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BIRKHOFF THEOREM AND ERGOMETER:

RELATIONSHIP BY AN EXISTENCE ASSUMPTION∗
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By means of the recently developed ergometer, Birkhoff’s theorem is
made physically useful. In particular, the conditions of the theorem are
given an interpretation through a many-body model which exhibits both
ergodic and nonergodic behavior depending on the range of a certain pa-
rameter of the model. To our knowledge these illustrations are the first
known examples of the use of Birkhoff’s theorem in many-body theory.
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1. Introduction

In 1931 the mathematician G.D. Birkhoff proved a theorem on Boltz-
mann’s ergodic hypothesis (EH). It is a profound theorem, stated in abstract
terms. Perhaps due to its abstractness, it is not well understood by most
in statistical mechanics. It is thus no surprise to find that the theorem has
never been applied to a many-body model to determine whether ergodicity
exists in it and, if so, what is that which makes it ergodic. For over some
70 years the theorem has languished in the mathematics realm, not where
it was probably originally intended by Birkhoff since it was meant to solve
a physics problem [1,2].

While the abstract nature might be a reason for this state of affairs, one
could also suggest another possibility endemic to purely mathematical the-
orems. As an analogy take, for example, the Pythagorean theorem, perhaps
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the most famous of all mathematical theorems. But only a subset of trian-
gles meet the condition of the theorem. What is more, what if we had no
devices to measure an angle, where would this theorem be found?

To a degree, this analogy may perhaps be apt to the situation in which
Birkhoff’s theorem finds itself. This theorem says that EH is valid under
certain conditions. Like all mathematical conditions, they are universal, that
is, they transcend systems. However we do not a priori know whether anyone
of physical systems would pass, let alone how many of them. Plainly we
need a device with which to measure different physical models for Birkhoff’s
conditions on the time averages in a measure preserving phase space.

Fortuitously this device now exists, called an ergometer. It is a product
of a physical theory on EH recently developed by us. A physical theory is per
force not universal, but system dependent or system specific. It “measures”
the ergodicity system by system.

The ergometer can determine whether and why a system is ergodic with
respect to a dynamical variable say A [3–5]. If it determines that A is not
ergodic, we can see how Birkhoff’s conditions are not being met. By this
process the work of the ergometer makes the abstract theorem a useful, even
practical means to understand ergodicity.

2. Orthogonal approaches to EH

If A is a dynamical variable in a many-body system in thermal equilib-
rium, EH asserts that the time average of A is equal to the ensemble average
of A. More precisely put,

lim
T→∞

1

T

T
∫

0

〈A(t)〉dt = 〈A〉 , (1)

where the brackets on the l.h.s. are meant to average over all initial values of
A(t). This averaging insures that both sides are being compared at the same
temperature at which the system is in equilibrium. The original version of
EH was intended for classical systems. We extend it to include quantum
systems since EH is just as necessary here. It is in the belief that EH has to
be a foundation of statistical mechanics for all systems.

Birkhoff proves (1) by seeking a condition or conditions under which the
time average exists. We, however, regard (1) as a physical entity in a system,
which is amenable to a measurement. Evidently the two approaches go about
in an orthogonal manner, the former universally and the latter specifically.
Can they be combined? Suppose the time average in a specific system is
assumed to exist but without the attendant universal conditions. What
would this partially combined approach yield?
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Turning to the l.h.s. of (1), we regard A(t) to be accessible by a time de-
pendent external probe h(t) say. It is sufficient to consider a linear response
to such a probe.

Let the total energy at time t be given by

H ′(t) = H(A) + h(t)A , (2)

where H(A) denotes the internal energy and h(t) the external field.
Then in the framework of linear response theory [6],

〈A(t)〉H′(t) = 〈A〉H +

t
∫

−T

h(t′)χA(t, t′)dt′ , (3)

where χA(t, t′) is the linear response function defined by

χA(t, t′) =
i

~
〈[A(t), A(t′)]〉H (4a)

= 0 if otherwise , (4b)

where A(t) = exp(itH)A exp(−iHt) with ~ = 1. To take the simplest case
we let the response function be stationary in addition to being causal.

After Birkhoff, we shall assume that the time average of the causal sta-
tionary linear response function exists: 0 < Ita < ∞, where

Ita = lim
1

T

T
∫

0

t
∫

0

χA(t − t′)dt′dt . (5)

But we make no other assumptions on the time average (which Birkhoff
brings in). We should note here that the response function which is being
time averaged in (5) depends on the internal energy H(A) only since the
probe field is factored in linear response theory. Thus this is in the spirit of
Birkhoff’s time average which, being a mathematical theory, does not refer
to an external probe.

Assuming that Ita exists, we now proceed as follows: In linear response
theory the most basic function is RA(t) = (A(t), A), t ≥ 0, the autocorrela-
tion function of A, also known as the relaxation function. The inner product
of A and B is defined by

(A,B) =
1

β

β
∫

0

du〈A(u)B⋆〉 − 〈A〉〈B⋆〉 , (6)
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where β is the inverse temperature, 〈. . .〉 means an ensemble average with
respect to H and A(u) = exp(uH)A exp(−uH), and ⋆ Hermitian conjuga-
tion. This inner product is sometimes known as the Kubo scalar product.
Thus, (A,A) = RA(0) = χA the static susceptibility.

Now we use the well known relation found in linear response theory

d

dt
RA(t) = −χA(t), t > 0 . (7)

Substituting (7) on the r.h.s. of (5), we obtain readily

Ita = χA − lim
1

T

T
∫

0

RA(t)dt . (8)

First, for the r.h.s. of (8) to exist, which we assume after Birkhoff, we
must fix the temperature away from any anomalous points, so that χA is
a finite constant. Second, the integral of RA(t) must also remain finite as
T → ∞, so that it is removed by the action of the prefactor 1/T . It is
possible that the integral may vanish identically. This possibility must also
be excluded since, if otherwise, it is no longer the time average of EH.

Thus if Ita is to exist, 0 <
∫

∞

0 RA(t)dt < ∞, provided that χA is also
finite. If it is finite, we may replace in the integral RA(t) by rA(t) =
RA(t)/RA(0) since RA(0) = χA is finite if it is not at an anomalous point
(e.g. critical temperature). Thus we arrive at the conclusion that the exis-
tence assumption implies that

Ita = χA (9)

provided that 0 < W < ∞, where

W =

∞
∫

0

rA(t)dt . (10)

We have already shown that proving (9) is equivalent to proving (1), that
is EH. But notice that the above W condition is exactly the same one for EH
that we have earlier derived independently, now referred to as an ergome-
ter [1–3]. It is reassuring to recover the ergometer from another approach.
Perhaps more far reaching is: The ergometer is recovered without Birkhoff’s
secondary conditions (metrical transitivity and almost everywhereness). It
must mean that these secondary conditions are contained in the ergometer.

It should also be noted that while Birkhoff’s theorem should apply
strictly to classical systems only, our above analysis by the existence as-
sumption does not rely on any classical properties. Hence the ergometer
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applies to a system whether quantum or classical or a quantum system in
the classical domain. Thus the ergometer encompasses the entire domain.
By our analysis, it seems reasonable to conclude also that the concepts of
Birkhoff’s theorem are applicable to the same entire domain.

Finally the ergometry is about the autocorrelation function and its long
time behavior. It is a function perhaps most central in nonequilibrium sta-
tistical mechanics. From it one can obtain the memory function and the
structure factor [7]. As t grows, the autocorrelation function must vanish
if W is to be finite. Asymptotically vanishing is termed irreversible. We
have shown elsewhere that according to the ergometer, irreversibility is a
necessary but not sufficient condition for ergodicity [8]. Irreversible behav-
ior is also important to self diffusion in determining whether it is normal or
anomalous [9–11]. Thus the ergometer is not an ad hoc quantity but one
that is deeply rooted in many-body dynamics. It is amenable to analysis by
the recurrence relations method as illustrated below.

3. Ergometer

To see how Birkhoff’s secondary conditions are contained in the ergome-
ter, we need to evaluate W by obtaining the normalized autocorrelation
function r(t) in a many-body model. For a Hermitian model, r(t) may be
obtained by the recurrence relations method which has now been successfully
and widely applied [14–16].

As an illustration, we shall consider a 1d linear nn coupled chain of 2N
harmonic oscillators in periodic boundary conditions. We shall let the mass
of one of the oscillators be M and the masses of the rest m each. It is a model
known sometimes as one impurity harmonic oscillator chain model. If the
impurity mass M is much lighter than m, it becomes a vacancy model. If M
is much heavier than m, it becomes a Brownian model. Thus the dynamics
of a one impurity model is of considerable physical interest in nonequilibrium
statistical mechanics [16].

The Hamiltonian is given by

H =
∑

j

p2
j

2mj

+
k

2

∑

j

(xj+1 − xj)
2 , (11)

where pj and xj are the momentum and position of j-th oscillator, mj = M
if j = 0 and mj = m if j = ±1,±2, . . .±N , and k the Hookes constant. We
will impose periodic boundary conditions such that e.g. x−N = xN . That
is, the chain is in the form of a ring of 2N oscillators, in which the impurity
mass is at site 0. We introduce a mass ratio parameter λ = m/M , where
λ = (0,∞). In this work we will be concerned primarily with the Brownian
limit λ → 0.
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If A = p0 (the momentum of the impurity mass), the autocorrelation
function of p0 is obtained by the recurrence relations method [12]. In par-
ticular, for 0 < λ < 1

2 ,

r(t) =
1√
π

λ

1 − 2λ

∑

n=1

bnΓ
(

n + 1
2

) Jn(ut)

(ut/2)n
, (12)

where b = (1 − 2λ)/(1 − λ)2, Jn is the Bessel function, and u = 2
√

k/m.

Observe that 0 < b < 1 if 0 < λ < 1
2 .

While (12) appears complicated, it can be shown that if λ = 1
2 , it reduces

to the well known solution J1(ut)/(ut/2). The solution is also known if
λ → 1

2 , but we will not show it since it is not germane to our ergodicity
analysis intended here.

We shall now evaluate the ergometer W by (12):

W =

∞
∫

0

r(t)dt =
1√
π

λ

1 − 2λ

∑

n

bnΓ (n + 1
2)

∞
∫

0

Jn(ut)

(ut/2)n
dt . (13)

By using the known result [17],

∞
∫

0

Jn(x)/xndx = Γ (1
2 )/2nΓ (n + 1

2 ) , (14)

in (13) we obtain
W = 1/uλ . (15)

Thus, W is finite as long as λ 6= 0. That is, p0 is ergodic if λ is finite.
But as λ → 0, W → ∞ meaning that p0 ceases to be ergodic. The process
of the loss of ergodicity as λ → 0 may be understood in terms of Birkhoff’s
conditions: As long as λ is finite, there is only one dynamical domain. If
mass M is perturbed, the delocalization of the perturbation energy takes
place over the entire body of the chain. In the language of Birkhoff, thee is
but one invariant and everywhere is metrically transitive.

But as λ → 0, a perturbation on mass M makes it to respond singly by
itself, not totally nor collectively, and causes it to move ballistically, in which
the rest of the body simply accompanies it. The perturbation energy does
not get delocalized to this part of the body. There are thus two invariants
and the ergodicity is lost.

The structure of the ergometer (15) is suggestive. If, for example, λ →
∞, W → 0, which is the other end of the W spectrum, where ergodicity
vanishes. If (15) is applicable at this limit, there is also the loss of ergodicity,
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indicating a duality between the two ends of the W spectrum. As we show
in Appendix A, (15) turns out to be in fact valid for all values of λ. Since
the ergodicity is lost at λ = ∞, according to Birkhoff there must be at least
two invariants. If the impurity mass is perturbed as λ → ∞, the dynamics
becomes simpler. It is as if the impurity mass is attached to a wall on
both sides. As a result, the perturbed energy is localized within, whose
dynamics is that of an oscillatory motion. The rest of the body is effectively
unperturbed, resulting in two invariants.

There are however subtler differences in spite of this duality in the loss
of ergodicity. If λ → 0 (heavy impurity limit), the autocorrelation (12) can
be expressed as follows [18]:

lim
λ→0

r(t) = 1 − λp(t) , (16)

where p(t) > 0 is some regular function of t. Thus as λ → 0, irreversibility
is lost. The dynamics becomes ballistic. On the other hand

lim
λ→∞

r(t) = D cos Ωt + λ−1g(t) , (17)

where D = 2(1 − 1/λ)/(2 − 1/λ) = 1 − 1/2λ + . . ., Ω = uλ/
√

2λ − 1 =
√

2k/M (1+1/4λ+ . . .) and q(t) is another regular function of t [12]. In the
limit λ → ∞, irreversibility is also lost. But the dynamics becomes periodic
instead.

4. Concluding remarks

We have shown that Birkhoff’s theorem, which has long languished in
the mathematical realm, can provide a deep understanding into the physics
of ergodicity. This possibility has been brought about by the development
of the ergometer, a physical device with which ergodicity in a many-body
model can be assayed. By this relationship we also point out that the con-
cepts due to Birkhoff should also be applicable in the quantum domain
since the ergometer is applicable in both the classical and quantum domain.
Making Birkhoff’s theorem a physically useful tool will further help develop
ergometry, the mapping of the ergodic landscape.

Appendix A

General proof of equation (15)

There are several ways to prove that Eq. (15) is valid for all values of λ.
We give below perhaps the simplest proof.

W = lim
z→0

∞
∫

0

e−ztr(t)dt = r̂(z → 0) , (A.1)
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where r̂(z) means the Laplace transform of r(t). We have shown that

r̂(z) =
[

λ
{

pz +
√

(z2 + u2)
}]

−1
, (A.2)

where p = 1/λ − 1. See [12], Eq. 7 therein. Eq. (A.2) is valid for all values
of λ. If z → 0 in (A.2), we obtain W = 1/uλ. q.e.d.
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