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Competition between subdiffusion and Lévy flights is conveniently de-
scribed by the fractional Fokker–Planck equation with temporal and spatial
fractional derivatives. The equivalent approach is based on the subordi-
nated Langevin equation with stable noise. In this paper we examine the
properties of such Langevin equation with the heavy-tailed noise belonging
to the class of geometric stable distributions. In particular, we consider
two physically relevant examples of geometric stable noises, namely Linnik
and Mittag–Leffler. We describe in detail a numerical algorithm for visu-
alization of subdiffusion coexisting with Lévy flights. Using Monte Carlo
simulations we demonstrate the realizations as well as the probability den-
sity functions of the considered anomalous diffusion process.

PACS numbers: 02.70.–c, 05.10.–a, 05.40.Fb, 02.50.Ey

1. Introduction

In 1966 Mark Kac gave a famous lecture in the Leiden University with
the dramatic title “Can one hear the shape of a drum?” The situation
became even more dramatic, when a Physics Department secretary has re-
placed in the announcement “drum” by “dream” and the lecture room was
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full of psychiatrists from all over the Netherlands [1]. In his talk he asked
if the shape of a planar region is determined by the spectrum of the Lapla-
cian. The square roots of the eingenvalues of the Laplacian (frequencies)
can be numerically computed if the shape is known. In his work [2] Kac
proved that no other shape has the same spectrum as disc. In general, the
answer is no, and was not solved by this paper, but almost 25 years later [3].
However, Kac’s paper uses many interesting techniques to answer it par-
tially. What is most important for our purposes, it uses the probabilistic
techniques related to stochastic representation of solutions to elliptic par-
tial differential equations. This paper is also famous as it was the basis
of Kac’s being awarded the Mathematical Association of America’s (MAA)
Chauvenet Prize. The Chauvenet Prize is awarded to the author of an out-
standing expository article on a mathematical topic. Our days, since the
spectrum contains geometrical information and since it is isometry invari-
ant it is well suited to be used as a fingerprint (Shape-DNA) in computer
graphics applications like database retrieval, quality assessment, and shape
matching in fields like CAD, engineering or medicine, see [4].

Let us underline that a recognition of the close ties between Wiener’s
stochastic theory of Brownian motion and physics (Einstein–Smoluchowski
approximate diffusion theory and not relativistic quantum mechanics) came
about even earlier in Kac’s two influential papers [5,6]. So, he can be consid-
ered as the father of stochastic representation methods in physics. In [5] he
consequently introduced a discrete approach to the Einstein–Smoluchowski
approximate theory. As Kac pointed out this approach was first suggested
by Smoluchowski himself in connection with a free particle [7], when Kac
developed it for other classical cases. It consists in treating Brownian mo-
tion as a discrete random walk. This is now achieved in physics by a very
popular method of Continuous Time Random Walk (CTRW). The formal
analogy between Feynman’s path integrals (as presented in his Ph.D. Prince-
ton 1942) and integrals appearing in Wiener’s theory was striking for Kac
and this led him in [6] to formalize the Feynman heuristic connection be-
tween the Schrödinger equation and the path integral into an “unassailable
theorem”. The theorem in question is often called the Feynman–Kac for-
mula and there are literally dozens of proofs. The original proof of Kac was
published in a brilliant paper [6]. For those who would like to learn more
about Kac’s rigorous approach and the above ties between mathematics and
physics via stochastic representation we refer the readers to his two historical
lecture notes [8, 9].

In the last years much attention has been devoted to the fractional
Fokker–Planck equations (FFPEs) describing anomalous diffusion under the
influence of an external field [10–13]. These equations provide a useful ap-
proach for the description of different types of dynamics in complex systems
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which are governed by anomalous diffusion [11] and nonexponential relax-
ation patterns [14]. Anomalous diffusion processes are characterized by the
power law form 〈(∆x)2〉 ∝ Ktα of the mean-square displacement. According
to the value of the anomalous diffusion index α, one distinguishes subdiffu-
sion (0 < α < 1) and superdiffusion (α > 1), [11].

A different class of anomalous diffusion processes is formed by Lévy
flights. They are characterized by the infinite second moment. Lévy flights
are used to model variety of processes, such as bulk mediated surface diffu-
sion with application to porous glasses and eye lenses, transport in micelle
systems or heterogeneous rocks, special problems in reaction dynamics, in
single molecule spectroscopy, quantum dots, protein dynamics, wait-and-
switch relaxation and dielectric relaxation (see [11, 15–18] and references
therein).

In this paper, using the method of stochastic representation via subor-
dination [19,20], we propose a new model describing subdiffusion with Lévy
flights. The Lévy flight type behavior is modeled by the Langevin equation
driven by a heavy-tailed noise from the class of geometric stable distribu-
tions. The subdiffusive regime is obtained by the use of the inverse stable
subordinator. We consider two physically relevant examples of geometric
stable noises — Linnik and Mittag–Leffler. We describe in detail a numer-
ical algorithm for visualization of subdiffusion coexisting with Lévy flights
driven by such noises. Using Monte Carlo simulations we demonstrate the
realizations as well as the probability density functions of the considered
anomalous diffusion processes.

2. Competition between subdiffusion and Lévy flights

Competition (or coexistence) between subdiffusion and Lévy flights is
conveniently described by the following fractional Fokker–Planck equation
with temporal and spatial fractional derivatives [11]:

∂w(x, t)

∂t
= 0D

1−α
t

[

∂

∂x

V ′(x)

η
+ ∇µ

]

w(x, t) . (1)

Here, the operator

0D
1−α
t f(t) =

1

Γ (α)

d

dt

t
∫

0

(t− s)α−1f(s)ds , (2)

0 < α < 1, is the fractional derivative of the Riemann–Liouville type and
∇µ, 0 < µ ≤ 2, is the Riesz fractional derivative [21]. The occurrence of
the operator 0D

1−α
t in Eq. (1) is induced by the heavy-tailed waiting times
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between successive jumps of the particle, whereas ∇µ is related to the heavy-
tailed distributions of the jumps in the underlying CTRW scenario. Eq. (1)
was first derived in [22] from a generalized master equation. The constant
η denotes the generalized friction constant. For µ = 2, we obtain the FFPE
describing subdiffusion in accordance with the mean-squared displacement
[11, 23], while for α = 1, Eq. (1) reduces to the Markovian Lévy flight [16].
The case µ = 2, α = 1 corresponds to the standard Fokker–Planck equation.

The equivalent approach to model competition between subdiffusion and
Lévy flights is based on the subordinated Langevin equation with stable a
noise [19,20]. In the aforementioned references the authors have shown that
the solution w(x, t) of the FFPE (1) is equal to the probability density
function (PDF) of the subordinated process

Y (t) = Z(St) . (3)

This is the stochastic representation of the fractional Fokker–Planck dy-
namics (1). Here the parent process Z(τ) is defined as the solution of the
stochastic differential equation (SDE)

dZ(τ) = −V ′(Z(τ))η−1dτ + dLµ(τ) (4)

driven by symmetric µ-stable Lévy motion Lµ(τ) with the Fourier transform

〈eikLµ(τ)〉 = e−τ |k|µ , [24]. The subordinator St, which is assumed to be
independent of Lµ(τ), is defined as

St = inf{τ : U(τ) > t} . (5)

Here, U(τ) denotes a strictly increasing α-stable Lévy motion [24], i.e. an
α-stable process with Laplace transform

〈

e−kU(τ)
〉

= e−τkα

, (6)

where 0 < α < 1 . Many physical properties of the inverse α-stable sub-

ordinator St have been discussed in the papers [25–29]. The role of the
subordinator St in the stochastic representation (3) is analogous to the role
of the fractional Riemann–Liouville derivative (2) in the FFPE (1), since it
introduces heavy-tailed rests of a test particle. Long jumps of the particle
are induced by the stable noise dLµ(τ).
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3. Geometric stable Lévy flights

Depending on the desired properties of the particle jumps, one can choose
different noise distributions. We propose the following model Y (t) describing
coexistence between subdiffusion and Lévy flights, which is a generalization
of (3)–(4):

Y (t) = X(St) . (7)

Here, the parent process X(τ) is defined as the solution of the SDE

dX(τ) = −V ′(X(τ))η−1dτ + dGµ(τ) , (8)

with Gµ(τ) being the heavy-tailed µ-geometric stable Lévy process (see [30]
and the next paragraph). The process St is the inverse α-stable subordi-
nator. The introduced model describes the multiple trapping scenario, in
which the trapping events are superimposed to the Lévy flight dynamics.
In this scenario, the test particle moves according to the Lévy flight diffu-
sion X(τ), however it gets successively immobilized in traps induced by the
subordinator St.

Geometric stable laws [30] are the limiting distributions of the geometric
compounding defined as

Sp = X1 +X2 + . . .+Xνp , (9)

where νp is a geometric random variable with mean 1/p and probability
function

P (νp = k) = (1 − p)k−1p , k = 1, 2, 3, . . . , (10)

while Xi are i.i.d random variables independent of νp. The class of geo-

metric stable laws is a four-parameter family denoted by GSµ(σ, β, λ) with
0 < µ ≤ 2, σ > 0, −1 ≤ β ≤ 1, λ ∈ R, and described by the characteristic
function [30]

ψ(t) = [1 + σµ|t|µωµ,β(t) − iλt]−1 , (11)

where

ωµ,β(x) =







1 − βsign(x) tan(πµ/2) if µ 6= 1 ,

1 − β 2
π sign(x) log |x| if µ = 1 .

(12)

A GS random variable Y has a representation in terms of independent stan-
dardized µ-stable and exponential variables S and W :

Y
d
=







λW +W 1/µσS, if µ 6= 1 ,

λW +WσS + σWβ(2/π) log(Wσ) if µ = 1 .
(13)
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Geometric stable distributions share many features with the stable dis-
tribution as they are “heavy-tailed” and stable with respect to geometric
summation. However, differently from the stable ones, their densities are
more “peaked” and “blow-up” at zero, if µ < 1. Densities of the stable and
geometric stable distributions are presented in Fig. 1. The special cases of
the geometric stable laws are [30]:

• Linnik distribution, with β = 0 and λ = 0 ,

• Mittag–Leffler distribution, with β = 1, λ = 0 and 0 < µ < 1 .
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Fig. 1. Densities of the symmetric stable (top panel), Linnik (middle panel) and

Mittag–Leffler (bottom panel) distributions in normal (left column) and log–log

(right column) scale. The parameter σ is equal 1.
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The Mittag–Leffler distribution is an important example of heavy-tailed
waiting times that arises as the natural survival probability in relaxation
theory [31–34] and in the CTRW approach to time-fractional Fokker–Planck
equations [11,22,23,35–37]. Linnik is a symmetric counterpart of the Mittag–
Leffler distribution.

As it is shown in Fig. 1, the Linnik density is symmetric with a char-
acteristic peak at zero, while the Mittag–Leffler density is concentrated on
the positive half-line. The tails of the stable as well as the geometric stable
distribution are determined by the parameter µ as P (Y > y) ∼ Cy−µ (as
y → ∞) for 0 < µ < 2.

4. Simulation algorithm

In this section we show, how to simulate sample paths of the anomalous
diffusion process with geometric stable noise (8). We concentrate on the
Mitttag–Leffler and Linnik noises.

Recall that a stable random variable Sµ(σ, β, 0) can be generated as
[38–40]

Sµ(σ, β, 0) = c1
sin[µ(V + c2)]

[cos(V )]1/µ

×
(cos[V − µ(V + c2)]

W

)(1−µ)/µ
, (14)

where c1 = (1+β2 tan2(πµ
2 ))1/2µ, c2 =

arctan(β tan πµ

2
)

µ , the random variable V

is uniformly distributed on (−π/2, π/2) and W has exponential distribution
with mean 1. The random variable Sµ(σ, β, λ) is then given by

Sµ(σ, β, λ) = Sµ(σ, β, 0) + λ . (15)

To generate a geometric stable random variable Y we shall use represen-
tation (13). It gives a simple simulation algorithm:

1. Generate an exponential random variable
W = − log(U), where U is uniformly distributed on (0, 1).

2. Generate a stable random variable Sµ(1, β, λ), as described in (15).

3. For µ 6= 1, put Y = λW +W 1/µσS.
For µ = 1, put Y = λW +WσS + σWβ(2/π) log(Wσ).

Observe, that when generating the Linnik random variable Lµ,σ we get a
mixture of the exponential and symmetric stable variables:

Lµ,σ
d
= W 1/µσSµ(1, 0, 0) , (16)
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while the Mittag–Leffler random variable MLµ,σ is a mixture of exponential
and totally skewed stable variables:

MLµ,σ
d
= W 1/µσSµ(1, 1, 0) , 0 < µ < 1 . (17)

Suppose, we want to approximate the process X(St) (7) on the lattice
{ti = i∆t : i = 0, 1, . . . , N}, where ∆t = T

N and T is the time horizon. Recall
that X(τ) is given by SDE (8) with Mittag–Leffler or Linnik noise, and St is
the inverse α-stable subordinator. The proposed algorithm consists of two
steps.

(I) Our first aim is to approximate the values St0 , St1 , . . . , StN of the
subordinator St. Therefore, we begin with approximating a realiza-
tion of the strictly increasing α-stable Lévy motion U(τ) on the mesh
τj = j∆τ , j = 0, 1, . . . ,M (it is recommended to choose ∆τ < ∆t).
Using the standard method of summing increments of the process U(τ)
we get

U(τ0) = 0 ,

U(τj) = U(τj−1) + ∆τ1/αξj , (18)

where ξj are the i.i.d. totally skewed positive α-stable random vari-
ables. The procedure of generating realizations of ξj is the follow-
ing [38–40]:

ξj = c1
sin[α(V + c2)]

[cos(V )]1/α

(

cos[V − α(V + c2)]

W

)(1−α)/α

, (19)

where c1 = [cos(πα/2)]−1/α , c2 = π/2, the random variable V is uni-
formly distributed on (−π/2, π/2) and W has exponential distribution
with mean 1. The iteration (18) ends, when U(τ) crosses the level T ,
i.e. when for some j0 = M we get U(τM−1) ≤ T < U(τM ). Since U(τ)
is strictly increasing, such M always exists.

Now, for every element ti of the lattice {ti = i∆t : i = 0, 1, . . . , N}, we
find the element τj such that U(τj−1) < ti ≤ U(τj), and finally, from
definition (5), we get that in such a case

Sti = τj .

Since U(τ) is strictly increasing, the above method of finding the values
Sti , i = 0, 1, . . . , N , can be implemented efficiently [19].
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(II) In the second step, we find the approximated values X(St0), X(St1),
. . . , X(StN ) of the subordinated process X(St). Recall that from (I)
we have at our disposal the approximations St0 , St1 , . . . , StN . First,
we approximate the solution X(τ) of the SDE (8) on the lattice {τ̄k =
k∆τ̄ : k = 0, 1, . . . , L}, (it is recommended to choose ∆τ̄ < ∆t).
Here, the number L is equal to the first integer that exceeds the value
StN /∆τ̄ . Employing the standard Euler scheme [24,39] we obtain

X(τ̄0) = 0 ,

X(τ̄k) = X(τ̄k−1) +
V ′(X(τ̄k−1))

η
∆τ̄ + ξ̄k , (20)

for k = 1, 2, . . . , L. Here ξ̄k are i.i.d. random variables with the rep-

resentation ξ̄k
d
= Γ

1/µ
∆τ̄ S, where Γt is the Gamma distributed random

variable with parameter t and S
d
= Sµ(σ, β, 0) (compare with (13) for

Γ1 = W ). The case β = 1, 0 < µ < 1 corresponds to the Mittag–
Leffler case, whereas for β = 0, 0 < µ < 2 we get the Linnik noise.
Finally, we obtain the approximate values X(St0),X(St1), . . . ,X(StN )
by finding for every ti from the lattice {ti = i∆t : i = 0, 1, . . . , N}
such an index k that the condition τ̄k ≤ Sti ≤ τ̄k+1 holds true. Then,
we get

X(Sti) = X(τ̄k) , (21)

i = 0, 1, . . . , N . It is not recommended to use linear interpolation
at this point, since the realizations of X(τ) are not continuous for
0 < µ < 2. By choosing the approximation of X(Sti) as in Eq. (21),
we assure that the processes X(τ) and X(St) have jumps of the same
length.

5. Conclusions

Using the method of subordination and stochastic representation we an-
alyze here subdiffusion with Levy flights. It is modeled by the subordinated
Langevin equation driven by a heavy-tailed noise from the class of geomet-
ric stable distributions. We consider two physically relevant examples: the
Linnik and Mittag–Leffler noise. The introduced algorithm allows us to
simulate sample paths of the anomalous diffusion X(St) for an arbitrary po-
tential V (x) and for the whole range of parameters 0 < α < 1 and 0 < µ ≤ 2.
Fig. 2 shows the sample paths of the subdiffusion process with Lévy flights
driven by the stable and geometric stable distributions. The constant parts
of the sample path indicate the heavy-tailed waiting times, while the long
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jumps of the particle confirm the heavy-tailed distributions of transfers in
the underlying CTRW scheme. The subdiffusive behavior of the system is
caused by the inverse α-stable subordinator, whereas the Lévy flight-type
behavior is inherited from the parent process X(τ) described by the SDE (8).
We believe that the stochastic methods presented here will contribute to a
better understanding of physical systems displaying competition between
subdiffusion and Lévy flights.
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This is a good occasion to clarify a pioneering role of Marian Smolu-
chowski [7] in developing the classical Fokker–Planck equation. For more
details interested readers are referred to [8, 9, 41]. See also [42].
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