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The phenomenon of giant suppression of activation, when two or more
correlated noise signals act on the system, was found a few years ago in
dynamical bistable or metastable systems. When the correlation between
these noise signals is strong enough and the amplitudes of the noise are
chosen correctly — the life time of the metastable state may be longer than
in the case of the application of only a single noise even by many orders
of magnitude. In this paper, we investigate similar phenomena in systems
exhibiting several chaotic transitions: Pomeau–Manneville intermittency,
boundary crisis and interior crisis induced intermittency. Our goal is to
show that, in these systems the application of two noise components with
the proper choice of the parameters in the case of intermittency can also
lengthen the mean laminar phase length or, in the case of boundary crisis,
lengthen the time the trajectory spends on the pre-crisis attractor. In
systems with crisis induced intermittency, we introduce a new phenomenon
we called quasi-deterministic giant suppression of activation in which the
lengthening of the laminar phase lengths is caused not by the action of two
correlated noise signals but by a single noise term which is correlated with
one of the chaotic variables of the system.

PACS numbers: 05.45.–a, 05.40.Ca

1. Introduction

In chaotic transitions a continuous change of one of the parameters of
the system causes a discontinuous change in the properties of the chaotic
attractor of the system [1]. The best known of these transitions are: the
period-doubling bifurcation cascade, intermittency and crisis. In the case of
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the first kind of these chaotic transitions [2] the stable periodic orbit of the
system undergoes successive period-doubling bifurcations. In the limit, the
period becomes infinite and a chaotic attractor appears. This is a typical
route to chaos for many dynamical systems. During intermittency irregu-
larly long periods of the time occur in the time evolution of the system during
which the statistical properties of the trajectory differ strongly from those
in other periods. One example is type I intermittency [3] [4] — one of three
kinds of intermittency originally introduced by Pomeau and Mannevile [3].
Other examples include on–off intermittency [5] or in–out intermittency [6].
Generally speaking, in these kinds of intermittency the system spends a sig-
nificant amount of time very close to an invariant subspace, the dimension
of which is smaller than the dimension of the whole attractor. The last cate-
gory of the above mentioned chaotic transitions, the crises [7] [8], are present
in such systems in which the chaotic attractors — depending on the type
of intermittency — suddenly grow, vanish or merge with another chaotic
attractor when the control parameter of the system is changed continuously.
The first of these chaotic transitions is known as the interior crisis, the sec-
ond — the boundary crisis and the last one — the attractor merging crisis.
Crisis-induced intermittency is associated with the interior crisis.

In both cases i.e. in Pomeau–Mannevile intermittency and in crises, to
describe the behavior of the system in which they are present, various sta-
tistical measures are used. The mean laminar phase length or the laminar
phase length distribution are used in the case of a Pomeau–Mannevile inter-
mittency [4]. The mean life time of the trajectory on the pre-crisis attractor
and distribution of this time are used in the case of the boundary crisis.
These statistics are characteristic for the specific type of chaotic transition
and allow us to identify such a transition in real physical systems, when the
form of equations describing the system is not known.

In real systems, noise is usually present. Due to the noise the above men-
tioned statistics measured in real systems differ from these found in simple
models. In the case of additive white noise, the effect on the laminar phase
length distribution and the mean laminar phase length was investigated and
described by Hirsch [4]. The main conclusions were that in the presence of
noise there are more shorter laminar phases than in the absence of noise
and, consequently, the mean laminar phase length is also shorter. Usually,
one expects noise to introduce disorder into the dynamics of the system.

In the theory of dynamical systems, however, there are cases in which
adding noise makes system more “ordered”. The giant suppression of activa-
tion (GSA) [9], present in bistable or metastable systems is a good example
of such an effect. In such systems, adding two correlated Gaussian noise
terms may cause the life time of the metastable states to be many orders of
magnitude longer than in the presence of only a single noise component [10].
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To obtain giant suppression of activation, the amplitudes of the noise com-
ponents must be chosen properly.

A similar phenomenon was found [11] in a nonchaotic system — the lo-
gistic equation, which is a continuous time version of logistic map. The effect
of two correlated noises, one additive and one parametric, was investigated.
For the correlation coefficient close to one, the behavior of system became
very regular. With a periodic signal acting on system, the phenomenon of
stochastic resonance [12] was observed, characterized by the maximum of
signal-to-noise ratio [11]. These results allows us to expect that similar phe-
nomena of order in the dynamics of system induced by two correlated noise
terms may be observed also in systems with chaotic transitions.

We show that for systems exhibiting several kinds of chaotic transitions,
application of two correlated noise signals can also make the dynamics of the
system more ordered i.e. the mean length of laminar phase may increase or
the mean life time of the trajectory on the pre-crisis attractor may become
larger than due to a single white noise only. The effect may be important
for the analysis of dynamical systems. Also, in experiments, we may expect
to observe properties similar to those obtained for the noise-free case — in
spite of the presence of noise. In fact, our results show that the effect is
obtained also when many noise components act on the system, even with
very large amplitudes, provided they are correlated to each other.

The paper is organized as follows: in Sec. 2, we analyze the suppression of
activation in systems with type I intermittency and give a numerical example
of such a phenomena as well as a qualitative explanation of it. In Sec. 3, we
show how two correlated noise components may cause a giant suppression
of activation in a system with boundary crisis — a numerical example is
also given. In Sec. 4, we introduce the quasi-deterministic giant suppression
of activation (QDGSA), which occurs in crisis-induced intermittency. The
increase in the mean laminar phase is then caused not by two correlated noise
components but by only a single noise term, which is, however, correlated
with one of the variables of the system. Discussion and conclusions are given
in Sec. 5.

2. Giant suppression of activation in type I intermittency

2.1. General description of the phenomenon

Consider a dynamical system, in which the route to chaos via type I
intermittency is obtained. In such a system, at a critical value of the control
parameter ac, a saddle-node bifurcation occurs. When a < ac we obtain
type I intermittency while for a > ac two fixed points, one stable (a node)
and one unstable (a saddle) are present.
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Assume that the control parameter is such that the fixed point is stable.
Such a situation resembles the case of a potential with a metastable state.
In the absence of noise, the system reaches the stable fixed point and stays
there. When the additive noise is present — the system may escape from
the fixed point. Such a behavior may be observed in a mechanical system
with a third-order potential for moderate amplitudes of the noise. In the
neighborhood of the fixed point the dynamical system may be approximated
by such a third-order potential (see e.g. [4]). However, far away from this
neighborhood, this approximation is no longer valid — the higher order
terms in the potential cause a return to the vicinity of the node. Thus, we
may treat such a phenomenon as a kind of intermittency. This intermittency-
like phenomenon is sometimes called noise-induced intermittency [13] and it
is characterized by an exponential distribution of the laminar phase lengths.
Adding another noise term to the system, e.g. a multiplicative one, may
increase the mean laminar phase length if this second noise component is
correlated to the first one. This is very similar to the GSA described in [9] —
the only difference being that our system always returns to the metastable
state.

Next, assume that the system is in the intermittency region. In this re-
gion, we do not have any stable fixed points, so we expect that the laminar
phases (i.e. the periods of time, when the trajectory passes close to bifur-
cation point) will not be arbitrarily long even when the correlation between
the two noise components is very strong. However, type I intermittency may
be treated as a limiting case of metastability. E.g. Hirsch et. al. [4] have
introduced a simple model of a particle in a third order potential to explain
many properties of the type I intermittent system. So, we can expect that
there exists such a combination of noise amplitudes that the behavior of the
system may become very similar to the purely deterministic case i.e. one
without the noise present.

For a one-dimensional dynamical system with discrete time (a map) we
can write the equation of evolution in the form:

xn+1 = f (xn) + σ1g1 (xn) ξ1 + σ2g2 (xn) ξ2 , (1)

where ξ1 and ξ2 are random variables with a normal distribution, a zero
mean value and variance equal to one. If e.g. g2 = const., the noise ξ2

becomes additive noise. But, in this subsection, we consider the general
form of Eq. (1), with two multiplicative noise terms.

In type I intermittency, the system spends a considerable amount of time
in the vicinity of the fixed point x∗ that would be created by the saddle-node
bifurcation. Inserting x∗ into Eq. (1) we obtain:

xn+1 = f (x∗) + σ1g1 (x∗) ξ1 + σ2g2 (x∗) ξ2 . (2)



Giant Suppression of the Activation Rate in Dynamical Systems . . . 1023

If ξ1 = ξ2 = ξ, we can rewrite it in the form:

xn+1 = f (x∗) + (σ1g1 (x∗) + σ2g2 (x∗)) ξ . (3)

One can see that if we choose the values of σ1 and σ2 so that:

σ1

σ2

= −g2 (x∗)

g1 (x∗)
(4)

the effect of the noise terms at the point x∗ will cancel and the effective
noise amplitude in the entire intermittency channel will be very small. So,
we expect that in this case the laminar phase length distribution and the
position of the right peak of this distribution to be similar to that for the
deterministic case without noise. How to measure this similarity will be
shown later.

Now, let us generalize the above case and consider ξ1 and ξ2 which are
linearly dependent and so correlated. When the correlation coefficient is
very close to but not equal to one, we can write

ξ2 = ρξ1 +
√

1 − ρ2ξ3 , (5)

where ξ3 is a Gaussian noise such that 〈ξ1ξ3〉 = 0 and ρ is close to 1. The
noise term in (2) can be now rewritten as

ξ (x∗) = [σ1g1 (x∗) + ρσ2g2 (x∗)]ξ1 +
√

1 − ρ2σ2g2 (x∗) ξ3 . (6)

The random variable ξ (x∗) is also Gaussian and its variance as a function
of x∗ can be expressed as

σ2 (x∗) = [σ1g1 (x∗) + ρσ2g2 (x∗)]2 +
(

1 − ρ2
)

σ2
2g

2
2 (x∗) . (7)

This variance is never equal to zero as long as g1 or g2 are not exactly
equal to zero, but if the value of one of the noise terms, e.g. σ2, is considered
fixed, the function σ2 has a minimum when

σ1 = −ρσ2

g2 (x∗)

g1 (x∗)
. (8)

At such an optimal choice of noise amplitudes the system behaves similarly
as in the purely deterministic case.
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2.2. An example — the logistic map

The logistic map is given by equation [1]

xn+1 = axn (1 − xn) . (9)

It is well known, that when the value of a is slightly smaller than ac =
1+

√
8 ∼= 3.828427125 . . ., the logistic map exhibits type I intermittency [4].

At a = ac the saddle-node bifurcation occurs and three stable points appear:
x∗

1 = 0.156 . . . , x∗

2 = 0.514 . . . and x∗

3 = 0.956 . . . . Let us focus on the
first one.

On Fig. 1(a) the laminar phase length distribution (LPLD) is shown. It
has a bimodal form — typical for this type of intermittency. Fig. 1(b) depicts
LPLD in the presence of additive noise. It can be seen that the right peak
shifts to shorter laminar phase lengths and a long tail in the distribution
appears. This effect was obtained by Hirsch [4].

(a) (b)

Fig. 1. The laminar phase distribution in the case of type I intermittency. (a) the

noiseless case, (b) the case with additive Gaussian noise.

To measure the effect of noise on the LPLD, we introduce two quantities
characterizing the plot. One of them is the right peak position (RPP) —
the coordinate of right maximum of the LPLD. The second one is the length
of the tail of the distribution (DTL) that is the distance between RPP and
the coordinate for which the LPLD attains ten per cent of the height of its
right maximum. The meaning of these two measures is shown in Fig. 2.

In the stationary case, DTL is always equal to zero, as obtained numer-
ically and explained theoretically in [4]. The value of RPP depends on the
difference of the control parameter and its critical value a − ac. For our
choice of the control parameter a = 3.8284, in the absence of noise, RPP
was 62. In the presence of additive noise, RPP decreases and DTL increases.
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Fig. 2. Definition of the right peak position (RPP) and the distribution tail length

(DTL), as described in text.

Let us now consider the third-iterate of the logistic map in the presence
of two noise terms

xn+1 = f (xn) + σ1ξ1 − σ2xnξ2 . (10)

where the f (x) is given by:

f (x) = f1 (f1 (f1 (x))) , (11)

f1 (x) = ax (1 − x) (12)

and the noise terms are correlated:

〈ξ1ξ2〉 = ρ . (13)

RPP and DTL as functions of σ2 (σ1 was fixed at 0.0005) were obtained
from histograms of about 106 laminar phases. Fig. 3 depicts these charac-
teristics for three different values of ρ. We can easily identify the maximum
of RPP and the minimum of DTL, most clearly visible for ρ = 0.95. The
plot of DTL for the optimal value of σ2 is shown in Fig. 4. It can be seen
that it is very similar to the noiseless case depicted in Fig. 1(a).

The magnitude of the noise terms applied to the system may not be arbi-
trarily large as it may cause the system to leave the basin of attraction of the
chaotic attractor (the interval [0, 1]) and diverge to minus infinity. However,
the phenomena studied in this paper occurred at noise magnitudes much
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(a) (b)

Fig. 3. RPP (a) and DTL (b) as functions of σ2, when σ1 = 0.0005 for five different

values of the correlation coefficient. Note that the DTL curves coincide for the two

lowest values of ρ.

Fig. 4. The laminar phase distribution for the logistic map with two noise terms

(Eq. (10)) for σ1 = 0.0005, σ2 = 0.0033 and ρ = 0.95. Note that the distribution

is very similar to the noiseless case in Fig. 1(a).

less than those at which the divergence occurs. Note that the maximum of
RPP and the minimum of DTL decrease in magnitude rather quickly with
noise amplitude so that for larger noise amplitudes the GSA is difficult to
observe.

3. Giant suppression of activation in systems with boundary crisis

3.1. General description

In a system with a boundary crisis, the attractor is destroyed as an effect
of its collision with a hyperbolic saddle residing on the border of the basin of
attraction. However, if the trajectory starts from a point on the attractor,
it can stay on it for the duration of a shorter or a longer transient, before
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leaving the attractor definitely. It has been shown [7] that the residence
time (RT) of the trajectory on the destroyed attractor has an exponential
distribution and, for a > ac, the mean value of this time depends on the
control parameter as:

〈τ〉 = A (a − ac)
−γ , (14)

where ac is the critical value of control parameter at which the crisis occurs
and A and γ are positive constants, depending on the dynamics of system.
For example, the logistic map undergoes the boundary crisis at a = ac = 4.0.
For a larger, the attractor is no longer stable on the interval (0,1) — almost
all the initial conditions diverge to minus infinity. But the transient, during
which the trajectory still moves on the attractor — is clearly seen, especially
for a close to ac. It has also been shown that the value of the exponent γ

for the logistic map is equal to 0.5 [1, 7].
The main principle of this phenomenon is similar to that described in

the previous section. If the control parameter is slightly less than ac, the
pre-crisis chaotic attractor is stable. If we add some noise to the system —
additive or multiplicative — the system may leave the basin of attraction.
It has been shown [8] that, in this case, the distribution of RT looks very
similar to the distribution for a completely deterministic boundary crisis:
it is also exponential. If we now add a second noise term to the system,
correlated with the first one, we can choose its amplitude so as to minimize
the effective noise acting at the point of tangency of the attractor with the
stable manifold responsible for the crisis. This effect increases the mean
RT. Note that an arbitrarily long mean residence time is not possible. Even
if the effective noise at the point of the tangency will be equal to zero —
the effective noise in the neighborhood of this point will have a non-zero
amplitude and the system will leave the basin of attraction through this
neighborhood.

3.2. An example — the logistic map

Consider the logistic equation with noise:

xn+1 = (a + σ1ξ1) xn (1 − xn) − σ2ξ2x
2
n (1 − xn)2 , (15)

where ξ1 and ξ2 — two correlated white noise terms. We assume that a is
equal to 3.98, that is slightly less than ac = 4.0. This guarantees that, in
the absence of the noise, the pre-crisis chaotic attractor is absolutely stable.
The somewhat complicated form of the second noise term may require justi-
fication. We wanted to concentrate on the escape of the trajectory from the
basin of attraction at x = 0.5. However, when x is close to 0 or 1 it is also
possible that in the presence of noise the system may escape. To avoid the
escape of the trajectory at these points, we use a noise term that converges
to 0 when x is close to 0 or 1.
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The tangency of the attractor and the stable manifold responsible for
the crisis occurs in this case at xn = 1.0, i.e. xn−1 = 0.5. Due to the action
of the noise, at that point the probability for the system to escape from the
attractor in the next iteration is the greatest. In fact, there are two other
points very noise-sensitive: x = 0 and x = 1, but the noise terms in (15)
have zero magnitudes at these points. That allows us to take only the point
0.5 into account. If we insert the value x = 0.5 into the expression for the
effective noise

ξeff = σ1x (1 − x) ξ1 − σ2x
2 (1 − x)2 ξ2 (16)

we obtain for the correlation coefficient close to one (in the case of a linear
correlation of two noise terms with identical distributions this means simply
ξ1

∼= ξ2) the condition

ξeff (x = 0.5) ∼= 0 ⇔ σ2 = 4σ1 . (17)

The mean RT as a function of σ2 (σ1 is fixed at 0.05) is depicted in Fig. 5.
RT was calculated as an arithmetic average of fifty thousand simulations. It
can be seen that a maximum of this time is clearly visible, especially so for
larger values of the correlation coefficient.

Fig. 5. The mean residence time of the trajectory on the destroyed attractor as

a function of σ2 (σ1 is fixed at 0.05) for five different values of the correlation

coefficient ρ. The maximum near σ2 = 0.2 is clearly seen for ρ = 0.95 or ρ = 0.80.

4. Quasi-deterministic giant suppression of activation

in systems with crisis

We may expect, that a similar phenomenon to that described in the
previous section may be obtained for a system with an interior crisis. In fact,
the two kinds of crisis are very similar chaotic transitions and are caused
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by a very similar collision between the chaotic attractor and an unstable
periodic orbit (UPO) or its manifold. The only difference is that, in the
case of interior crisis, this UPO lies in the interior of the basin of attraction
and not on the boundary — so the attractor does not vanish but suddenly
increases its size. And our expectations are, in fact, true — in such systems
noise also decreases the critical value of the control parameter at which
the crisis and crisis-induced intermittency occur [1]. We checked that two
correlated noise terms acting on the system may cause the giant suppression
of activation, a phenomenon in which the mean laminar phase length has
a maximum as a function of the amplitude of one of the noise terms. The
results of this investigation are presented on Fig. 6. The system considered
was the Ikeda [14] system:

xn+1 =a + bxn cos

(

κ− η

1 + x2
n + y2

n

)

− byn sin

(

κ − η

1 + x2
n + y2

n

)

, (18)

yn+1 =bxn sin

(

κ− η

1 + x2
n + y2

n

)

+ byn cos

(

κ − η

1 + x2
n + y2

n

)

, (19)

where a, b, κ and η are real parameters. The interior crisis in the Ikeda
system [1] occurs when we set a = 0.85, b = 0.9, κ = 0.4 and the value of η,
which will be our control parameter, is set to η = ηc

∼= 7.26884894 . . . . For
greater values of η the attractor suddenly increases in size.

Fig. 6. The mean laminar phase length for the Ikeda system with five correlated

noise terms, as a function of σ1 for four values of ρ. The maximum indicating the

GSA is clearly seen.
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Let the value of the parameter η be equal to 7.25. Two noise terms were
added to the first equation of this system, which then takes the form:

xn+1 = a + bxn cos

(

κ − η

1 + x2
n + y2

n

)

− byn sin

(

κ − η

1 + x2
n + y2

n

)

+ σ1ξ1x − σ2ξ2 . (20)

We assume, that σ2 = 0.3. In Fig. 6 it is clearly seen that if the correlation
coefficient is equal to 0.95, for σ1 equal to about 0.12 the mean laminar
phase length as a function of σ1 has a maximum.

One may expect that, because of the similarity of behavior of the stochas-
tic and chaotic variables it may be possible to obtain a similar effect when
only one noise term will be added provided the noise will correlated with one
of the variables of the system. In the next part of this section we consider
such a situation.

Let us introduce an additive noise term into our system. If a variable v

of our system has a zero time average and its mean square value is equal to
one, we may express the value of the noise in the n + 1st iteration as:

ξn+1 = ρvn +
√

1 − ρ2ζn , (21)

where ζ is a white noise independent of v. If none of the variables of the
system have the above mentioned properties, we may renormalize one of
variables of the system, say y, and define v as:

v =
y − 〈y〉

√

〈(y − 〈y〉)2〉
. (22)

We should emphasize, that in (22) 〈y〉 and 〈(y − 〈y〉)2〉 are real and calcu-
lated as time averages along the trajectory. The variable v defined by (22)
is automatically normalized, i.e. has a zero mean value and a unit mean
square value.

In such an approach, we may treat the system as driven by two correlated
noise terms: the first one is the gaussian noise ζ and the second one would be
the chaotic variable v. In fact, the chaotic trajectories of some systems are so
“random-like” that they are often used for random number generation [15].
However, when analyzing the effect of noise given by (21) on the system,
we should take into account two new aspects which were absent when the
system was driven by two stochastic noise terms.

One of these are the properties of the probability distribution of the
noise. The noise given by (21) is not Gaussian because the probability
distribution of v (which is just the natural measure distribution) is in general
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not Gaussian. The other problem, even more serious than the previous
one, is that the crisis modifies the amplitude of the noise given by (21).
Computing the variance of this noise and as

〈ξ2〉 = ρ2〈v2〉 +
(

1 − ρ2
)

〈ζ2〉 = ρ2〈v2〉 + 1 − ρ2 , (23)

where we have taken into account that the noise ζ has a unit mean square
value. More complicated is the computation of the value of 〈v2〉. The value
of v is, of course, normalized, as can be seen from (22). That should allow
us to write 〈v2〉 = 1. However, that is true only for the pre-crisis attractor,
i.e. when the noise is absent. When we turn on the noise, the interior crisis
occurs and the variance of v is in general different from one because the
trajectory visits the points of phase space which have not been visited before
the crisis. To cope with this problem, we assume that the laminar phases
are long and the excursions onto the expanded attractor short enough not
to change the variance of v very much. Thus, we assume that the variance
〈ξ2〉 ∼= 1 but we should remember that in the case of short laminar phases
this approximation is no longer true.

The pre-crisis attractor may be treated as an equivalent of the metastable
state in typical mechanical systems. The slowing down of the escape from
the “metastable-like” state caused by the noise coupled with the dynamics of
the system can be called quasi-deterministic giant suppression of activation
(QDGSA), in difference to the fully stochastic giant suppression of activation
[9], where two random noise terms are needed to cause the phenomenon.

As an example, we analyze again the Ikeda system [14], which has two
variables x and y with the same values of the parameters, as at the beginning
of this section.

First consider η < 7.26, e.g. η = 7.24. We may then compute the
statistical properties of e.g. the variable y. We obtain:

〈y〉 ∼= 0.1764 . . . , (24)

〈y2〉 ∼= 0.06708 . . . . (25)

The distribution of y is not Gaussian, that can be easily checked, but it is
clear that not only these two moments but any moments of higher orders
exist: y is bounded as the attractor of the noiseless Ikeda system has a finite
size. Thus, our normalized variable v will be given by:

v =
y − 0.1764

0.259
. (26)

And the noise, according to (21) will be given by:

ξn = ρ
yn − 0.1764

0.259
+

√

1 − ρ2ζn . (27)

Similarly, one may consider the variable x instead of y.
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Let us set the value of η = 7.32 which means that the attractor size
has increased due to the crisis. This situation is analogous to the loss of
stability of the metastable state due to the effect of noise. Now, we add
to the equation for x the term −σξn, where the ξn is given by (27) and
investigate the mean laminar phase length as a function of σ. The result
(for four values of ρ) is depicted in Fig. 7; note the logarithmic scale. It can
be seen that for a large correlation parameter value (ρ = 0.95) a well visible
maximum occurs indicating GSA. This maximum decreases with decreasing
correlation magnitude to disappear at about ρ = 0.6. What is characteristic
is that the maximal value of the mean laminar phase length is now even
a hundred or more times greater than in the absence of noise. In this case
then we have a truly “giant” suppression of activation.

Fig. 7. The mean laminar phase length for the Ikeda system with a noise term

dependent on one of the variables of the system, as a function of σ for four values

of ρ in logarithmic scale. The maximum of this length, the signature of quasi-

deterministic giant suppression of activation, is clearly seen for ρ = 0.95.

5. Conclusion

In this paper, we showed that a phenomenon analogous to giant suppres-
sion of activation, originally found in mechanical systems — are present also
in several kinds of chaotic transitions. In the case of type I intermittency,
we used the mechanical analogy for a system near the point of saddle-node
bifurcation to a particle in a third-order potential field (this analogy was
first proposed by Hirsch [4]). The similarity to the metastable state is clear.
We also showed that in the case of other chaotic transitions a similar analogy
can be found, e.g. the chaotic attractor just before the boundary crisis can
be also treated as a specific kind of a metastable state although it is more
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complex than a fixed point. One can expect, that also several other phe-
nomena found in metastable mechanical system are present in the chaotic
systems described above.

We described also a new kind of giant suppression of activation, which is
obtained by applying to a system near to a chaotic transition a single noise
term correlated with one of the system variables. We called this phenomenon
quasi-deterministic giant suppression of activation and showed that the phe-
nomenon is several orders of magnitude stronger than the standard GSA.
One may expect that if the distribution of applied noise term (ζ in (21))
is other than the Gaussian, the effect may even be stronger and it may be
possible to obtain arbitrarily long laminar phases.

The authors would like to thank Paweł Góra of the Jagellonian University
of Kraków for his valuable discussions on this topic.
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