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Stochastic resonance is investigated in the Ising model with ferromag-
netic coupling on scale-free networks with various scaling exponents γ > 2
of the degree distributions p(k) ∝ k−γ , subjected to a weak oscillating
magnetic field. In the case 2 < γ < 3 and for slow to moderate frequencies
of the input signal the linear response theory and numerical simulations in
the mean-field approximation predict the occurrence of stochastic multires-
onance, with the spectral power amplification as a function of temperature
exhibiting double maxima in the vicinity of and below the crossover tem-
perature for the ferromagnetic transition. In the case γ > 3 the spectral
power amplification is expected to exhibit single maximum close to the crit-
ical temperature. These predictions are qualitatively confirmed by Monte
Carlo simulations of the Ising model on scale-free networks obtained from
a preferential attachment growing procedure.

PACS numbers: 05.40.–a, 89.75.–k, 89.75.Hc

1. Introduction

Stochastic resonance (SR) [1] is a phenomenon where noise plays a con-
structive role by enhancing response of a nonlinear system to a periodic
signal (for review see Ref. [2–4]) This response can be characterized, e.g.,
by the spectral power amplification (SPA), defined as the strength of the
Fourier component of the output signal at the frequency of the input signal
divided by the strength of the input signal, which exhibits a maximum at
non-zero noise intensity. An interesting extension of SR is stochastic mul-
tiresonance, where the response to the periodic signal is enhanced for many
different values of the noise intensity, which results in multiple maxima of the
SPA [5–7]. SR was first demonstrated in low-dimensional potential bistable
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systems [1, 8, 9], then also in networks of bistable systems with mean-field
(MF) coupling [10], regular arrays with nearest-neighbor coupling [11–13],
small-world networks [14] (with partial rewiring of regular connections [15])
and scale-free networks [16]. As an example of a coupled system exhibit-
ing SR the Ising model with ferromagnetic coupling was also studied, with
a weak periodic magnetic field as the input signal, time-dependent mag-
netization as the output signal, and thermal fluctuations playing the role
of noise [17–25]. In the case of regular arrays of spins in more than one
dimension [17, 20], networks of spins with global MF coupling [22], small-
world [23] and scale-free networks [25] the response of the Ising model to
the oscillating magnetic field was maximum in the vicinity of the critical
temperature for the ferromagnetic transition due to the divergence of the
magnetic susceptibility.

It is known that many weblike structures as the Internet, world-wide
web, power supply networks, etc., which are of high importance for the
modern society, have scale-free (SF) topology, i.e., their degree distribu-
tion (distribution of the number of edges, or connections, per node) obeys
a power scaling law p(k) ∝ k−γ , usually with γ < 2. SF networks belong
to a general class of complex networks whose study is a rapidly developing
area in statistical physics (for review see Ref. [26, 27]). Investigation of the
critical properties of the Ising model on SF networks (with spins located in
the network nodes and the edges corresponding to non-zero ferromagnetic
exchange interactions between them) revealed that the temperature of the
ferromagnetic transition can exhibit strong size dependence, in particular
in networks with 2 < γ ≤ 3 [28–34]. SR in the Ising model with ferro-
magnetic coupling on the SF network was investigated for a particular case
of a Barabási–Albert network with γ = 3 [35] and also showed strong de-
pendence on the number of nodes [25]. In this contribution certain aspects
of SR in the Ising model with ferromagnetic coupling on SF networks with
arbitrary γ < 2 are analyzed both in the MF approximation and by means
of Monte Carlo (MC) simulations. It is shown that in the case of networks
with 2 < γ < 3 stochastic multiresonance can occur, i.e., the output signal
can exhibit maximum periodicity for two different resonance temperatures,
below and in the vicinity of the ferromagnetic transition point; for γ ≥ 3
multiresonance is not observed. This effect can be qualitatively explained
using linear response theory (LRT) in the MF approximation.

2. The model and methods of analysis

Let us consider a complex network with N nodes and with the degree
distribution p(k). The Ising model with ferromagnetic coupling on such
network consists of i = 1, 2, . . . N spins with two possible orientations σi =
±1 located in the nodes and subjected to thermal noise. The exchange
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integral between the spins σi, σj is Jij = J > 0 if there is an edge between
nodes i, j, and Jij = 0 otherwise. In order to observe SR the input periodic
signal in the form of the external oscillating magnetic field h(t) = h0 sin ω0t
is applied to all spins. The Hamiltonian for the model is

H = −
1

〈k〉

N
∑

i,j=1

Jijσiσj − h0 sin ω0t

N
∑

i=1

σi , (1)

where 〈k〉 is the average degree of nodes. The model obeys the Glauber
thermal-bath dynamics, with the transition rates between two spin configu-
rations which differ by a single flip of one spin, e.g., that in the node i, in
the form

wi (σi) =
1

2

[

1 − σi tanh

(

Ii(t)

T

)]

, (2)

where

Ii(t) =
J

〈k〉

ki
∑

j=1

σj(t) + h0 sin ω0t (3)

is a local field acting on the spin i (with degree ki) at time t, T is the
temperature, and the sum in Eq. (3) runs over all ki neighbours of the
node i. The output signal is the time-dependent order parameter S(t),
which in the case of the Ising model on complex networks is defined as
“weighted” magnetization (with spin states multiplied by the corresponding
node degrees) [30],

S(t) = (N〈k〉)−1
N

∑

i=1

kiσi(t) . (4)

In order to observe SR the SPA is evaluated from the output signal,

SPA = |P1|
2 /h2

0 ,

P1 = lim
τ→∞

1

τ

τ−1
∑

t=0

S(t)e−iω0t , (5)

and the dependence of the SPA on the temperature T is analyzed.
SR in the above-mentioned model can be investigated by means of MC

simulations. Besides, the system dynamics can be studied in the MF ap-
proximation. A continuous-time equation for the MF value of the order pa-
rameter (4), denoted as 〈S(t)〉, can be derived similarly as in the case of the
Ising model on regular arrays [20]. The Master equation for the probability
that at time t the system is in the spin configuration (σ1, σ2, . . . σN ) is
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d

dt
P (σ1, σ2, . . . , σj , . . . σN ; t) = −

N
∑

j=1

wj (σj)P (σ1, σ2, . . . , σj, . . . σN ; t)

+

N
∑

j=1

wj(−σj)P (σ1, σ2, . . . ,−σj, . . . σN ; t) . (6)

Multiplying both sides of Eq. (6) by σi and performing an ensemble average,
denoted by 〈 〉, yields

d〈σi〉

dt
= −〈σi〉 +

〈

tanh

(

Ii(t)

T

)〉

. (7)

In the MF approximation the spins σj in Eq. (3) are replaced by 〈σj〉, and
the resulting MF value of the local field, denoted as 〈Ii(t)〉, is inserted in
Eq. (7). Moreover, following the argument in Ref. [31], the network nodes
can be divided into classes according to their degrees k. Then the average
values of all spins located in the nodes belonging to the class with degree
k are equal and denoted as 〈σk〉. Under such assumptions the sum over
the network nodes can be replaced by a sum over the classes of nodes with
different degrees. For example, the MF value of the order parameter becomes

〈S(t)〉 =

kmax
∑

k=m

kp(k)

〈k〉
〈σk(t)〉 , (8)

where m and kmax are the minimum and maximum degrees of nodes, respec-
tively. Similarly, taking into account that the probability that a link from
a node i points to a node with degree k is kp(k)/

∑

l lp(l) = kp(k)/〈k〉, the
MF value of the local field in Eq. (7) is

〈Ii(t)〉 =
1

〈k〉
Jki

kmax
∑

k=m

kp(k)

〈k〉
〈σk〉 + hi(t) . (9)

Multiplying both sides of Eq. (7) by ki, performing the sum over all nodes
i and replacing it by the sum over all classes of nodes as in Eq. (8), the
equation for the continuous-time dynamics of 〈S(t)〉 is finally obtained,

d〈S〉

dt
= −〈S〉 +

kmax
∑

k=m

p(k)k

〈k〉
tanh

(

Jk〈S〉

〈k〉T
+

h0

T
sin ω0t

)

. (10)

For a given degree distribution p(k), Eq. (10) can be solved numerically. For
h0 → 0 analytic solution is also possible in the framework of the LRT.
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3. Mean-field approximation

3.1. Linear response theory

Let us constraint our attention to SF networks with the degree distri-
bution p(k) = Ak−γ , γ > 2, where A is a normalization constant, and with
the minimum degree of nodes m. For N →∞ nodes with arbitrarily large
k are present in the network, and A = (γ − 1) mγ−1. However, in net-
works with finite N the distribution p(k) has a cutoff at a maximum value
k = kmax, which for 2 < γ ≤ 3 can be estimated from the condition
∫

∞

kmax
p(k)dk < N−1 (hence, it is practically impossible to find a node with

degree k > kmax), which yields kmax = mN
1

γ−1 , and for γ > 3 in practice
scales as kmax ∝ N1/2 [36].

In the absence of the magnetic field the system evolves towards a stable
equilibrium with the corresponding value of the order parameter 〈S〉0 which
can be obtained as a stable fixed point of Eq. (10) with h0 = 0,

〈S〉0 =

kmax
∫

m

Ak−γ+1

〈k〉
tanh

(

Jk〈S〉0
〈k〉T

)

dk . (11)

The corresponding stationary value of the magnetization 〈M〉0 is then

〈M〉0 =

kmax
∑

m

p(k) tanh

(

Jk〈S〉0
〈k〉T

)

=

kmax
∫

m

Ak−γ tanh

(

Jk〈S〉0
〈k〉T

)

dk (12)

(in Eqs. (11), (12) summation was replaced by integration). Eq. (11) has
one stable fixed point 〈S〉0 = 0 for T > Tc corresponding to the paramag-
netic phase, and two stable symmetric fixed points ±〈S〉0 with 〈S〉0 > 0
for T > Tc corresponding to the ferromagnetic phase. The temperature
Tc = J〈k2〉/〈k〉2, where 〈k2〉 is the second moment of the distribution p(k),
depends on the scaling exponent γ and, possibly, on the number of nodes
N (note that due to normalization of the exchange energy in Eq. (1) to 〈k〉
the formula for Tc differs from that in Ref. [27, 31]). For γ > 3 there sys-
tem undergoes a ferromagnetic phase transition at the critical temperature
Tc = J γ−2

(γ−1)(γ−3) . For γ ≤ 3 the critical temperature diverges in the ther-

modynamic limit, however, for finite N there is a crossover temperature:

Tc ∝ ln N for γ = 3 and Tc ∝ N
3−γ

γ−1 for γ < 3, separating the ordered and
disordered phases [28–33]. The above-mentioned predictions were qualita-
tively confirmed by MC simulations [28, 34], but for γ < 3 the crossover
temperature Tc turned out to be very sensitive to possible correlations be-
tween the degrees of the connected nodes and the dependence of Tc on N
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was characterized by a scaling exponent different from that derived in the
MF approximation [34].

In the framework of the LRT it is assumed that under the influence of
the periodic field with h0 → 0 for given T the MF order parameter 〈S(t)〉
oscillates around the stable stationary state, i.e., 〈S(t)〉 = 〈S〉0 + ξ(t),
where ξ(t) → 0. Inserting this into Eq. (10), expanding the tanh func-

tion in the Taylor series up to linear terms with respect to Jkξ(t) (〈k〉T )−1+
h0T

−1 sin ω0t, and replacing the summation with integration yields

dξ

dt
= −

ξ

τMF

+
h0Q

T
sin ω0t , (13)

τMF =

[

1 −
J

T 〈k〉2

kmax
∑

k=m

pkk2 cosh−2

(

Jk〈S〉0
〈k〉T

)

]−1

=











{

A
〈k〉〈S〉0

[

m−γ+2 tanh
(

Jm〈S〉0
〈k〉T

)

− k−γ+2
max tanh

(

Jkmax〈S〉0
〈k〉T

)]

−3 + γ
}−1

,

for T ≤ Tc,
(

1 − Tc

T

)−1
, for T > Tc,

Q =
1

〈k〉

kmax
∑

k=m

pkk cosh−2

(

Jk〈S〉0
〈k〉T

)

=











A
J〈S〉0

[

k−γ+1
max tanh

(

Jkmax〈S〉0
〈k〉T

)

−m−γ+1 tanh
(

Jm〈S〉0
〈k〉T

)

−(−γ + 1) 〈M〉0
A

]

,

for T ≤ Tc,

1 for T > Tc,

where τMF is the MF relaxation time (to evaluate τMF and Q for T ≤ Tc

the integration by parts was performed, and Eqs. (11), (12) were taken into

account). It should be noted that for large N the parameter Jkξ(t) (〈k〉T )−1

need not be small because the maximum degree kmax can be large. Since in
the linear approximation ξ ∝ h0 (see below), for networks with large N the
signal amplitude must be vanishingly small for the LRT to hold.

The asymptotic solution of Eq. (13) is

ξ(t) = ξ0 sin (ω0t − θ) ,

ξ0 =
h0Q

T

(

1

τ2
MF

+ ω2
0

)

−1/2

θ = arctan (ω0τMF) . (14)

Thus the SPA is

SPA =
ξ2
0

4h2
0

. (15)
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Hence, the SPA is proportional to
∣

∣

∂S
∂h (ω0)

∣

∣

2
, where ∂S

∂h (ω) is a dynamical
susceptibility of the order parameter S(t).

In the paramagnetic phase with T > Tc there is 〈S〉0 = 0, Q = 1 and

SPA =
1

4T 2

[

(

1 −
Tc

T

)2

+ ω2
0

]

−1/2

, (16)

which is a monotonically decreasing function of T . This result is the same
as in the MF approximation for the Ising model on regular lattices [18–21].

Exemplary curves SPA versus T resulting from Eq. (15) are shown in
Fig. 1 for a relatively large network with N = 10000 and different frequen-
cies of the magnetic field ω0. It can be seen that for γ = 2.5 and for
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Fig. 1. SPA versus T for the Ising model on a SF network with the degree distri-

bution p(k) = (γ − 1)mγ−1k−γ predicted by the LRT in the MF approximation,

Eq. (15) (thin solid lines), and obtained from numerical simulations of Eq. (10)

(thick solid lines). The results are shown for N = 10000, m = 5, J = 1, h0 = 0.01,

different frequencies ω0 = 2π/T0 of the oscillating magnetic field and (a) γ = 2.5,

(b) γ = 5. Tc is the critical (crossover) temperature for the ferromagnetic transition

evaluated in the MF approximation as explained in Sec. 3.1.
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moderate and small frequencies ω0 the LRT predicts double maxima of the
SPA corresponding to two different resonance temperatures Tr (Fig. 1(a)).
One maximum occurs at Tr = Tc due to the divergence of the magnetic
susceptibility in the vicinity of the critical temperature for the ferromag-
netic transition, while the other one occurs in the ferromagnetic phase, at
Tr < Tc. The heights of both maxima are comparable for moderate ω0. For
ω0 → 0 the height of the maximum at Tr = Tc significantly increases while
that of the maximum at Tr < Tc saturates so that in the adiabatic limit the
former maximum becomes dominant. In contrast, for high frequencies ω0

the maximum at Tr = Tc disappears and only that at Tr < Tc remains. It
turns out that qualitatively similar dependence of the SPA on T and ω0 is
predicted for networks with large N and γ in the range 2 < γ < 3. Thus,
for moderate and small frequencies of the magnetic field the LRT in the MF
approximation predicts the occurrence of stochastic multiresonance in the
Ising model with ferromagnetic coupling on SF networks with 2 < γ < 3,
while for high ω0 SR with a single maximum of the curve SPA versus T is
expected.

The case of SF network with γ = 3 is a limiting one: stochastic mul-
tiresonance is neither predicted by the LRT in the MF approximation nor
observed in MC simulations of the Ising model on the Barabási–Albert net-
work [25]. Similarly, for SF networks with γ > 3 the curves SPA versus T
resulting from Eq. (15) exhibit only a single maximum at Tr = Tc which
takes a form of a sharp peak in the adiabatic limit (Fig. 1(b)).

3.2. Numerical simulations

Numerical simulations of the MF equation (10) were performed for the
same parameters as used to obtain the curves SPA versus T from the LRT in
Sec. 3.1, and for h0 = 0.01 (the same as in the MC simulations, cf. Sec. 4).
In the case of SF networks with γ > 3 the resulting curves SPA versus T
coincide with those predicted by the LRT, especially for high and moderate
frequencies of the oscillating magnetic field (Fig. 1(b)). For 2 < γ < 3 the
agreement is worse (Fig. 1(a)). As mentioned in Sec. 3.1 for 2 < γ ≤ 3

the maximum degree of nodes diverges with N as kmax ∝ N
1

γ−1 , thus the
assumption of the linear response is limited to vanishingly small amplitudes
of the input signal h0. Nevertheless, simulations of the MF equation (10)
confirm the possibility of the occurrence of stochastic multiresonance in the
Ising model with ferromagnetic coupling on SF networks with 2 < γ < 3 for
moderate and small frequencies of the magnetic field.
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4. Monte Carlo simulations

Since the pioneering work of Barabási and Albert [35] it has been known
that SF networks can be constructed using the preferential attachment grow-
ing procedure. In this paper SR was investigated by means of MC simula-
tions in the Ising model on SF networks with different scaling exponents
γ obtained in the following way [27]. First, a small number m + 1 of
fully connected nodes is fixed. Then, step by step, new nodes are added,
and each new node is connected to existing nodes with m edges accord-
ing to the following probabilistic rule: Probability of linking to a node i
is pi = (ki + B) /

∑

i (ki + B), where ki is the actual degree of the node i,
∑

i ki is the actual number of edges in the whole network, and B is a tunable
parameter representing the initial attractiveness of each node. The growth
process is continued until the total number of nodes N is reached, when
the network structure is frozen. For large N , this preferential attachment
rule results in the network with the mean node degree 〈k〉 = 2m and the

degree distribution p(k) ∝ k−γ(B,m) for k ≫ B, with γ (B,m) = 3 + B/m.
In particular, for B = 0 the original Barabási–Albert network with γ = 3
is recovered. However, it should be noted that in networks obtained in this
way the distribution p(k) for small k deviates from the power scaling law.

It was observed that in the absence of the magnetic field the Ising model
on the above-mentioned network shows ferromagnetic transition at the tem-
perature Tc which for B > 0 is weakly, and for B ≤ 0 strongly dependent
on N . Tc was estimated from MC simulations as the temperature where the
fluctuations of the order parameter, δS2 = 〈S2〉 − 〈|S|〉2, were maximum
(the brackets denote averaging over many MC simulation steps and many
random realizations of the network; besides, the absolute value of S instead
of S appears in the second bracket since in the ferromagnetic phase the or-
der parameter performs jumps between the two equivalent orientations, and
such large fluctuations can lead to underestimation of Tc). The resulting
values of Tc differ significantly from those predicted from the MF approx-
imation, in particular for 2 < γ < 3; this is mainly due to the fact that
the distribution p(k) for small k deviates from the power scaling law which
affects the value of the maximum degree of nodes kmax.

In order to observe SR in the Ising model on the above-mentioned SF
network MC simulations were performed of the system with N = 10000,
m = 5, different frequencies of the input signal ω0 and parameters B which
yield different scaling exponents γ. The amplitude of the magnetic field was
h0 = 0.01 since for smaller values prohibitively long simulation times were
necessary to obtain reliable curves SPA versus T due to the intrinsic thermal
fluctuations in the system. Typically, the simulation time was 215 steps of
the MC algorithm (with one step corresponding to updating N spins), and
the results were averaged over 10 random realizations of the network.
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Exemplary curves SPA versus T from the MC simulations are shown in
Fig. 2. They qualitatively resemble those evaluated using the LRT in the
MF approximation for similar values of γ, ω0 (cf. Fig. 1). In particular,
for the SF network with γ = 2.2 (B = −4, Fig. 2(a)) and for small to
moderate frequencies ω0 double maxima of the SPA can be seen, one at
Tr ≥ Tc and the other one at Tr < Tc, in the ferromagnetic phase. In the
adiabatic limit ω0 → 0 the former maximum is dominant, while for high
frequencies of the magnetic field that corresponding to the ferromagnetic
phase is more pronounced. Thus, stochastic multiresonance is observed in
the MC simulations in the region of the parameter space γ, ω0 where its
occurrence is predicted by the LRT in the MF approximation. However, it
should be pointed out that, for the particular model of SF network under
study, the scaling exponent γ for the tails of the degree distribution p(k)
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Fig. 2. SPA versus T from the MC simulations of the Ising model on a SF net-

work constructed using the preferential attachment growing procedure described

in Sec. 4. The results are shown for N = 10000, m = 5, J = 1, h0 = 0.01, different

frequencies ω0 = 2π/T0 of the oscillating magnetic field and (a) B = −4 (γ = 2.2),

(b) B = 10 (γ = 5). Tc is the critical (crossover) temperature for the ferromag-

netic transition estimated from MC simulations with h0 = 0 as a point where the

fluctuations of the order parameter S are maximum, as explained in Sec. 4.
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must be close to 2 for the multiresonance to occur. In contrast with the
predictions of the LRT, for γ > 2.4 the curves SPA versus T obtained from
MC simulations exhibit only one maximum. For example, for γ = 5 (B = 10,
Fig. 2(b)) the curves SPA versus T exhibit one maximum which for small
ω0 is located slightly above the critical temperature Tc.

5. Summary and conclusions

SR in the Ising model with ferromagnetic coupling on SF networks with
various scaling exponents γ > 2 of their degree distributions p(k) ∝ k−γ

was investigated using the LRT in the MF approximation and MC simula-
tions. In the latter case, the network under study was obtained from the
preferential attachment growing procedure, with the initial attractiveness
ascribed to each node. The input signal had a form of the oscillating mag-
netic field and the output one was the time-dependent order parameter S(t)
(sum of magnetic moments at each node weighted by node degrees). For
networks with 2 < γ < 3 and for slow to moderate frequencies of the input
signal stochastic multiresonance was observed, with the curves SPA versus

T exhibiting double maxima at the resonance temperatures in the vicinity
of and below the crossover temperature for the ferromagnetic transition.
These double maxima should not be confused with the double maxima of
various input–output correlation functions observed in the vicinity of Tc in
the studies of SR in the Ising model on regular arrays and with MF cou-
pling [20, 22], which appear due to the divergence of the relaxation time at
the critical point. For networks with γ ≥ 3 a typical picture of SR occurs,
with the curves SPA versus T exhibiting a single maximum at the resonance
temperature close to the critical one.

In this contribution attention was focused on the search for multiple
maxima of the curves SPA versus T evaluated from the time series of S(t);
however, if the magnetization M(t) is assumed as the output signal, mul-
tiresonance can appear for a wider range of γ, e.g., in the Ising model on
the Barabási–Albert network [25]. It should be also mentioned that SR on
SF networks with γ ≤ 3 can exhibit strong size effects. Detailed discussion
of these problems is beyond the scope of this contribution.
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