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We consider the deterministic escape of a chain of harmonically coupled
units from a metastable state over a cubic potential barrier. The under-
lying dynamics is conservative and noise-free. The supply of a sufficient
total energy transforms the chain into the nonlinear regime from which
an initially, nearly uniform lattice configuration becomes unstable, yielding
a redistribution of energy. In an early stage of the dynamics, we estimate
the degree of energy exchange enabling the coupled system to form strongly
localized modes which eventually grow into a critical nucleus. Upon passing
this transition state, the nonlinear chain performs a collective, determinis-
tic escape. We analyze the associated nonlinear dynamics in phase space
and relate the escape to diffusion in a separatrix layer.

PACS numbers: 05.40.–a, 05.45.–a, 63.20.Ry

1. Introduction

Ever since the benchmark work by Kramers [1] (for a comprehensive re-
view see in Ref. [2]) there is a continued and growing interest in the dynamics
of escape processes of single particles and of coupled degrees of freedom out
of metastable states. Escape is realized by the passage of the considered ob-
jects over an energetic barrier which separates the local potential minimum
from a neighboring attracting domain.
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There is implied that the system is in contact with an external heat
bath serving as a permanent source of energy, causing dissipation and local
energy fluctuations which successfully enable the escapes. Many general-
izations of Kramers escape theory in over- and underdamped versions have
been widely exploited [2]. Nowadays, this approach is commonly utilized in
biophysical contexts and for a great many applications occurring in physics
and chemistry [3–14].

The noise-free microcanonical situation has been studied less intensely.
Then, the system cannot feed on an external energy source but rather a fixed
amount of energy has to suffice to perform a barrier crossing.

Such deterministic escape process of an one-dimensional coupled oscil-
lator chain has been presented as robust — and purely self-organized —
barrier crossing mechanism [15–17]. The absolutely necessary ingredients
in the physics of these deterministic barrier crossings are nonlinear poten-
tials wherein the chain moves and the discreteness of the chain units. Both
avert the chain to relax to states with equipartition of energy among its
constituents. In contrast they allow localization of a sufficient amount of
energy on a few oscillators forming a critical state.

An escape is related with a crossing of a saddle point in the configuration
space, corresponding to bottlenecks [2]. We shall assign a critical energy to
this transition state Ecrit which has to be concentrated at the critical mode.
It was shown [15–17] that the latter can be reached in the microcanonical sit-
uation spontaneously. In particular, it was found that intrinsic nonlinear ef-
fects on a long discrete chain of N units induce a transition over an energetic
barrier by enhancing one, or several localized breather states [18–26]. With
this mechanism an initially almost uniformly distributed energy can become
dynamically concentrated by internal redistribution without the need of an
assistance of energy supply of a thermal bath.

The present work aims to gain further insight into the self-organized
deterministic escape processes presented in [15–17]. In the next section we
introduce the model of the coupled oscillator chain. We focus our interest on
low-energy modes corresponding to nearly equilibrium states of the lattice
chain. The properties of localization induced by the dynamical formation of
breather arrays are explored in Sec. 3. Finally in Sec. 4 the escape process
is characterized as diffusion in an associated stochastic separatrix layer in
phase space.

2. Coupled oscillator chain model

We study a one-dimensional lattice of coupled nonlinear oscillators. The
coordinate q of each individual oscillator evolves in a cubic single well po-
tential of the form

U(q) =
ω2

0

2
q2 −

a

3
q3 . (1)
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This potential possesses a metastable equilibrium at qmin = 0 corresponding
to the rest energy Emin = 0 and the maximum is located at qmax = ω2

0/a with
energy Emax ≡ ∆E = ω6

0/(6a
2). The Hamiltonian of the one-dimensional

coupled nonlinear oscillator chain is given by

H =

N
∑

n=1

{

p2
n

2
+ U(qn)

}

+
κ

2

N
∑

n=1

[qn+1 − qn]2 . (2)

The coordinate qn quantifies the displacement of the n-th oscillator in the
local potential U(qn) (see Fig. 1) and pn denotes the corresponding canon-
ically conjugate momentum. The oscillators, also referred to as units, are
coupled linearly to their neighbors with interaction strength κ.

Fig. 1. Potential barrier with a chain positioned close to the bottom. The parameter

values are a = 1, ω2

0
= 2, and N = 100.

The equations of motion derived from the Hamiltonian given in Eq. (2)
read

q̈n + ω2
0qn − aq2

n − κ [qn+1 + qn−1 − 2qn] = 0 . (3)

Periodic boundary conditions according to qN+1 = q1 are employed. The
total energy is conserved, i.e., Etotal = const. Notice, that the motion
proceeds perpendicular to the axis of the one-dimensional chain and thus
the appearance of a Goldstone mode is excluded.

3. Energy sharing and formation of arrays of breathers

In order to enhance the energy localization in the dynamics (3) with the
potential (1) we propose the following scenario: on the average, an amount
of energy E0 = Etotal/N is applied per unit which allows the activation of
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nonlinear, cooperative excitations of the chain. Thus, the chain possesses
a total energy Etotal =

∑

N

n=1 En = NE0. For an escape to take place we
must require that Etotal > Ecrit > ∆E. These inequalities convey the fact
that more than just one unit governs the escape mechanism. The initial
energy E0 is supplied as follows: (i) First, the whole chain is placed at a
fixed position qn(0) = q0 ,∀n , near the bottom of the potential well. (ii)
Then, the position of all units are iso-energetically randomized while keeping
the total energy a constant — i.e., Etotal = NE0 = const.

The random position values are uniformly distributed in an interval
|qn(0) − q0| 6 ∆q. The initial momenta are zero, i.e., pn(0) = 0. The
mean values of q0 are taken in such a way that the average excitation energy
of a single oscillator, E0, is small compared to the depth, ∆E, of the po-
tential well. Due to the choice of sufficiently small detunings ∆q the initial
lattice state, qn(0) = q0 + ∆qn, is close to an almost homogeneous state
and yet such disturbed that there result very small — but non-vanishing —
initial interaction terms. More precisely, Eq. (4) determines the energy of
a particle

En =
p2

n

2
+ U(qn) +

κ

4

[

(qn+1 − qn)2 + (qn−1 − qn)2
]

. (4)

The last term in Eq. (4), representing the interaction energy of an individual
particle, is typically of the order of 10−6 × E0. Thus an energy exchange
between the coupled units is entailed. The initial energy per unit obeys
E0 ≪ ∆E, but is still sufficiently large to initiate the excitation of nonlinear
modes.

In this realm the formation of localized excitations can be explained by
modulational instability [27–30]. This mechanism initiates an instability of
a plane wave when small perturbations of non-vanishing wavenumbers are
imposed. The instability — giving rise to an exponential growth of the per-
turbation — destroys the initial wave at a critical wavenumber. Eventually
a pattern of localized humps gets formed, virtually with equal distance be-
tween them distributed on the chain [15–17]. A detailed study of the param-
eter’s influences on the creation of the localized humps and in consequence
on the escape process can be found in [17].

Finally we comment that in cases that the energy is supplied solely
through the momenta, the energy localization scenario persists.

Regarding the initiation of the energy exchange we note that for small-
amplitude solutions, q0 ≃ qmin, the anharmonic term in Eq. (2) is negligible.
In an early stage of the dynamics the degree of energy exchange in depen-
dence of the degree of detuning ∆q can be estimated as follows:
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Passing to action-angle variables

pn =
√

2ω0Jn cos θn , qn =

√

2Jn

ω0

sin θn , (5)

the Hamiltonian (2) is expressed as

H =

N
∑

n=1

ω0Jn +
κ

2

N
∑

n=1

[

√

2Jn+1

ω0

sin θn+1 −

√

2Jn

ω0

sin θn

]2

. (6)

The evolution of the actions is determined by

J̇n = −
∂H

∂θn

= κ
2

ω0

√

Jn cos θn

[

√

Jn+1 sin θn+1

+
√

Jn−1 sin θn−1 − 2
√

Jn sin θn

]

. (7)

Taking into account that for sufficiently small coupling κ action variables
evolve much slower than angle variables [31] the evolution of the phase vari-
ables can be expressed as θn(t) = ω0t+θ0

n. With respect to our chosen initial
conditions we set θ0

n = π/2. The change in action during a time interval ∆T
is given by

δJn = κ

∆T
∫

0

dt
2

ω0

√

Jn cos(ω0t + π/2)

×
[

√

Jn+1 +
√

Jn−1 − 2
√

Jn

]

sin(ω0t + π/2)

= −
κ

ω2
0

sin2(ω0∆T )
√

Jn

[

√

Jn+1 +
√

Jn−1 − 2
√

Jn

]

. (8)

Since the initial values of the coordinates are randomly distributed according
to |qn(0) − q0| 6 ∆q, the initial actions are correspondingly distributed as
|Jn(0) − J0| 6 ∆J . We get the following estimate for the change in action
during the interval ∆T :

|δJn| 6 2
κ

ω2
0

sin2(ω0∆T )
√

J0 + ∆J
∣

∣

∣

√

J0 + ∆J −
√

J0 − ∆J
∣

∣

∣

= 2
κ

ω2
0

sin2(ω0∆T )J0

√

1 + ∆J/J0

∣

∣

∣

√

1 + ∆J/J0 −
√

1 − ∆J/J0

∣

∣

∣

≅ 2
κ

ω2
0

sin2(ω0∆T )J0

(

1+
1

2
∆J/J0

)
∣

∣

∣

∣

(

1+
1

2
∆J/J0

)

−

(

1−
1

2
∆J/J0

)
∣

∣

∣

∣

= 2
κ

ω2
0

sin2(ω0∆T )∆J+O(∆J2) . (9)
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The actions stay close to their initial values if

〈|δJ |〉

〈J〉
≪ 1 , (10)

where 〈 〉 denotes the spatial summation. We get

〈J〉 =

N
∑

n=1

Jn >

N
∑

n=1

(J0 − ∆J) = N(J0 − ∆J) , (11)

and

〈|δJ |〉 =

N
∑

n=1

|δJn| = 2N
κ

ω2
0

sin2(ω0∆T )∆J , (12)

so that we finally obtain

〈|δJ |〉

〈J〉
6 2

κ

ω2
0

sin2(ω0∆T )∆J/(J0 − ∆J)

= 2
κ

ω2
0

sin2(ω0∆T )∆J/J0 + O(∆J2) . (13)

From this expression we infer that the rate of energy exchange vanishes for
∆J = 0, and in reverse, increases with enlarging ∆J expediting the energy
exchange process.

To investigate the formation of intrinsically localized modes in our dis-
crete system, the set of coupled Eqs. (3) has been numerically integrated
with a fourth-order symplectic integrator scheme [32]. The accuracy of the
calculation was checked by monitoring the conservation of the total energy
with precision of at least |(E(t) − E(0))/E(0)| = 10−9.

In agreement with our results above, we observe that starting from
an early homogeneous state with an approximate equipartition of energy
among all units the attainment of an array of breathers proceeds the faster
the larger the width ∆J respectively ∆q . More precisely, due to the emer-
gence of a modulational instability a pattern evolves in the course of time (of
the order of t ∼ 103) where for some lattice sites the amplitudes grow con-
siderably remaining small in the adjacent regions. This feature is shown in
Fig. 2 depicting the spatio-temporal evolution of the energy density, cf. (4).

Upon moving, these breathers tend to collide inelastically with others.
In fact, various breathers merge to form larger amplitude breathers, proceed-
ing preferably such that the larger amplitude breathers grow on the expense
of the smaller ones. As a result, a certain amount of the total energy becomes
strongly concentrated within confined regions of the chain. This localization
scenario is characteristic for nonlinear lattice systems [33–41].
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Fig. 2. (Color online) Spatio-temporal evolution of the energy density En(t). The

initial average energy per oscillator is only E0/∆E = 0.028. The parameter values

are a = 1, ω2

0
= 2, κ = 0.2, and N = 100.

4. Escape as the result of diffusion in a separatrix layer

In the last section we found that arrays of breathers form on the lattice.
At least one of the breathers can be very strongly localized on segments
of the lattice (single-site breathers) and the associated maximal amplitudes
grow to the proximity of the barrier level. Moreover, in [15–17] it was shown
that such a localized state might adopt the hairpin shape of the critical
localized mode and if the involved amplitudes become overcritical escape is
realized. However, for this to happen at first one unit has to absorb sufficient
energy to completely surmount the barrier.

The escape process is based on energy redistribution produced by chaotic
motion in the vicinity of a separatrix. To gain insight into the related energy
diffusion process, we regard a segment of the lattice of odd numbers of
sites Ns that sustains a single-site breather as decoupled from the rest of
the lattice. The dynamics on the segment can be approximated by the
motion of one of the oscillators with large amplitude near the separatrix.
This oscillator is supposed to be situated at the central site of the segment
denoted by nc. The remaining (Ns − 1)/2 units on either side of it perform
oscillations near the bottom of the potential well, representing thus phonons.
The corresponding Hamiltonian is expressed as

H = H0 + H1 , (14)

with

H0 =
p2

nc

2
+

ω2
0

2
q2
nc

−
a

3
q3
nc

, (15)
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H1 =

Ns
∑

n=1

n6=nc

(

p2
n

2
+

ω2
0

2
q2
n

)

+
κ

2

Ns
∑

n=1

[qn+1 − qn]2 . (16)

Here we assume sufficiently small κ so that H1 acts as a small nonintegrable
perturbation on the integrable motion associated with H0.

That the central oscillator can overcome the potential barrier is con-
nected with motion near a separatrix that is attributed to the hyperbolic
equilibrium point in the corresponding pnc

–qnc
-plane. With the shift q →

q − qmax the hyperbolic point is located at the phase plane origin (p, q) =
(0, 0). For an isolated nonlinear oscillator the expression for the coordinate
of the unperturbed separatrix solution is found as

qs(t) = −
3

2
qmax sech2 [ω0(t − t0)/2] , −

3

2
qmax ≤ q ≤ 0 , (17)

qs(t) =
3

2
qmax cosech2 [ω0(t − t0)/2] , q > 0 , (18)

where t0 determines the (initial) position on the separatrix. Expressions
(17) and (18) are referred to as the left and right branch of the separa-
trix, respectively. The perturbation terms derived from H1 cause the for-
mation of a stochastic layer around the separatrix [31, 42]. The diffusive
pnc

− qnc
−motion within the stochastic separatrix layer is driven by the

neighboring small-amplitude oscillators. The total time rate of change of
the energy H0 ≡ Enc

is determined by

dH0

dt
= {H0,H} +

∂H0

∂t
= −pnc

κ [qnc+1 + qnc−1 − 2qnc
] . (19)

The change during one ‘period’ of the separatrix motion is

∆H0 =

∞
∫

−∞

dt
dH0

dt
= −κ

∞
∫

−∞

dt q̇s

nc

[

qnc+1 + qnc−1 − 2qs

nc

]

. (20)

For sufficiently small coupling κ we can express the evolution of the small-
amplitude oscillators at sites nc ± 1 as

qnc±1(t) = q0
nc±1 sin(ω0t + θ0

nc±1) , (21)

with q0
nc±1 and θ0

nc±1 being the frozen amplitude and initial phase, respec-
tively. Substituting (17) and (21) into (20), using the addition theorems
for trigonometric functions, integrating once by parts and omitting the odd
contributions to the integrand we obtain for the energy exchange

∆H0 = 3qmaxκ
∑

±

qnc±1 cos(ω0t0 + θ0
nc±1)

∞
∫

−∞

dt sech2(t) cos(2t) . (22)
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Evaluating the integral one gets finally

∆H0 =
6π

sinh(π)
qmaxκ

∑

±

q0
nc±1 cos(ω0t0 + θ0

nc±1) . (23)

Notice that the expression (23) relates the local properties of the dy-
namics near the bottom (phonons) and barrier (breather amplitude) of the
potential. We infer from (23) that the more the position of the saddle point
is shifted to the right — i.e., the larger qmax, or in other words the ratio
between the harmonicity and the anharmonicity strength ω2

0/a, the higher
is the energy exchange rate. In addition, the energy exchange rate (and the
width of the stochastic layer) is proportional to the coupling strength and
the phonon amplitudes. More importantly, it might be critically affected by
the phase relation between the phonons at sites nc +1 and nc−1. Assuming
symmetric patterns with q0

nc+1 = q0
nc−1, we conclude that for overall in-

phase motion θ0
nc±1 = θ0 of the oscillators the stochastic separatrix layer is

of maximal width. On the other hand, phase mismatches reduce the energy
exchange rate (and the width of the stochastic separatrix layer). Therefore
the region of unbounded motion extending along the right branch of the un-
stable manifold becomes only accessible to overcritically large breathing am-
plitudes that are very close to the separatrix level and otherwise overcoming
the barrier is less likely. Finally, for out-of-phase motion θ0

nc+1 = θ0
nc−1 ± π

the layer even vanishes.
The diffusion of the large amplitude oscillator in the separatrix layer

driven by its adjacent oscillators is illustrated in Fig. 3. Prior to escape
the corresponding phase curve (labeled nc) meanders in the vicinity of the
separatrix around which there is a stochastic layer (not shown in the figure).
Once the trajectory has become captured by the right branch of the unstable
manifold of the hyperbolic equilibrium point the motion proceeds afterwards
in the direction of monotonically growing amplitude. From the moment the
escaping unit has traveled beyond the hyperbolic point the phase curves of
its neighbors (labeled nc ± 1) are superimposed on the plot. The adjacent
units get dragged from the inside of the separatrix loop in the direction of
the right branch of the unstable manifold. Consequently an escape of the
entire chain is initiated.

Finally, we remark that the currently discussed escape process exhibits
indeed some similarities with the corresponding process in the Kramers prob-
lem [1, 2] despite the presence of damping in the corresponding Langevin
equation. In both cases, a unit, in order to escape from a potential well, has
to overcome a barrier. Crucially, in contrast to the Kramers problem, the
conservative — by far faster — escape process is self-induced by the internal
irregular coupled dynamics and no other source like a heat bath is needed.
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Fig. 3. Escape dynamics in the p–q-phase plane. Assignment of the line types

as follows: solid gray line, unperturbed separatrix; solid black line, unit n = nc;

dashed line, unit n = nc − 1; and dashed dotted line, unit n = nc + 1. Average

initial energy per unit E0/∆E = 0.156. The parameter values are a = 1, ω2

0
= 2,

κ = 0.2, and N = 100. The coordinates are chosen such that the position of the

saddle point comes to lie at the origin of the phase plane.

5. Summary

In this paper we have considered the conservative and deterministic dy-
namics of a one-dimensional chain consisting of linearly coupled anharmonic
oscillators. Each oscillator evolves in a single well potential. Initially the
system is in a metastable state for which all units are trapped near the bot-
tom of the potential. Then overcoming of the barrier of the whole chain at
once is prevented because of the too high net barrier height. In [15–17] it
has been demonstrated, that the spontaneous formation of localized modes
serves to enrich energetically a segment on the chain such advantageously
that it adopts the transition state given in the form of a hairpin. Within
this work we estimated the degree of energy exchange in an early stage of
the dynamics. It turns out that the rate of energy exchange is crucially af-
fected by the degree of detuning of the initial virtually homogeneous lattice
state. Related to barrier crossing we presented the escape of the chain as
the outcome of the diffusion process of a strongly localized breather am-
plitude in a separatrix layer. In particular it is shown that proper phase
relations between the oscillators of the “phonon bath”, driving the diffusion,
play a crucial role for enhanced escape.

This research has been supported by the SFB-555 (L.S.-G, S.F.) and by
the Volkswagen Foundation Projects No. I/80424 (P.H.) and No. I/80425
(L.S.-G).
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