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A network of Greenberg–Hasting cellular automata with cyclic intrinsic
dynamics F → R → A → F → . . . is shown to be a reliable approximation
to the cardiac pacemaker. The three possible cell’s states F , R, A are char-
acterized by fixed timings {nF , nR, nA} — time steps spent in each state.
Dynamical properties of a simple line network are found to be critical with
respect to the relation between nF and nR. The properties of a network
arisen from a square lattice where some edges are rewired (locally and with
the preference to link to cells which are more connected to other cells) are
also studied. The resulted system evolves rhythmically with the period
determined by timings. The emergence of a small group of neighboring
automata where the whole system activity initiates is observed. The domi-
nant evolution is accompanied with other rhythms, characterized by longer
periods.

PACS numbers: 87.19.Hh, 87.17.Aa, 87.18.Mp

1. Introduction

The cells which constitute the cardiac muscle tissue have special proper-
ties which allow to consider the cardiac tissue to be the excitable medium,
i.e., the medium which have the ability to propagate signals without damp-
ing. The regular impulses, that result in rhythmic contractions of the heart,
begin at the cardiac pacemaker called the sinoatrial node (SA node) [1]. The
activity of the SA node spreads throughout the atria causing the atrial con-
traction. The same time this activity is passed to the atrioventricular node.
Specialized conduction pathways: bundle of His and Purkinje fibers conduct
the impulse throughout the ventricles causing the ventricle’s contraction in
an unison way.
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Cellular automata are known to model the conduction properties in the
excitable medium very well [2–4]. The simplest cellular automata system
which can be used to model the excitable medium is known as Greenberg–
Hastings model (GH model) [3]. The individual units — cells, with the
simple three-state automaton’s state space, are located in vertices of some
regular lattice. An automaton changes its state because of the two reasons:
the intrinsic state change rule or due to interactions with its nearest neigh-
bors. The basic question posed in the GH model is the self-organization of
the states of all automata to form the sustained characteristic spiral spa-
tiotemporal patterns. It has been found that on the square lattice with the
von Neumann neighborhood (the von Neumann neighborhood consists of the
four cells which surround a central cell on a two-dimensional square lattice)
there exist patterns which are persistent.

The GH model is being developed in two basic directions. The first
direction is aimed on modeling, as close as possible, the activity of the
heart tissue [5, 6]. Within this approach it has been demonstrated that the
bursting rhythms are related to a single cell activity. Regular patterns of the
spiral waves of activity were observed on a square lattice with the Moore (the
Moore neighborhood consists of the eight cells that surround a central cell on
a two-dimensional square lattice) or larger than the Moore neighborhoods.

The second direction in the GH model exploration is aimed on mathe-
matical properties of the dynamical discrete system. Within this study, one
considers, e.g. the self-organization in the cyclic cellular automata to model
chemical reactions [7, 8].

In the following presentation, after short introduction to the physiology
of the pacemaker, Sec. 2.1, we propose a cellular automaton, called by us
FRA-CA, with the intrinsic dynamics of the GH-type but which additionally
realizes the unique ability of the pacemaker cell, namely, the self-activation,
Sec. 2.2. Then we investigate self-organization to the time limit states in
the systems of interacting FRA-CA. In Sec. 3, two interacting FRA-CA are
studied thoroughly. The three types of possible limit solutions are found
and the conditions which lead to each limit solution are analytically proven.
Then, dynamical properties in a line of FRA-CA with open boundary are ex-
amined. To speed up obtaining results we use the Monte Carlo simulations,
Sec. 4.1. Finally, in Sec. 4.2, we present properties of a complex network of
FRA-CA. By Monte Carlo methods we investigate how different timings of
the intrinsic dynamics influence the periodicity in the stationary states of
the network of FRA-CA, where the network structure is prepared in a way
to be physiologically justified. We are specially interested in the problem
of the emergence of diffusive patterns which are driven by the activity of
a small group of FRA-CA.
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2. FRA-CA model

2.1. Elements of pacemaker physiology

Each cell of a body is protected from the outside world by the mem-
brane [1]. Many sophisticated mechanisms are built-in in the membrane to
maintain the main membrane’s role — the communication with the outside
world. The different concentrations of ions between the inside and outside
cell membrane are crucial for the electric potential across the membrane,
called the resting potential. In the case of the excitable cells, i.e. myocytes
— cells building the cardiac tissue, or neurons, the communication is related
to changes in the membrane potential. The rapid increase in the membrane
electrical potential, called the action potential, see Fig. 1, starts a sequence
of changes in the activity of the membrane ion channels. The most impor-
tant currents are currents of sodium Na+, potassium K+, and calcium Ca2+.

Fig. 1. Left panel: The activity of nerve and ventricle cells in time. Right panel:

A cycle of intrinsic activity of a SA nodal cell. Arrows indicates at activity of ion

currents. Both schema adapted from [1], color on-line.

The resting potential for a ventricular myocyte is about −90 mV. An ex-
ternal stimulus of the proper value can cause the sharp depolarization of the
cell membrane. The sharp depolarization is due to the Na+ currents while
the Ca2+ currents extend the time duration of the high polarization of the
membrane and delay the repolarization processes. During the repolarization
phase the membrane potential is driven to restore of the resting potential.

The pacemaker cells are distinguished from other myocytes because their
membranes do not posses the true resting potential but instead the mem-
brane potential is slowly and spontaneously depolarized. The processes in-
volved in the self-initiation are still discussed. It is known that so-called the
funny current (if in Fig. 1) is one among mechanisms which slowly depolar-
izes a cell membrane. After reaching the threshold value the self-initiation
to the new action potential takes place. Since the currents of Na+ are not
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present here, then the fast depolarization process is not as rapid as in other
myocytes. During the fast depolarization and repolarization processes, the
cell is refractory to other stimuli. One can say that the membrane of any iso-
lated pacemaker cell performs automatically a cyclic evolution. The state of
the membrane switches subsequently from the slow depolarization processes
by self-excitation to fast depolarization processes and then, through repo-
larization mechanisms, the cell membrane goes back to the starting point
where the slow depolarization starts over again.

Most of the cardiac myocytes are elongated cells, see Fig. 2. Each car-
diac cell contacts several other cells at specialized regions called intercalated

discs. At these intercalated disks the cell membranes of two adjacent cells
are extensively inter wound and bound together forming the so-called gap
junctions. The intercalated discs are known to be low-resistant gap junctions
between cells which form a functional syncytium. When one cell depolarizes,
depolarizing current passes through gap junctions and depolarizes adjacent
cells, what results in the cell-to-cell propagation of the action potential.
One can say that interactions between cells are restricted to the network
connections only.

Fig. 2. A diagram showing the complex packing of myocytes in ventricular tissue,

adapted from [9], color on-line.

In the SA node, inter cellular connections occur almost exclusively at
small and simple intercalated disks located at various points along the sinus
node myocytes. The analysis of the canine sinus node shows that typical SA
nodal myocyte is connected to about of only 4.8 neighbors while a ventricle
myocyte is connected to 11.3 cells on average. Moreover, about 3.5 neighbors
of SA nodal cells are connected lateral, i.e. differently from end-to-end or
side-to-side orientations [11].

It is known that the action potential, which then leads to the contraction
of the whole heart, is initiated in a small part of the SA node called the

leading pacemaker. The leading pacemaker is usually located in the center
of the SA node. But it is known that the leading pacemaker site can be
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shifted from the center toward the periphery. It could happen, for example,
in response to the autonomic nerve stimulation [12]. The activation of the
leading pacemaker propagates to the periphery of the SA node which is
called the crista terminalis and then onto the atrial muscle.

Cellular automata are dynamical systems which are perfectly discrete,
i.e. the space, states and time are discrete. The three stages of the individual
SA nodal cell activity are well suited to be coded into a three state cellular
automaton. Moreover, the cell-to-cell activity transmission can be directly
represented by the cellular automata local rule of interactions. Since the
space distribution of cells can be considered as flat and regular, the square
lattice approach is a good starting point.

2.2. FRA-CA definition

The space of a GH automaton Σ consists of three elements denoted F ,
R, A which correspond to the three main activities of the cell membrane:
F — firing — fast depolarization, R — resting — repolarization to recover
the resting potential and A — activity — awaiting for a next stimulus.
Automata are placed on a regular d dimensional lattice Zd. The following
dynamics is considered:
— for σi(t) ∈ {F,R,A} and Ni set of neighbors of an ith lattice vertex:

σi(t + 1) =















R if σi(t) = F ,
A if σi(t) = R ,
F if σi(t) = A and σj(t) = F for some j ∈ Ni ,
A otherwise .

(1)

To incorporate the property that an automaton stays in one of the three
states: F , R, A for the fixed numbers of time steps nF , nR, nA let the state

space be represented as Σ∗ =

{

(

F
f

)

1,...,nF

,
(

R
r

)

1,...,nR

,
(

A
a

)

1,...,nA

}

where

F , R, A ∈ Σ and 1 ≤ f ≤ nF , 1 ≤ r ≤ nR, 1 ≤ a ≤ nA count the number
of time steps spent by an automaton in the corresponding state.

Let next : {F,R,A}→{F,R,A} denote the following permutation
(

F R A
R A F

)

.

If at a time step t the state of an automaton is
(

σ
s

)

where 1 ≤ s ≤ nσ and
nσ ∈ {nF , nR, nA} is determined by σ, then, due to the intrinsic rule, the
next state of the automaton is:

(σ

s

)

(t)
t→t+1
7−→







(

next(σ)
1

)

if s = nS ,
(

σ
s+1

)

otherwise .
(2)
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The intrinsic transition rule establishes the periodic dynamics with the pe-
riod length T = nF + nR + nA. We will call just introduced automaton the
FRA cellular automaton (FRA-CA). The phase φ : N → {0, 1, . . . , T − 1}
of a intrinsic cycle of FRA-CA is described as follows:

φ(t) = 0 ⇔
(

σ
s

)

(t) =
(

F
1

)

,

φ(t + 1) = φ(t) + 1 otherwise .
(3)

3. Two interacting FRA-CA

Consider the two FRA-CA named A and B with the intrinsic dynamics
characterized by the same timings: nF , nR, nA. The state of each automaton
can be described by its phase: φA and φB , suitable. Let ∆(t) = φA(t)−φB(t)
denote the phase difference between the two automata at time t. Notice that,
if the phase difference between two FRA-CA: A and B, is 0 then no change
in the phase difference can be observed, i.e.:

∆(t) = 0 ⇒ ∀t′>t∆(t′) = 0 .

Let an active automaton start to be firing in the next time step if the
other automaton is in firing at present. We say one automaton is impacted
by the other one.

It appears that in a system of two FRA-CA only the following limit
evolutions can arise:

• The rules adjusted evolution — if the results of both rules: intrinsic
and interactions between the automata are the same.

• The alternating impacts evolution — if within each period two events of
impacts take place. The first event means A automaton is impacted
by B automaton — A automaton is switched to firing. Then the
second event occurs — B automaton is impacted by A automaton
what switches B automaton to firing.

• The quiet evolution — there are not any impacts between the au-
tomata.

Remark: Both stabilizations: the rules adjusted evolution and quiet
evolution, establish the periodic system with the period equal to T = nF +
nR+nA while the alternating impacts evolution provides the periodic system
with the period equal to T ∗ = nF + nR + 1. The period T ∗ is the minimal
period which can arise in the system of two FRA-CA.
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It appears that which of the limit evolution is reached — rules adjusted

evolution, alternating impacts evolution or quiet evolution, depends on the

difference between initial phases of the automata:

let t be the moment when one of the two automata, A, switches to firing as
the first automaton of the pair:

case nR < nF :

⋄ if the state of the second automaton is
(

R
1

)

then the system evolves

the alternating impacts evolution, since the following sequence of state take
place:

time t ⋆ ↓ ⋆ ↑

A :
(

F
1

)

. . . . . . . .
(

F
f

) (

F
f+1

)

. . .
(

F
nF

)(

R
1

)

. . .
(

R
nR

)(

A
1

)

,

B :
(

R
1

)

. . .
(

R
nR

) (

A
1

) (

F
1

)

. . . . . . . . . . . . . . . .
(

F
nF

)

,

where ⋆ ↓ (⋆ ↑) denotes the moment of time when A ( B) automaton is
impacted by B (A) automaton. We see that within nF + nR + 1 steps the
system is back to the initial situation due to the two impacts. At first B

automaton is impacted by B automaton then A automaton is impacted by
A automaton.

⋄ if the state of the second automaton is
(

F
f

)

and if f > nR + 1 then

the system evolves the alternating impacts evolution; if f ≤ nR + 1 then
the system arrives to the rules adjusted evolution. To see this fact let us
consider subsequently: f = nR + 2

time ⋆ ↓ ⋆ ↑

A :
(

F
1

)

. . . . . . . . . . . . . . . . . . . . .
(

F
nF

) (

R
1

)

. . .
(

R
nR

) (

A
1

)

,

B :
(

F
f

)

. . .
(

F
nF

) (

R
1

)

. . .
(

R
nR

)(

A
1

) (

F
1

)

. . . . . .
(

F
f ′
−1

)

,

what denotes that nF + nR + 2 = nF − f + 1 + nR + 1 + f ′ so f = f ′ and
after nR + nF + 1 steps the system is back in the initial state.

f > nR + 2

time ⋆ ↓ ⋆ ↑

A :
(

F
1

)

. . . . . . . . . . . . . . . . . . . .
(

F
f ′
−1

) (

F
f ′

)

. . .
(

F
nF

)(

R
1

)

. . .
(

R
nR

) (

A
1

)

,

B :
(

F
f

)

. . .
(

F
nF

) (

R
1

)

. . .
(

R
nR

)(

A
1

) (

F
1

)

. . . . . . . . . . . . . . . . . . . .
(

F
f ′′

−1

)

.

Since f ′ = 2+nR +nF +1−f then f ′′ = nF +nR +3−f ′ = f what denotes
that the system follows the alternating impacts evolution.
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if f ≤ nR + 1 then nF ≤ nR + nF − f + 1 what means that the interval
when B is in the resting state extends beyond A automaton is being in
(

F
nF

)

. Then one of the two situations takes place:

[a] nF − f + 1 + nR + nA > nF + nR ⇔ f < nA + 1
what means that the following evolution takes place:

time ⋆ ↑

A :
(

F
1

)

. . . . . . . . . .
(

F
nF

)(

R
1

)

. . . . . . . . . .
(

R
nR

) (

A
1

)

. . . . .
(

A
a

)

,

B :
(

F
f

)

. . .
(

F
nF

) (

R
1

)

. . . . . . . . . .
(

R
nR

) (

A
1

)

. . . . . . . . . .
(

A
nA

)(

F
1

)

.

Hence after nF − f + 1 + nR + nA = T − f + 1 steps AB automaton
is impacted by A automaton. With the roles of A and B exchanged the
system is in the situation considered earlier. Therefore, in the next time
step the rules adjusted evolution starts.

[b] nF − f + 1 + nR + nA ≤ nF + nR ⇔ f ≥ nA + 1
which takes place if nA < nF and nA < nR. Then changes in the system are
the following:

time ⋆ ↑

A :
(

F
1

)

. . . . . . . . . .
(

F
nF

)(

R
1

)

. . . . . . . . . . . . . . . . . . . . . . . .
(

R
nR

) (

A
1

)

,

B :
(

F
f

)

. . .
(

F
nF

) (

R
1

)

. . . . . . . . . .
(

R
nR

)(

A
1

)

. . .
(

A
nA

) (

F
1

)

. . .
(

F
f ′
−1

)

.

Here after nF +nR+1 steps AB automaton is impacted by B automaton.

In the next time step A is in
(

F
1

)

and B is in
(

F
f ′

)

with f ′ = f − nA + 1.

The system is back in the initial state but with the phase difference between
automata shortened by nA − 1. If f ′ < nA + 1 then the system evolves like
that one considered in the [a] case. If f ′ ≥ nA + 1 then the next impact B

on A makes again the reduction of the phase difference. After k = 1, 2, . . .
times of the above described reduction, where k = max′k{f−k′(nA−1) > 0},
i.e. at t = k(nF + nR + 1) the system arrives at the evolution described in
the [a] case. Thus the both cases lead to the rules adjusted evolution.

⋄ if the state of the second automaton B is
(

R
r

)

and r > 1 then the rules

adjusted evolution emerges. This property arises directly from the following
sequence of events:

time t ⋆ ↓

A :
(

F
1

)

. . . . . . . .
(

F
f−1

) (

F
f

)

,

B :
(

R
r

)

. . .
(

R
nR

) (

A
1

) (

F
1

)

,
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where f = (nR+1)+(2−r). For r > 1 it means that f ≤ nR+1 what by our
earlier results mean that evolution settles as the rules adjusted evolution.

case nR ≥ nF :

if the state of the second automaton at t is
(

R
r

)

where nA + 1 ≤ r ≤

nR−nF +1 then the system evolves the quiet evolution; otherwise the system
arrives to the rules adjusted evolution:

If r = 1, then depending on nA, the following two evolutions are possible:
either

time t ⋆ ↑

A :
(

F
1

)

. . .
(

F
nF

)(

R
1

)

. . . . . . . . . .
(

R
nR

)(

A
1

)

. . . . .
(

A
a

)

,

B :
(

R
1

)

. . . . . . . . . . . . .
(

R
nR

)(

A
1

)

. . . . . . . . . .
(

A
nA

) (

F
1

)

,

what leads to the rules adjusted evolution, or

time t ⋆ ↑

A :
(

F
1

)

. . .
(

F
nF

)(

R
1

)

. . . . . . . . . . . . . . . . . . . . .
(

R
nR

) (

A
1

)

,

B :
(

R
1

)

. . . . . . . . . . . . .
(

R
nR

)(

A
1

)

. . .
(

A
nA

)(

F
1

)

. . .
(

F
f−1

)

,

where f value is determined the condition f + nA + nR = nF + nR + 2 what
leads to the rules adjusted evolution.

Let r > 1. If r > nR −nF +1 ⇔ nR − r +1 < nF then the following two
Situations are possible:

time ⋆ ↓ ⋆ ↓

A :
(

F
1

)

. . . . . . . .
(

F
f−1

) (

F
f

)

or
(

F
1

)

. . . . . . . .
(

F
nF

) (

R
1

)

,

B :
(

R
r

)

. . .
(

R
nR

) (

A
1

) (

F
1

) (

R
r

)

. . .
(

R
nR

) (

A
1

) (

F
1

)

.

The both cases by our earlier considerations lead to the rules adjusted evo-
lution.

If nR − r + 1 < nF and nA + 1 > r ⇔ nF + nA + nR − r + 1 < nF + nR

then similar arguments prove the stabilization with the rules adjusted evo-
lution.

If nA + 1 ≤ r ≤ nR − nF + 1 then the evolution goes as follows:

time
A :

(

F
1

)

. . .
(

F
nF

)(

R
1

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(

R
nR

)(

A
1

)

. . .
(

A
nA

)(

F
1

)

,

B :
(

R
r

)

. . . . . . . . . . . .
(

R
nR

)(

A
1

)

. . .
(

A
nA

)(

F
1

)

. . .
(

F
nF

)(

R
1

)

. . . . . . . . . . . . . . . . .
(

R
r′

)

,
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with r′ determined by the condition 1+nA+nR+nF = r′+nR−r+1+nA+nF

what denotes r′ = r. The evolution develops without any interactions.
Hence any initial phase difference is conserved — the evolution is quiet.

4. Monte Carlo studies of FRA-CA

By analytical investigations of the interactions between the two
FRA-CA we have identified the three possible stable solutions: adjusting
rules evolution, alternating impacts evolution and quiet evolution. We also
have given all conditions which lead to each of the stable solutions.

One can see the alternating impacts solution as the maximally active
dynamics since both cells from a pair intensively interact with each other.
Because of the intensity of impacts the intrinsic periods of both automata
are shortened to the shortest possible T ∗ = nF + nR + 1 and the whole
system evolves with this period.

The other two solutions are also periodic but the period is equal to the
intrinsic period of the FRA-CA, i.e. T = nF + nR + nA. Since if nR > nF

only solutions with T occur, then for nA typical only the rules adjusted
evolution appears. Since the rule adjusted evolution is of the diffusive type
— only one cell is impacted by the other one, it is interesting to ask if the
phase adjustment occur if we consider interactions of many FRA-CA. The
case of nR > nF is physiologically interesting because it is known that the
time used by a myocyte for a fast depolarization is shorter than the time
spent on repolarization processes or during the slow depolarization [10].

The analytical method of investigations used in the previous section is
exhausted. Therefore we are switching to the Monte Carlo approach. By
random drawings of initial states of cellular automata, and then by including
also a random choice of the network structure and stochastic changes in tim-
ings, we performed tests in the parameter space to extract typical behaviors
of the studied systems.

4.1. A line of FRA-CA

Subsequently, by setting the values of nF , nR, nA from 2 to 50 with a step
equal to 1, we performed simulations of N = 100 FRA-CA arranged in a line.
Each setting (nF , nR, nA) was applied to a 100 different random initial states
of FRA-CA. Within 20000 time steps the evolution of the most of FRA-CA
stabilized but in the case when nF was large (nF > 25) and nA (nA < 5)
was small then 80000 time steps had to be used to reach the stabilization.

We found all systems evolving exactly with one of the two periods: either
T = nF +nR+nA or T ∗ = nF +nR+1. Depending on the model parameters
the probability to find which of the two periods T or T ∗ occur was different.
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In Fig. 3 we present the results which we received when nF = 25. They are
representative for other values of nF in the sense that the transition appears
when the resting time nR crosses the firing time nF :
— if nF ≤ nR only the solution with the period T happens;

— if nF > nR the solution with the period T ∗ is significantly more probable.
One should notice the symmetry between the plots describing the prob-

ability of events with periods T and T ∗. This symmetry reflects the fact
that no other periods were observed.

When nF ≤ nR, hence the final state is periodic with T , and if and nA

is large enough, so that the quiet evolution cannot emerge, then the phase
adjustment between pairs of neighboring automata is present, see Fig. 3, the
bottom figure. Thus the whole system evolves the rules adjusted evolution.
We have to add that in all cases when we found the evolution periodic with
the period length T when nF > nR then the phase adjustment between all
pairs was always found.

Searching among details of particular configurations of systems which
evolve with period T ∗ we discovered that to establish the stabilization with
T ∗, it was enough that there existed a single pair which followed the alter-
nating impacts evolution. The periodicity of that pair was then propagated
to the both ends of a line because the rest of the automata pairs had phases
adjusted. Such final configurations were received most frequently. However,
we observed also such stable configurations where more pairs (e.g. a chain of
pairs) with the alternating impact evolution were present. However, we did
not notice any other mechanisms than a pair evolving alternating impacts
evolution, which led to the stabilization with T ∗ period.

Therefore a line of FRA-CA can be thought as the first approximation to
the real cardiac pacemaker. Depending on the relation between the timings
nF , nR, nA not only the length of beating of the pacemaker is changed but
also the switch between two types of inter cells dynamics takes place. The
first type dynamics can be interpreted as the active dynamics since it relies
on a pair of neighboring automata which follows the alternating impacts
evolution. The second type of the automata dynamics should be seen as the
passive dynamics because of the overwhelming presence of pairs of automata
between which the phases are adjusted. Such phase adjustment provides the
system that is perfectly prepared to conduct signals. Appearance of both
dynamics can be related to the known properties of the sinus node — pres-
ence of the leading cells which initiate the activity of the whole system, and
which are surrounded by cells which though have the ability to self-generate
the activity but they serve as the medium which transmit the leading cells
activity to the outside SA node [12].
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Fig. 3. The probability to find: stabilization with the period T (left) or T ∗ (right)

and a pair with adjusted phases (bottom), is shown when firing = 25 for different

activity and resting lengths. A line of N = 100 FRA-CA is considered, color

on-line.

4.2. FRA-CA on a complex network

Let us start with a set of N FRA-CA located in vertices of the regular
square lattice and N = L × L. Basing on the physiologically known facts
about the SA nodal cells arrangement, compare Sec. 2, let us consider the
preference to askew connections and discard the vertical links, by the fol-
lowing procedure: for a given probability d: a vertical interaction is created
with d/2 probability, an askew edge is created with d and a horizontal edge
with 2d probability. To enhance the line structure let us work with d = 0.45.

Moreover, to make the structure of interactions uneven, let some of the
described connections be stochastically rewired. The proposed rewiring pro-
cedure is local and with the preference set to the vertex degree. It goes as
follows: see Fig. 4 left:
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For a given p — probability of rewiring and pf — threshold for vertex degree

preference

• For a given automaton A when choosing a connection to rewire, an au-
tomaton less connected with others is preferred. The probability to
unlink the A automaton from a vertex B is calculated as follows:

punlink = p
pf

deg(B)
.

• To make the rewiring local, a new automaton B′ which will be linked
to the automaton A is chosen only from the actual neighbors of B
automaton. While searching among neighbors, the preference is set to
the cells that are most densely connected to others. The probability
to link A automaton to B′ automaton is calculated as follows:

plink_to =
deg(B′)

pf
.

• To preserve the line structure, any horizontal connection is forbidden
to be rewired.

In Fig. 4 on the right side we show the vertex degree distributions calculated
for the networks resulted after applying the above algorithm with p = 0.01
and for different values of pf a hundred Monte Carlo steps. Following results
of that experiment we have found that pf = 4 describes best the canine SA
node structure, compare Sec. 2.

Fig. 4. Left: An illustration of the algorithm of rewiring. The connection between

A and B is changed into the connection between A and B′. A red doted edge is

rewired to a red solid edge. Right: A vertex degree distribution in the resulting

networks: L = 100, d = 0.45, p = 0.01, the algorithm of rewiring is applied

100 MCS, color on-line.
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The intrinsic dynamic rule (2) is deterministic what is closely related with
the physiologically observed fact that the lengths of the fast depolarization
and repolarization phases are strongly fixed. Hence any changes in timings
nF , nR and nA from a period to a period of our artificial FRA-CA should
be rather limited. Therefore, let us consider the little probable possibility
of shortening each of nF , nR and nA value what effects that we introduce
a nonzero probability to switch the actual automaton state to the next state
in its internal cycle. We propose to perform the stochastic evolution as
follows:

(σ

s

)

(t)
t→t+1
7−→







(

next(σ)
1

)

with probability ( s
nS

)ξ ,
(

σ
s+1

)

with probability 1 − ( s
nS

)ξ ,
(4)

where if ξ ≫ 1 then we restore the deterministic evolution. Notice that for
ξ > 1 only very few last steps could be skipped and therefore the effective
timings are closely determined by values of nF , nR and nA.

Finally, let as assume that the threshold for firing an automaton equals
to 1, i.e. at least two neighbors in the firing state are needed to switch an
automaton from the state of activity to the firing state. But since the hor-
izontal connections are known to be much larger and more efficient than
others, we additionally assume that the influence of the horizontal connec-
tions is doubled. Hence only one left or right neighbor being in the firing

state is able to activate the cell.
By Monte Carlo simulation we ask whether the resulting stationary evo-

lution is periodic and what the period length is. We also investigate if the
sharp transition tuned by nR crossing nF value and the switch between
evolution with T and T ∗ period is still present.

The network state is measured by number of FRA-CA staying in the
firing state in the most left column Ileft and in the most right column Iright.
These currents are assumed to imitate signals which arrive at the crista
terminalis. Additionally, we also consider a total signal Itotal which counts
all cells which are in the firing state.

In Figs. 5, 6 and 7 the typical results are shown for various settings
of timings nF , nR, nA. We present pieces of time series corresponding to
signals received from stationary states and their power spectra to identify
periodicity. The presented figures are representative in the following sense.
At all settings of nF , nR, nA the networks of FRA-CA provide systems which
exhibit periodicity with the basic period value about T ∗. There are evident
maxima in all plots of the power spectra though, because of the introduced
stochasticity into intrinsic dynamics, these maxima in the power spectra
plots are wide and moved to right. In Fig. 7 the example illustrating this
statement is given. The two settings of nF , nR, nA lead to the systems in
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Fig. 5. Properties of stationary series of the described network with FRA-CA:

the times series of Itotal, Ileft, Iright and the their power spectra. By T and T ∗

the frequencies corresponding to these periods are shown. Left column nF = 15,

nR = 15, nA = 15 and right column nF = 15, nR = 30, nA = 30, L = 100.

which T ∗ is identical but the intrinsic periods are distinct. Thus the critical
transition in the dynamics related with nF crossing nR is not present. Both
dynamics coexists in the systems. A dominant evolution is related with T ∗

period but there are present other oscillations with longer cycles also.

While the total signal Itotal is usually rather regular and stable, the
border signals: Ileft and Iright vary significantly in time. Moreover the am-
plitudes of Ileft and Iright oscillations are usually higher than the amplitude
of Itotal oscillations.

It appears that the stationary state configurations are organized in well
developed spiral patterns, see Fig. 8. These patterns correspond to cells
in the firing state. If T ∗ is comparable to the linear size of the network,
L, then usually there is observed a single origin of the spiral pattern. In
other cases there are many spiral-type patterns developed at the same time.
In such cases one can observe clusters of the moving activity. We believe
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Fig. 6. Properties of stationary series of the described network with FRA-CA:

the times series of Itotal, Ileft, Iright and the their power spectra. By T and T ∗

the frequencies corresponding to these periods are shown. Left column nF = 25,

nR = 15, nA = 25 and right column nF = 25, nR = 25, nA = 25, L = 100.

that emergence of such patterns is an indicator at the regions where the
evolution relies on cells with adjusted phases, what denotes that the cells
follow the passive dynamics. Moreover, we believe that in the centers of the
spiral patterns there are few cells which are tightly joined together by the
alternating impacts evolution. We observe that these sources of the spiral
patterns are rather long living structures though a kind of a stochastic walk
of these centers occurs. This walk is probably due to the stochasticity in the
intrinsic dynamical rule. Moreover, one can also observe that new centers
emerge and then a kind of a battle between centers takes place.
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Fig. 7. Properties of stationary series of the described network with FRA-CA:

the times series of Itotal, Ileft, Iright and the their power spectra. By T and T ∗

the frequencies corresponding to these periods are shown. Left column nF = 25,

nR = 50, nA = 25 and right column nF = 25, nR = 50, nA = 50, L = 100.

Fig. 8. Snapshots from the typical evolution of the FRA-CA system, case nF =25,

nR = 65, nA = 25 and L = 100.
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5. Conclusions

The theoretical studies of the two interacting FRA-CA have provided us
strong insights on possible stable evolutions of multi-cell systems. We have
identified two distinct types of solutions: (a) the active evolution which relies
on the permanent interactions between automata and effects in the shortest
possible oscillations of the total system and (b) the passive evolution which
relies on the perfect adjustment between interactions and the intrinsic cyclic
dynamics.

When considering systems consisting of many FRA-CA arranged in ei-
ther a simple topology (a line structure) or in a complex one (diluted square
lattice with local rewirings), we have been concentrated on the self-organiza-
tion to the rhythmic evolution with the period driven by the active dynam-
ics. We have found that in the case of the linear arrangement of FRA-CA
there was a sharp transition between the two possible types of the evolutions.
The transition was related to the difference between time steps needed for
the repolarization nR and times steps used for fast depolarization nF . How-
ever, in the case of the complex networks the active oscillations were always
present what could be concluded that the network topology was crucial for
vanishing of the criticality in the network of FRA-CA.

We have found also that the active dynamics was driven by a small group
of neighboring automata which followed the alternating impacts evolution.
In the case of the complex topology, that property was concluded after in-
vestigations of spatio-temporal long living structures. Therefore we could
think about the small group of cells which was the source of the active evolu-
tion that it was a fingerprint of emerging of the center with the leading cells.
There was also noticed that, on the background of the dominant oscillations,
some other (with longer periods) oscillations were present.

The model in our simulations considers 10 000 cells. In the case of hu-
mans it is known that the SA node consists of about 70 000 cells [1]. Hence
to obtain on-to-one mapping we should increase the size of considered sys-
tem. Our future work will go in this direction. Moreover, since it is known
that the SA nodal cells are not identical and that differences between cells
are systematic — the further from the center of the sinus node the cell is
then the difference between center cell and periphery cell is more evident,
then when enlarging the system, we will take into account this physiologi-
cal observation.

The three-state state space of the automaton, used by us, is definitely
over simplification to take the problem of the variety of the possible cells.
Moreover, the myocytes are surrounded by the connective tissue matrix and
microvessels. All together form an anisotropic cellular network which struc-
ture is not fully understood. Hence the network construction proposed here
seems to be too rough.



Cellular Automata Model of Cardiac Pacemaker 1085

The presented investigations are only preliminary and are not claimed
to be completed. However, we hope that by comparing the physiologically
known properties and our results we provide hints on the cellular network
of the SA node.

This work is supported by the University of Gdańsk, BW-5400-5-0090-8.
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