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We give meaning to the first and second laws of thermodynamics in
case of mesoscopic out-of-equilibrium systems which are driven by diffusion-
type, specifically Smoluchowski, processes. The notion of entropy produc-
tion is analyzed. The role of the Helmholtz extremum principle is con-
trasted to that of the more familiar entropy extremum principles.
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1. Introduction

We aim at a consistent thermodynamic description of diffusion-type pro-
cesses which model the dynamics of non-equilibrium systems at the meso-
scopic scale, [1–5]. It is known that given the equilibrium properties of a
mesoscopic (molecular) system, it is possible to deduce a stochastic nonequi-
librium, albeit near-equilibrium, dynamics in terms of Fokker–Planck equa-
tions and their probability density solutions, [1].

We basically go in reverse and abandon any prescribed concept of local
or global equilibrium and ask for these thermodynamic properties that give
account of a convergence (if any, this property is not automatically granted)
towards an equilibrium state, even if initially a system is arbitrarily far from
equilibrium, [11–13]. Our focus is on a quantitative description of energy
(heat, work, entropy and entropy production) transfer time rates in the
mean, between a particle and its thermal environment.

We explore the extremum principles which are responsible for the large
time asymptotic of the process, [6]. Thermodynamic function(al)s, like e.g.

an internal energy, Helmholtz free energy and Gibbs–Shannon entropy are
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inferred, through suitable averaging, from the time-dependent continuous
probability densities, [1, 8–10] and [11–14]. Assuming appropriate (natural)
boundary data we demonstrate that generically the corresponding extremum
principle amounts to minimizing the Helmholtz free energy of random mo-
tion, see also [3].

The following hierarchy of thermodynamical systems is adopted: isolated

with no energy and matter exchange with the environment, closed with the
energy but no matter exchange and open where energy-matter exchange is
unrestricted. With the standard text-book wisdom in mind that all isolated
systems evolve to the state of equilibrium in which the entropy reaches its
maximal value, we focus our further attention on closed random systems and
their somewhat different asymptotic features.

A concise resume of a non-equilibrium thermodynamics of closed sys-
tems comprises the basic conservation laws for the time rates of internal
energy, heat, work and entropy exchange. The energy conservation implies
the Ist law of thermodynamics: an internal energy U changes by dU in time
dt, according to

dU = δQ + δW , (1)

where we distinguish the imperfect differentials by δ. Normally (which will
not necessarily be the case in our further discussion) one interprets dU as
an increase in internal energy of the system due to absorbed heat δQ > 0
and work δW < 0 performed by the system upon its environment.

The IInd law correlates the time rates of entropy, entropy production and
heat exchange between the system and its environment:

Ṡ = (Ṡ)int + (Ṡ)ext . (2)

The entropy time rate of change is here manifestly decomposed into two
contributions: (Ṡ)int is induced by irreversible processes that are intrinsic

to the system, while (Ṡ)ext refers to an energy exchange between the system
and its environment.

Since (Ṡ)int ≥ 0, this entropy production term is interpreted as the major
signature of the IInd law, quite apart form its specific verbal formulation.
The remaining (Ṡ)ext term is related to the heat exchange via (Ṡ)extdt =
δQ/T , where T is the temperature, [6, 7].

We emphasize that neither heat nor work can be interpreted as legitimate
thermodynamic functions. Moreover, the very notion of entropy, sometimes
viewed as a fundamental thermodynamic quantity, appears to be a secondary
— derived notion. In the forthcoming statistical description, this issue will
become straightforward, once we shall relate probabilities and statistics of
random events to the (information) entropy notion.

At this point there is no mention of stationary or steady states, nor
any restriction upon the speed of involved, basically irreversible dynamical
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process. For the record, we indicate that in case of a reversible process we
would have (Ṡ)int = 0 so that an overall entropy change would arise solely
due to the flow of heat.

Thermodynamical extremum principles are usually invoked in connection
with the large time behavior of irreversible processes. One looks for direct
realizations of the entropy growth paradigm, undoubtedly valid for isolated
systems, [14], compare e.g. also a collection of various entropy optimization
strategies in Ref. [17].

Among a number of admissible thermodynamic extremum principles,
just for reference in the present context, we single out a specific one. If
the temperature T and the available volume V are kept constant, then the
minimum of the Helmholtz free energy F = U−TS is preferred in the course
of the system evolution in time, and there holds Ḟ = −T (Ṡ)int ≤ 0.

2. Randomness vs uncertainty:

Boltzmann and Gibbs–Shannon entropies

We know that a result of an observation of any random phenomenon
cannot be predicted a priori (i.e. before an observation), hence it is nat-
ural to quantify an uncertainty of this phenomenon. Let us consider µ =
(µ1, . . . , µN ) as a probability measure on N distinct (discrete) events

Aj , 1 ≤ j ≤ N pertaining to a model system. Assume that
∑N

j=1
µj = 1

and µj = prob(Aj) stands for a probability for an event Aj to occur in the
game of chance with N possible outcomes.

The expression, whose functional (logarithmic term) provenance may be
traced back to the thermodynamical notion of Gibbs entropy,

S(µ) = −
N

∑

j=1

µj ln µj (3)

stands for the measure of the mean uncertainty of the possible outcome of
the game of chance and at the same time quantifies the mean information

which is accessible from an experiment (i.e. actually playing the game).
If we identify random event values A1, . . . , AN with labels for particular

discrete “states” of the system, we may interpret Eq. (3) as a measure of
uncertainty of the “state” of the system, before this particular “state” it is
chosen out of the set of all admissible ones. This well conforms with the
standard meaning attributed to the Shannon information entropy: it is a
measure of the degree of ignorance concerning which possibility (event Aj)
may hold true in the set {A1, A2, . . . , AN} with a given a priori probability
distribution {µ1, . . . , µN}.
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Notice that:
0 ≤ S(µ) ≤ ln N (4)

ranges from certainty (one entry whose probability equals 1 and thus no
information is missing) to maximum uncertainty when a uniform distribution
µj = 1/N for all 1 ≤ j ≤ N occurs. In the latter situation, all events (or
measurement outcomes) are equiprobable and log N sets maximum for a
measure of the “missing information”.

By looking at all intermediate levels of randomness allowed by the in-
equalities Eq. (3) we realize that the lower is the Shannon entropy the less
information about “states” of the system we are missing, i.e. we have more
information about the system. If the Shannon entropy increases, we actually
loose an information available about the system. Consequently, the differ-
ence between two uncertainty measures can be interpreted as an information
gain or loss.

Anticipating various thermodynamic connotations (cf. Boltzmann and
Gibbs entropy notions) we must be careful while introducing (potentially
obvious) notions of events, states, microstates and macrostates of a physical
(or biological) system, cf. [13]. The celebrated Boltzmann formula

S = kB ln W
.
= −kB ln P (5)

sets a link of entropy of the (thermodynamical) system with the probability
P = 1/W that an appropriate “statistical microstate” can occur. Here, W
stands for a number of all possible (equiprobable) microstates that imply
the prescribed macroscopic (e.g. thermodynamical) behavior corresponding
to a fixed value of S.

It is instructive to recall that if P is a probability of an event i.e. of a
particular microstate, then − lnP (actually, with log2 instead of ln) may
be interpreted as “a measure of information produced when one message
is chosen from the set, all choices being equally likely” (“message” to be
identified with a “microstate”). Another interpretation of − ln P is that of a
degree of uncertainty in the trial experiment.

Remark 1: As a pedestrian illustration let us invoke a classic example
of a molecular gas in a box which is divided into two halves denoted “1”
and “2”. We allow the molecules to be in one of two elementary states: A1

if a molecule can be found in “1” half-box and A2 if it placed in another
half “2”. Let us consider a particular n-th macrostate of a molecular gas
comprising a total of G molecules in a box, with n molecules in the state
A1 and G − n molecules in the state A2. The total number of ways in
which G molecules can be distributed between two halves of the box in this
prescribed macrostate, i.e. the number W = W (n) of distinct equiprobable
microstates, clearly is W (n) = G!/[n!(G − n)!]. Here, P (n) = 1/W (n) is a
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probability with which any of microstates may occur in a system bound to
“live” in a given macrostate. The maximum of W (n) and thus of kB ln W (n)
corresponds to N1 = N2 = n, see e.g. at the “dog-flea” model discussion [16].

To get a better insight into the information-uncertainty intertwine, let us
consider an ensemble of finite systems which are allowed to appear in any of
N > 0 distinct elementary states. The meaning of “state” is left unspecified,
although an “alphabet” letter may be invoked for convenience.

Let us pick up randomly a large sample composed of G ≫ 1 single sys-
tems, each one in a certain (randomly assigned) state. We record frequencies
n1/G

.
= p1, . . . , nN/G

.
= pN with which the elementary states of the type

1, . . . , N do actually occur. This sample is a substitute for a “message” or a
“statistical microstate” in the previous discussion.

Next, we identify the number of all possible samples of that fixed size G
which would show up the very same statistics p1, . . . , pN of elementary states.
We interpret those samples to display the same “macroscopic behavior”.

It was the major discovery due to Shannon that the number W of rel-
evant “microscopic states” can be approximately read out from each single
sample and is directly related to the introduced a priori probability measure
µ1, . . . , µN , with an identification pi

.
= µi for all 1 ≤ i ≤ N , by the Shannon

formula:

ln W ≃ −G

N
∑

i=1

pi ln pi
.
= −GS(µ) . (6)

On the basis of this formula, we can consistently introduce S(µ) as the
mean information per each (i-th) elementary state of the N -state system,
as encoded in a given sample whose size G ≫ 1 is sufficiently large.

By pursuing the Shannon’s communication theory track, [13], we can
identify states of the model system with “messages” (strings) of an arbi-
trary length G > 0 which are entirely composed by means of the prescribed
N “alphabet” entries (e.g. events or alphabet letters Aj with the previous
probability measure µ). Then, Eq. (6) may be interpreted as a measure of in-

formation per alphabet letter, obtained after a particular message (string ≡
state of the model system) has been received or measured, cf. our discussion
preceding Eq. (6).

In this case, the Gibbs–Shannon entropy (by historical reasons we re-
name Shannon’s S(µ) the Gibbs–Shannon) interpolates between a maximal
information (one certain event) and a minimal information (uniform distri-
bution), cf. Eq. (4). The above discussion may serve as a useful introduction
to an issue of the Shannon information workings in genomes and DNA se-
quences, [18].
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Till now, we have considered discrete probability distributions and their
uncertainty/delocalization measures (Gibbs–Shannon entropy). The main
objective of the present paper is a discussion of the temporal behavior of
Gibbs–Shannon entropy of a continuous probability distribution.

We shall focus on continuous probability distributions on R. The corre-
sponding Gibbs–Shannon entropy is introduced as follows:

∫

ρ(s) ds = 1 → S(ρ) = −
∫

ρ(s) ln ρ(s)ds . (7)

At this point it is instructive to mention that in the realistic (data anal-
ysis) framework, one encounters discrete probability data that are inferred
from frequency statistics, encoded in various histograms. Definitely, there
are no continuous probability densities at work. They typically appear as
computationally useful continuous approximations of discrete probability
measures.

The situation becomes involved in the case of the corresponding Gibbs–
Shannon entropies, where the approximation issue is delicate. Even if one
follows a pedestrian reasoning, we can firmly justify and keep under control
the limiting behavior, [11, 19]:

N
∑

1

µj = 1 →
∫

ρds = 1 . (8)

An immediate question is: what can be said about the mutual relationship
of S(µ) = −

∑N
1

µj lnµj and S(ρ) = −
∫

ρ(s) ln ρ(s)ds ?

We first observe that 0 ≤ −∑N
1

µj ln µj ≤ ln N and consider an interval
of length L on a line with the a priori chosen partition unit ∆s = L/N .
Next, we define: µj

.
= pj∆s and notice that (formally, we bypass an issue of

dimensional quantities)

S(µ) = −
∑

j

(∆s)pj ln pj − ln(∆s) . (9)

Let us fix L and allow N to grow, so that ∆s decreases and the partition
becomes finer. Then

ln(∆s) ≤ −
∑

j

(∆s)pj ln pj ≤ ln L , (10)

where

S(µ) + ln(∆s) = −
∑

j

(∆s)pj ln pj ⇒ S(ρ) = −
∫

ρ(s) ln ρ(s)ds . (11)
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S(ρ) is the Shannon information entropy for the probability measure on the
interval L. In the infinite volume L → ∞ and infinitesimal grating ∆s → 0
limits, the density functional S(ρ) may be unbounded both from below and
above, even non-existent, and seems to have lost any computationally useful
link with its coarse-grained version S(µ).

However, the situation is not that bad, if we invoke standard methods
[11, 19] to overcome a dimensional difficulty, inherent in the very definition
of S(ρ), while admitting dimensional units. Namely, we can from the start
take a (sufficiently small) partition unit ∆s to have dimensions of length.
We allow s to carry length dimension as well. Then, the dimensionless
expression for the Shannon entropy of a continuous probability distribution
reads:

S∆(ρ) = −
∫

ρ(s) ln[∆s ρ(s)]ds (12)

and all of a sudden, a comparison of S(ρ) and its coarse-grained version
S(µ)) appears to make sense. We can legitimately set estimates for |S(µ)−
S∆(ρ)| and directly verify the approximation validity of S(µ) for a discrete
probability distribution, in terms of the entropy S∆(ρ) for a ∆s-rescaled
continuous probability distribution, when the partition becomes finer.

Remark 2: The value of S(ρα) is α-independent if we consider ρα(x) =
ρ(x − α). This reflects the translational invariance of the Shannon infor-
mation measure. Let us furthermore investigate an effect of the scaling
transformation. We denote ρα,β = β ρ[β(x − α)], where α > 0, β > 0. The
respective Shannon entropy reads: S(ρα,β) = S(ρ) − ln β. An adjustment
β ≡ ∆s sets an obvious link with our previous discussion.

Remark 3: In the present paper we are interested in properties of
various continuous probability distributions, and not their coarse-grained
versions. Therefore our further discussion will be devoid of any dimensional
or partition unit connotations. Since negative values of the Shannon entropy
are now admitted, instead of calling it an information measure, we prefer
to tell about a “probability localization measure”, “measure of surprise” or
“measure of information deficit”.

3. Helmholtz free energy and its extremum

Consider an equilibrium state in statistical mechanics, with β as an in-
verse temperature. As the i-th microstate we take an energy (level) Ei,
i ∈ I, with a statistical (Boltzmann) weight exp(−βEi). The macrostate
is introduced as follows: choose a sample E

.
= {Ei1 , Ei2 , . . . , Ein , . . . } and

define the associated

F (β) = − 1

β
ln Z(β) (13)
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with a statistical sum (partition function) Z

Z(β) =
∑

E

exp(−βEi) . (14)

An internal energy reads

U = − ∂

∂β
ln Z(β) = 〈E〉 .

=
∑

i

Ei exp(−βEi) (15)

while an entropy notion S with T = 1/β appears through

U − F
.
= TS . (16)

The “maximum entropy principle” may be replaced by (or at least —
rewritten as) the “principle of minimum free energy”. Indeed, let pi be a
probability of occurrence of a microstate Ei in the macrostate configuration
E,

∑

pi = 1. A minimum of

F = U − β−1S = F [p] =
∑

i

(

piEi +
1

β
pi ln pi

)

(17)

is achieved for a canonical distribution:

pi =
1

Z
exp(−βEi) . (18)

Define S[p] = −∑

pi ln pi and U =
∑

Eipi. In order to get an equilib-
rium distribution associated with the Shannon–Boltzman–Gibbs entropy S,
we need to extremize the functional:

Φ[p] = −
∑

pi ln pi − α
∑

pi − β
∑

Eipi , (19)

where α and β are the Lagrange multipliers. We have (p∗i denotes an equi-
librium probability, e.g. an ultimate solution)

δΦ[p] = 0 = [− ln p∗i − 1 − α − βEi]δpi (20)

(with arbitrary variations δpi). Multiply the result by pi, sum up, use the
constraints (normalization and the fixed internal energy value) →
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α + 1 = S∗ − βU∗ (21)

⇓

p∗i = exp[−S∗ + βU∗] exp(−βEi) = exp β(F∗ − Ei)
.
=

1

Z
exp(−βEi) .

Notice that we deal here with a discrete probability measure, i.e. the set of
p∗i ’s such that

∑

p∗i = 1.
S∗ is the Shannon entropy of this discrete probability measure. In view of

F = U−β−1S, the Shannon entropy actually has been maximized under the
normalization (probability measure) and fixed internal energy constraints.
To be sure that the above F ∗ is indeed a minimum, let us consider the
relative Kullback–Leibler entropy:

K(p, q)
.
=

∑

pi ln

(

pi

qi

)

(22)

and use the measure p∗ ≡ {p∗i } as the reference one (e.g. q). We have (K is
a convex function with a minimum at 0):

K(p, p∗) = −S −
∑

pi[−S∗ + βU∗ − βEi] = β(F − F∗) ≥ 0 (23)

as anticipated before.
In the case of discrete probability distributions, in view of Eq. (16), a

minimum of F is achieved in conjunction with a maximum for S. Below, we
shall demonstrate that such property is not a generic feature when continu-
ous probability distributions come into consideration.

4. Thermodynamics of random phase-space motion

Now we pass to a detailed investigation of time-dependent continuous
probability distributions and the large time behavior of their entropies. Let
us begin from a concise resumé of the (non-equilibrium) thermodynamics
of closed but non-isolated systems. The laws of thermodynamics may be
reproduced in the form [7]: dU = δQ + δW and dS = dintS + dextS, where
dintS ≥ 0 and dextS = δQ/T .

With respect to the large time behavior, the following extremum princi-
ples for irreversible processes are typically invoked:

1. U and V (volume) constant → maximum of entropy is preferred:
dintS = TdS − δQ ≥ 0, together with a minimum for the entropy

production: d
dt

(

dintS
dt

)

< 0 ,
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2. S and V constant → minimum internal energy is preferred: dU =
−TdintS ≤ 0,

3. T and V constant → minimum of F = U−TS (Helmholtz free energy)
is preferred: dF = −TdintS ≤ 0.

4. Further principles refer to the minimum of the Gibbs free energy and
this of enthalpy (we skip them).

The Helmholtz extremum principle will be of utmost importance in our fur-
ther discussion, as opposed to more traditional min/max entropy principles.

We are interested not only in the existence of an extremal probability
density, but also at an approach of ρ(x, t) towards such a stationary density
in the course of time. Then the varied time dependent properties of the
Helmholtz free energy, Gibbs–Shannon and Kullback–Leibler entropies will
be of interest.

Let us consider a phase-space diffusion process governed by the Langevin
equation:

mẍ + mγẋ = −∇V (x, t) + ξ(t) (24)

with standard assumptions about properties of the white noise: 〈ξ(t)〉 =
0, 〈ξ(t)ξ(t′)〉 =

√
2mγkBT δ(t − t′). Accordingly, the pertinent phase-space

density f = f(x, u, t) is a solution of the Fokker–Planck–Kramers equation
with suitable initial data:

∂

∂t
f(x, u, t) =

[

− ∂

∂x
u +

∂

∂u

(

γu +
1

m
∇V (x, t)

)

+
γkBT

m

∂2

∂u2

]

f . (25)

Let us define the Gibbs–Shannon entropy S = S(t) of a continuous proba-
bility distribution :

S(t) = −
∫

dx duf ln f = −〈ln f〉 .

(By dimensional reasons we should insert a factor h with physical dimensions
of the action under the logarithm, i.e. use ln(hf) instead of ln f , but since we
shall ultimately work with time derivatives, this step may be safely skipped.)

An internal energy U of the stochastic process reads

E(x, u, t) =
mu2

2
+ V (x, t) → U = 〈E〉

and the Ist law takes the form

T (Ṡ)ext + 〈∂tV 〉 = U̇ , (26)



Entropy and Time: Thermodynamics of Diffusion Processes 1097

where 〈∂tV 〉, if positive, is interpreted as the time rate of work externally
performed upon the system. If negative, then we would deal with work
performed by the system.

Furthermore, let us introduce an obvious analog of the Helmholtz free
energy:

F
.
= 〈E + kBT ln f〉 = U − TS

so that

Ḟ − 〈∂tV 〉 = T (Ṡ)ext − T Ṡ = −T (Ṡ)int ≤ 0 . (27)

The above result is a direct consequence of the Kramers equation. Under
suitable assumptions concerning the proper behavior of f(x, u, t) at x, u
integration boundaries (sufficiently rapid decay at infinities) we have [4]

T (Ṡ)ext = γ
(

kBT − 〈mu2〉
)

,

Ṡ = γ

[

kBT

m

〈

(

∂ ln f

∂u

)2
〉

− 1

]

and thence, the IInd law

− γ

m

〈

(

kBT
∂ ln f

∂u
+ mu

)2
〉

= −T (Ṡ)int ≤ 0 . (28)

As a byproduct of the discussion we have Ḟ ≤ 〈∂tV 〉. For time-independent
V = V (x) we deal with the standard F -theorem (the extremum principle
pertains to the Helmholtz free energy F which is minimized in the course of
random motion).

The above discussion encompasses both the forced and unforced (free)
Brownian motion. When V (x) ≡ 0, then no asymptotic state of equilibrium
(represented by a probability density) is accessible, the motion is sweeping.
In the forced case, we assume a priori an existence of a unique stationary
state, cf. [14, 15], for the above phase-space random dynamics:

f∗(x, u) =
1

Z
exp

[

−E(x, u)

kBT

]

.

In this case, the time rate of the conditional Kullback–Leibler entropy:

Hc(ft|f∗) = −
∫

f ln
f

f∗
dxdu

= S(t) − ln Z − 〈E(x, u)〉
kBT

(29)
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directly appears in the F -theorem:

kBT Ḣc = −Ḟ = +T (Ṡ)int ≥ 0 . (30)

The (negative definite) conditional entropy grows monotonically towards its

maximum at 0. Notice that (Ṡ)int ≥ 0, but neither 〈∂tV 〉 nor Ṡ need to
be positive and may show quite complicated patterns of temporal behavior,
[14,15] and [11,12]. (Both f∗ and Hc are non-existent in case of free Brownian
motion.)

Let us point out that the above discussion is sufficiently general to in-
clude a number of currently fashionable problems, like e.g. that of molecular
motors. To see an obvious link it suffices to mention a typical “Brownian
motor input” i.e. an explicit functional form of the time-dependent driving
component of the exerted force and its conservative term in Eq. (24), cf. [20].
As an example we may consider:

mẍ + mγẋ = −∇V (x, t) + a cos(Ωt) + F + ξ(t) , (31)

where F is a constant external force, and the spatially periodic rachet (bro-
ken reflection symmetry) potential V (x) is adopted. An example of the
ratchet potential is: V (x) = V0[sin(2πx) + c1 sin(4πx) + c2 sin(6πx)].

5. Thermodynamics of the Smoluchowski process

Analogous thermodynamical features are encountered in spatial random
motions, like e.g. standard Smoluchowski processes and their generalizations.
Let us consider

ẋ = b(x, t) + A(t) (32)

with 〈A(s)〉 = 0 , 〈A(s)A(s′)〉 =
√

2Dδ(s − s′).
Given an initial probability density ρ0(x). We know that the diffusion

process drives this density in accordance with the Fokker–Planck equation

∂tρ = D△ρ −∇ (bρ) . (33)

We introduce u = D ln ρ and v = b − u which obeys ∂tρ = −∇(ρv).
The Gibbs–Shannon entropy of ρ

S(t) = −〈ln ρ〉 (34)

typically is not a conserved quantity. We impose boundary restrictions that
ρ, vρ, bρ vanish at spatial infinities or other integration interval borders. We
consider:

DṠ =
〈

v2
〉

− 〈b v〉 . (35)
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We may pass to time-independent drift fields and set b = f
mγ

, j
.
= vρ,

f = −∇V plus D = kBT/mγ. Then:

Ṡ = (Ṡ)int + (Ṡ)ext , (36)

where
kBT (Ṡ)int

.
= mγ

〈

v2
〉

≥ 0 (37)

stands for the entropy production rate, while

kBT (Ṡ)ext = −
∫

f j dx = −mγ 〈b v〉 (38)

(as long as negative which is not a must) may be interpreted as the heat
dissipation rate:−

∫

f j dx.
In view of j = ρv = ρ

mγ
[f −kBT∇ ln ρ]

.
= − ρ

mγ
∇Ψ i.e. v = −(1/mγ)∇Ψ

and f = −∇V , we can introduce

Ψ = V + kBT ln ρ (39)

whose mean value stands for the Helmholtz free energy of the random
motion

F
.
= 〈Ψ〉 = U − TS . (40)

Here S
.
= kBS and an internal energy is U = 〈V 〉. Since we assume ρ and

ρV v to vanish at the integration volume boundaries, we get

Ḟ = −(mγ)
〈

v2
〉

= −kBT (Ṡ)int ≤ 0 . (41)

Clearly, F decreases as a function of time towards its minimum, or remains
constant.

Let us consider the stationary regime Ṡ = 0 associated with an ( a priori
assumed to exist, [14]) invariant density ρ∗. Then,

b = u = D∇ ln ρ∗

and

−
(

1

kBT

)

∇V = ∇ ln ρ∗ =⇒ ρ∗ =
1

Z
exp

[

− V

kBT

]

. (42)

Hence
Ψ∗ = V + kBT ln ρ∗ =⇒ 〈Ψ∗〉 = −kBT ln Z

.
= F∗ (43)

with Z =
∫

exp(−V/kBT )dx. F∗ stands for a minimum of the time-depen-
dent Helmholtz free energy F . Because of

Z = exp

(

− F∗

kBT

)

(44)
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we have

ρ∗ = exp

[

(F∗ − V )

kBT

]

. (45)

Therefore, the conditional Kullback–Leibler entropy, of the density ρ
relative to an equilibrium density ρ∗ acquires the form

kBTHc
.
= −kBT

∫

ρ ln

(

ρ

ρ∗

)

dx = F∗ − F . (46)

In view of the concavity property of the function f(w) = −w ln w,
Hc takes only negative values, with a maximum at 0. We have F∗ ≤ F
and kBT Ḣc = −Ḟ ≥ 0. Hc is bound to grow monotonically towards 0,
while F drops down to its minimum F∗ which is reached for ρ∗. The
Helmholtz free energy minimum, in the present context (and in contrast
to the previously described case of discrete probability measures), remains
divorced from any extremal property of the Gibbs–Shannon entropy. Only
the Kullback–Leibler entropy shows up an expected asymptotic behavior.
See e.g. also [14, 15].

6. Outlook

Standard (thermodynamical) notions of entropy are basically introduced
under equilibrium conditions and are not considered in the time domain. Our
discussion was tailored specifically to non-equilibrium systems and processes.
Any conceivable idea of approaching the state of equilibrium, or passing from
one such state to another (steady) state, always involves the time dependence
and the related, often rapid, non-equilibrium dynamical process.

The major tool invoked in connection with both equilibrium and non-
equilibrium phenomena is that of Gibbs–Shannon entropy whose definition
directly involves time-dependent probability distributions. However, let us
recall that except for the thermodynamical Clausius case, the very notion of
entropy is non-universal and purpose-dependent, [12]. Our entropy choice
has served a concrete purpose: encompassing a temporal behavior of specific
probability distributions associated with diffusion-type processes.

The sole entropy methods are neither exclusive nor sufficient to give
full account of the asymptotic properties of diffusion processes. Additional
inputs pertaining the regularity properties of solutions of Fokker–Planck
equations are necessary to guarantee an existence of a stationary solution
and to demonstrate that any other solution of the pertinent equation must
finally decay to the stationary one in the large time asymptotic.

For standard diffusion-type processes, we have discussed, the standard
min/max entropy principles do not literally work, [17]. It is the Helmholtz
free energy which shares proper extremal behavior. On the other hand it is
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the conditional Kullback–Leibler entropy which (together with its time rate)
stays in close affinity with the Helmholtz free energy of the diffusion process
and with the involved entropy production.

The advantage of our methodology is an explicit insight into the temporal
behavior of various thermodynamics functionals whose definition is normally
restricted to equilibrium(or near-equilibrium) phenomena. The conceptual
meaning of the Helmholtz free energy, or Gibbs–Shannon entropy is consis-
tently elevated to the time-domain, for far from equilibrium systems. The
auxiliary notions of work and heat transfer rates have received a transparent
interpretation as well.
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