, 2, ..., n . (25)

Due to stochastic influences the future state of a dynamical system is in
general not uniquely defined. In other words the dynamic map defined by
Eq. (24) is non-unique. A given initial point x(0) may be the source of several
different trajectories. The choice between the different possible trajectories
is a random event. The easiest way to introduce stochastic elements is to
use the Langevin picture:

ẋi = Fi(x) +
√

2Dξi(t) , (26)

where ξi(t) is a delta-correlated Gaussian random variable

〈ξi(t)〉 = 0 , 〈ξi(t)ξj(t
′)〉 = δijδ(t − t′) (27)

and the coefficient 2D1/2 defines an amplitude (or intensity) of random
pulses ξi. By averaging we find

〈ẋi〉 = 〈Fi(x)〉 ≃ Fi(〈x〉) . (28)

This way, in average, the deterministic dynamics is reproduced at least ap-
proximately. In the case of nonlinear dynamics this could be problematic,
as stressed by van Kampen [29].

In the stochastic case the state of the system at time t is described by
a probability density P (x, t;u). By definition P (x, t;u)dx gives the proba-
bility of finding the state of the system at time t in the domain (x,x + dx)
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of state variables. Instead of the deterministic equation for the state, we
may now try to derive an evolution equation for the probability density
P (x, t;u). In the most general case such equations have the form of the
integral equations representing the probability conservation in course of the
temporal evolution of the system and connecting the probabilities at two
different times t and t + dt. Such general integral equations (the Einstein’s
Eq. (2) being an example thereof) are called Chapman–Kolmogorov equa-
tions. In applications, it is much more convenient to work with the differ-
ential forms, which might be less general but better suited for applications.

As underlined by Einstein, Smoluchowski, Fokker, Planck, Klein and
Kramers, probabilities are conserved quantities and their dynamics is given
by balances of gain and loss. In a general case we may define G as the vector
of the probability flow. Based on the conservation we have an equation of
continuity and in consequence, we get

∂tP (x, t;u) = −div G(x, t;u) . (29)

In the special case when there are no stochastic forces, the flow is pro-
portional to the deterministic field i.e.

Gi(x, t, ;u) = F i(x, t;u)P (x, t;u) .

Including now the influence of the stochastic forces we assume here ad hoc
an additional diffusive contribution to the probability flow which is directed
downwards the gradient of the probability

Gi(x, t;u) = Fi(x, t;u)P (x, t;u) − D
∂

∂xi
P (x, t;u) . (30)

This is the simplest “Ansatz” which is consistent with Eq. (25) for the mean
values. The ”diffusion coefficient” D (the same as in Eq. (26)) is determined
by the properties of the stochastic force, as first discussed by Langevin.
Introducing the above relation into Eq. (29) we get a partial differential
equation:

∂tP (x, t;u) =
∑

i

∂xi

[

D
∂

∂xi
P (x, t;u) − Fi(x, t;u)P (x, t;u)

]

. (31)

which governs time evolution of the probability density function P (x, t;u).
With the historical background given in the previous sections the follow-

ing notations with respect to Eq. (31) could be recommended:

(i) If the elements of x are usual mechanical coordinates, we call the
equation Smoluchowski equation to honor the contribution of Mar-
ian Smoluchowski who was the first to put the corresponding balance
equation exactly in the form discussed.
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(ii) If x is comprised of the mechanical coordinates x1, . . . , xf and veloc-
ities v1, . . . vf (or the corresponding momenta) we refer to the cor-
responding balance equation as to a Fokker–Planck equation, since
Fokker and Planck wrote down the first version. Alternatively we may
call the equation a Klein–Kramers equation after the scientists who
formulated the standard form used nowadays. Strictly speaking, we
could also use the term Rayleigh equation for the case that x consists
only of velocities, although this may be too confusing for the reader.

(iii) In the general case when the meaning of the x1, . . . , xn is not specified
at all, we may speak about general Fokker–Planck equations or in the
mathematical context about Chapman–Kolmogorov equations.

In common literature on the subject many authors use (for all variants
mentioned above) only the term Fokker–Planck equation which seems his-
torically not fully correct.

Let us now consider the case of a discrete state space,e.g. the levels in
an atom or a molecule, which we denote by

i = 1, 2, 3, . . . , n, . . . .

A stochastic dynamics may be introduced by the transition probabilities

Wnm = Prob (m → n)

per unit time. The condition of balance between gain and loss leads imme-
diately to

∂pn

∂t
=

∑

m

[Wnmpm − Wmnpn] . (32)

Following the general use we propose to use the notation Pauli master equa-
tion, or simply a master equation.

All in all, we discussed here briefly the history and notation for sev-
eral equations of the stochastic dynamics which describe the evolution of
probabilities and we tried to give credit to the authors of the pioneering
approaches.

The authors are thankful to Aleksander Weron, who suggested in the
discussion during the XX Marian Smoluchowski Symposium to write these
remarks in order to contribute to a better information on the historical
facts and to a more “historically correct” terminology. The work has been
supported in part by the ESF STOCHDYN programme (2003–2008) that
has stirred the exchange of ideas and provoked a fruitful collaboration among
various groups involved in research on fundamentals of stochastic processes
and their applications.
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