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The influence of concentrations of reagents on the rate of reaction:
A + B → C + B has been investigated by performing large scale computer
simulations on systems of spherically symmetric molecules. The problem
has been analyzed both for deterministic systems (gas, liquid) and for the
stochastic ones where the particles are immersed in the Brownian medium.
Significant deviations from the law of mass action have been found. The
deviations result not only from fluctuations in concentrations of reagents.
For the Brownian systems the simulations have given a positive value of the
excess in the rate coefficient even for very long times, which contradicts with
general expectations. The reason for the positive excess values is repulsion
between B particles (the so called excluded volume effect). The effect is
strongly influenced by the shape of the probability density function for
B–B pairs. As a result, for the liquids the effect is weaker: for short
times the excess in rate coefficient is positive but for long times it becomes
negative.

PACS numbers: 82.20.–w, 82.20.Wt

1. Introduction

Recent computer investigations on the influence of the concentration of
B (called quencher or trap) on the rate of the reaction: A + B → C + B
are presented and discussed. The reaction is an example of the so-called
diffusion controlled reaction. First theory of the kinetics of the problem
was proposed over 90 years ago by Smoluchowski [1]. The Smoluchowski
approach [1, 2] agrees with the law of mass action, which assumes that the
influence of quencher concentration, c, on the reaction rate coefficient, k(t, c),
can be neglected. The assumption is a rough approximation. An extreme
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example is the reaction: A + B → PP for which, according to theoreti-
cal predictions [3–6], the fluctuations and many particle effects may dra-
matically change the asymptotic behavior as compared to that predicted
by the Smoluchowski approach. The Smoluchowski model is very simpli-
fied. Modern theories attempt to treat the problem of reaction kinetics
deeper [7–11]. The theoretical works on the quencher concentration depen-
dence effect (QCDE) for the case of reaction studied here can be also found
in the literature [12–15].

Till to 2005 the problem of QCDE has drawn a very little attention
of computer physics. Zhou and Szabo [16] simulated the bimolecular irre-
versible reaction for different c but the effect was treated only in a very
qualitative way. The interactions between reactants moving in Brownian
medium were also taken into account in the simulation of Senapati et al.

[17]. First attempt to estimate the excess in k(t, c) was done in 2005 [18].
Obtaining quantitative results appeared to be not easy and the simulations,
performed using the standard molecular dynamics method, showed only that
for the investigated liquids QCDE decreased the reaction rate in a long time
limit. Further simulations have been performed by applying the method of
prerecorded trajectory of Gorecki [19–21], which enabled to consider chemi-
cal systems corresponded to 107–109 particles. Many interesting results have
been obtained and analyzed [21–24]. A surprising result was that the excess
in the rate coefficient appeared to be positive for the whole simulation times
of the Brownian systems [22] as well as for quite long times for the deter-
ministic liquids [21,22]. Very recent simulations [25] showed that the reason
of the positive values are the interactions between B molecules.

In this paper the most important results of the simulations on QCDE are
presented and discussed. Up to now, the simulation have been performed
only for soft sphere systems at very selected conditions. Here, the problem
is generalized by performing series of additional simulations for different
potentials and thermodynamic conditions. The results are discussed and
compared to the model from the previous paper [25].

2. The model and some useful formulas

The following irreversible reaction:

A + B → C + B (2.1)

for spherical molecules A, B, and C in three-dimensional bulk liquid is
considered. It is assumed that the molecules are mechanically identical and
differ only by the chemical properties. The reaction (2.1) is instantaneous
and the reaction probability, P (r, t), does not depend on position of other
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particles. Thus:

P (r, t) = Θ(a − r) , (2.2)

where r is the distance between A and B, a is the reaction radius, and Θ(x)
is the Heaviside function.

The quantity obtained directly from simulations is the number of A par-
ticles as a function of time, NA(t), that gives the survival probability for A:
S(t, c) = NA(t)/NA(0) related to the rate coefficient of the reaction by:

S(t, c) = exp(−c

t
∫

0

k(t′, c)dt′) . (2.3)

The excess in the survival probability due to a finite quencher concentration
can be defined as:

∆S = S(t, c) − S0(t, c) , (2.4)

where:

S0(t, c) = lim
c′→0

S(t, c′)c/c′ (2.5)

is the survival probability for an idealized reference system in which quencher
molecules are statistically fully independent.

Simulations showed [21,22] that both for liquids and Brownian systems
the following relation holds with surprisingly high accuracy for a quite large
range of c:

S(t, c) = S0(t, c)
(

1 − Fc(t)c
2
)

, (2.6)

where Fc(t) is independent of c. According to (2.3)−(2.6), Fc(t) is strictly
correlated with the excess in k(t, c):

∆k ≡ k(t, c) − k(t, c → 0) = c
∂Fc

∂t

(

1 − Fc(t)c
2
)

−1
. (2.7)

If Fc(t) is independent of c, it can be evaluated from the following formula:

Fc(t) =
(1 − R)

c(c − Rc0)
+ O

(

Fc(t)
2c2

0

)

, (2.8)

where

R =
S(t, c)

S(t, c0)c/c0
.

Relation (2.8) is more useful than (2.6) and (2.5) since the condition c0 → 0
is not necessary. Following the derivation of (2.8) in Ref. [22] it can be seen
that if c0 is sufficiently low, the formula (2.8) can be applied with reasonably
accuracy even if Fc(t) depends on c. Fc(t) presented in this paper are always
evaluated from (2.8).
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3. The setup for computer experiments

The computer simulations were performed using molecular dynamics
method [26] on the systems of the total number of particles, N , enclosed
in a cubic box of the volume, V . The periodic boundary conditions were ap-
plied [26]. The A, B, and C particles differed only by the chemical identify
parameters and, except for the additional simulations (Section 4.3), inter-
acted with the soft sphere potential of the following form:

u(r) =

{

ε[exp(α(1 − r/σ)) − 1/3] if r ≤ σ
ε(α3/12)(rc − r/σ)3θ(rc − r/σ) if r > σ ,

(3.1)

where α = 25.0, ε and σ are the energy and size parameters, and rc = 1+2/α.
All numerical values presented further are expressed in the reduced units
(i.e. for σ = ε = m = 1.0 where m is the particle mass).

3.1. Classical simulations

Two kinds of systems were simulated: the deterministic systems (the
liquid at the number density ̺ = N/V = 0.72 and 1.04, the gas at ̺ =
0.0288) and the Brownian ones (̺ = 0.0072 − 0.0288). The temperature,
if is not explicitly given, is always kBT = 1.25. The deterministic systems
were simulated applying the molecular dynamics NVE [26] method in which
the Newton equations of motion were solved by using the Verlet “leapfrog”
algorithm [26,27]. In the Brownian systems the time evolution of the particle
coordinates (ri, vi) were obtained from the Verlet scheme mixed with the
Euler–Maruyama approximation for the stochastic term [28]. Which gives:

vi

(

t +
δt

2

)

= vi

(

t −
δt

2

)

−
δt

m





N
∑

j=1

∂u

∂rij
+

kBT

DB
vi(t)





+~ξi
kBT

m

√

2δt

DB
, (3.2)

ri(t + δt) = ri(t) + vi

(

t +
δt

2

)

δt , (3.3)

where: kB is the Boltzmann constant, DB is the diffusion constant imposed

by the Brownian medium, ~ξ is a three dimensional random variable normally
distributed, and

vi(t) =

(

vi

(

t −
δt

2

)

+ vi

(

t +
δt

2

))

/

2 .

The time step δt was always equal to 0.01σ(m/ε)1/2.
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During the considered chemical process the system was always in the
mechanical equilibrium state. Initially, at t = 0, the B components were
assigned to randomly selected particles. All the remaining particles were
marked as A (C was absent). If at t = 0 the condition (2.2) was fulfilled,
A was converted to C immediately and was not taken into account in the
evaluation of S(t, c). For t > 0, the reaction (2.1) was realized by relabeling
A to C according to (2.2) and the condition was checked once per one time
step. Usually the reaction radius a = σ. Some simulations for a = 1.08σ
have been also performed.

A crucial problem of the simulations was the accuracy of measurements
[17]. The efficiency of computations has been significantly increased by
applying the method of prerecorded trajectory [19–21], which benefits from
the fact that the reaction (2.1) does not disturb physical evolution of the
system. The method considers a chemical system build up of L3 sub-systems
obtained by translating positions of the particles of the basic N particle
system L times in each of x, y, z directions. The time evolution is realized
by repeating the evolution of the basic system in each of the sub-systems.
The reaction (2.1) occurs in the whole system treating all the particles and
their images (obtained by the translation) as real reagents. As a result, from
the point of view of the chemical process, the system evolves as composed of
N ×L3 particles, which increases the accuracy of the “measurements” many
times when compared to that for the basic system. Another advantage of the
method is that the increase in the number of reagents significantly decreases
the scale of a possible size effect (i.e. the inconsistency between the results
for different number of reagents). More information on the optimization
and simulation details can be found in Refs. [21, 22, 24]. The simulations
described above are called further the classical simulations.

3.2. The method of parallel systems

One of the aims of the work was to determine the contributions to the
excess values coming from interactions between the particles of different
kinds. The classical simulations are not suitable for this purpose because
the thermodynamic conditions change with changing c if A–B or/and B–B
interactions are cancelled, which makes determination of the excess value
impossible. New method, called the method of “parallel systems” (PS) [25],
has been designed to solve the problem. The method considers the system
composed of two subsystems in which A and B do not interact physically
(i.e. for AB pairs, u(r) ≡ 0) but they still react chemically according to (2.1)
and (2.2). A (and C) particles form the subsystem which is physically iden-
tical to the corresponding classical system. It remains physically unchanged
even if one changes the number of B or even, going further, cancels B–B
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interactions. This enables to determine excess values. B particles belong
to the second subsystem with ̺ and T equal to that of the corresponding
classical system. Most of B is assigned to be non-active (i.e. do not react
with A) to make c identical to that of the classical system. Two cases are
considered: (1) B–B interactions are the same as for the corresponding clas-
sical system. (2) B–B interactions are cancelled and the time evolution of
B particles is governed by (3.2) for u(r) ≡ 0.

4. Results and discussion

4.1. General results

Figs. 1 and 2 show the time evolutions of Fc(t) for different concentrations
of B for the liquid (Fig. 1) and for the Brownian system (Fig. 2). Considering
relation (2.7), the figures illustrate very surprising result [21, 22]: For the
Brownian system, the excess in k(t, c) is positive and, except for very short
times, constant. For the liquid, the excess is positive at short times and
becomes negative when t is large. The independency of Fc(t) from c, which
is obvious from Figs. 1 and 2, is discussed in Section 4.4.

t0 50 100 150

Fc(t)

-60

-40

-20

0

20

Fig. 1. Fc(t) for the reaction in the liquid: ̺ = 0.72, a = σ. The solid line:

c = 0.0036. The dotted line: c = 0.0072. The short dashed line: c = 0.0144. The

long dashed line: c = 0.0288. c0 = 0.00045.

Positive deviations are also seen in the excess values of the relative spatial
correlations between A and B which are strongly correlated with ∆k [22].
In this case the excess values have been defined as:

∆σAB(l, c, t) = σAB(l, c, t) − σAB(l, c0, t) , (4.1)
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where:

σAB(l, c, t) =
〈nA(t)nB(t)〉l

〈nA(t)〉l〈nB(t)〉l
− 1

〈nA(t)〉X is current number of the X particles enclosed in an imaginary
cell of the box-length l, 〈〉l is the spatial average over the cell, and c0 is
sufficiently low to make the definition (4.1) reasonable.

t0 100 200 300 400 500 600
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Fig. 2. Fc(t) for the Brownian system: ̺ = 0.0288, a = σ. The solid line: c =

0.0018. The dotted line: c = 0.0036. The short dashed line: c = 0.0072. The long

dashed line: c = 0.0144. c0 = 0.00045.
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Fig. 3. Excess in σAB(l, c, t) for the liquid (as in Fig. 1; the triangles up) and the

Brownian system (as in Fig. 2; the triangles down). The filled symbols: c = 0.0072.

The empty symbols: c = 0.0144.l ∼= 4.93.
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The values of ∆σAB(l, c, t) as a function of t for the Brownian system and
for the deterministic liquid are presented in Fig. 3. The correlation between
∂Fc/∂t (∼= ∆k/c) from Figs. 1, 2 and ∆σAB(l, c, t)/c from Fig. 3 is evident.
The only small inconsistency is that the time when ∆σAB(l, c, t) = 0 for the
liquid does not match exactly with that of the maximum of Fc(t) in Fig. 1.

4.2. The reason for the positive excess values

The results form Figs. 1–3 are quite strange since the fluctuations in
concentration are generally expected to make both ∆k and ∆σAB(l, c, t)
negative. The results presented in Figs. 4 and 5 clearly show that the reason
of the positive excesses in the rate coefficient are B–B interactions. The
figures compare Fc(t) from classical simulations (as in Figs. 1 and 2) with
that from the PS method (both for B–B interactions active and cancelled).
Both in Fig. 4 and in Fig. 5 the B–B interactions strongly influence the
excess values. If they are absent (i.e. B particles move in space in a fully
independent way) both Fc(t) and ∆k (from (2.7)) are significantly negative
for all the range of time (the dash-dotted lines in Figs. 4 and 5). The influ-
ence of A–B interactions is very weak. For the Brownian system (Fig. 5),
it is evident. For the liquid (Fig. 4), the cancellation of A–B interactions
only shifts Fc(t). Except for very short times, ∂Fc/∂t for B–B interactions
active (the dashed line in Fig. 4) remains very close to that obtained from
the classical simulations. The shift is probably caused by a high difference
in initial distribution of A around B between the systems with A–B inter-
actions cancelled and active. For the Brownian system ̺ = 0.0288 and the
differences is much lower.

t
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Fc(t)

-600

-500

-400

-300

-200

-100

0

Fig. 4. Fc(t) for the liquid: ̺ = 0.72, a = 1.08σ. The solid lines: the classical

simulations (c = 0.0072 and 0.0144). The dashed lines: the PS simulations for

B–B interactions active (c = 0.0072 and 0.0144). The dash-dotted lines: the PS

simulations for B–B interactions cancelled (c = 0.0036 and 0.0144). c0 = 0.0009.
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t
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Fig. 5. Fc(t) for the Brownian system: ̺ = 0.0288, a = 1.08σ. The solid lines:

the classical simulations (c = 0.00135 and 0.0036). The dashed lines: the PS

simulations for B–B interactions active (c = 0.0018 and 0.0036). The dash-dotted

lines: the PS simulations for B–B interactions cancelled (c = 0.0018 and 0.0072).

c0 = 0.000225.

t
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Fig. 6. Excess in σAB(l, c, t) for the liquid: ̺ = 0.72, a = 1.08σ, c = 0.0144.

l ∼= 4.93. The empty circles –– the PS simulations for B–B interactions active.

The filled circles: the PS simulations for B–B interactions cancelled.

B–B interactions significantly influence also fluctuations in concentra-
tions. This is evident from Fig. 6 that compare ∆σAB(l, c, t) for the liquid
in the absence of A–B interactions for B–B interactions active and non-
active. Cancellation of B–B interactions makes ∆σAB(l, c, t) negative for
almost all t (the filled circles in Fig. 6). The influence of A–B interactions is
much weaker. This can be seen comparing Fig. 6 to Fig. 3. If B–B interac-
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tions are active (the empty circles in Fig. 6), the dependence of ∆σAB(l, c, t)
on t is qualitatively very close to the corresponding curves in Fig. 3 (the
triangles up).

The influence of B–B interactions on ∆σAB(l, c, t) and on ∆k has been
discussed in Ref. [25]. The main conclusion is that the effect is a result of
the excluded volume effect: because of the B–B repulsion the B particles
are distributed more and more regularly with increasing c. This results in
positive contributions to ∆σAB(l, c, t) as well as to ∆k. The increase in
∆k can be very simply interpreted physically: the more regular distribu-
tion of B the more effective the reaction is. But the effect is not only a
result of simple excluded volume effect. The details of the liquid structure,
here the shape of the conditional probability density for B–B pair gBB(r),
have significant influence on the strength of the effect. This is seen when
considering the model from Ref. [25]. The model bases on the superposition
approximation and is in analogy to that of Jung and Lee [29] for the reaction
A + B → PP . It predicts that the time evolution of the conditional proba-
bility density for A–B pair gAB(r, t) fulfills, under some simplifications, the
following equation:

∂gAB

∂t
= DΣ∇

2gAB(r, t) + 4a2c
√

πkBT/mR(a, t)gAB(r, t)gAB(a, t) , (4.2)

where: r > a, ∇2 is the Laplacian, DΣ is the sum of the diffusion constants
for A and B,

R(a, r) = 1 −
1

4πa2

∫

gBB(|r′ − r|)δ(r′ − a)dr
′ (4.3)

and the radiation boundary condition as in the work of Zhou and Szabo [16]
is applied.

The model is very simplified, but it predicts an important property of
the effect discussed here. According to (4.2), the B–B interactions influence
gAB(r, t) by deviating R(a, r) from 0. As a consequence, according to (4.3),
the presence of the region of strong repulsion and low probability density
for r < σ can be at least partly compensated by the increase in the mean
probability for r > σ. Usually a is very close to σ. Therefore, for dense
fluids, first of all because of a sharp maximum in gBB(r) for r just above σ,
the effect should be significantly weaker than for the Brownian systems, for
which gBB(r) can be roughly approximated by θ(r − σ). In general, from
the stochastic point of view, the factor of interest is the probability density
averaged adequately over all the space but not only that for r < a. This
is in full agreement with the simulations: the difference between ∂Fc/∂t at
high t for B–B interactions active and cancelled is significantly higher for
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the Brownian system (Fig. 5) than for the liquid (Fig. 4). Since the effect is
not only a result of the excluded volume it is called further the generalized
excluded volume effect (GEVE).

4.3. Additional test

The potential (3.1) is purely repulsive. It is a priori possible that some of
the results presented above are only a consequence of this property. In order
to generalize the presented results, we have performed extra simulations for
two interparticle potentials with an attractive term:

u(r) =

{

exp(25(1 − r)) − 1.5/r6 if r ≤ rs

(∆r3(a1∆r2 + a2∆r + a3)θ(rc − r) if r > rs
, (4.4)

u(r) =

{

4[exp(18(1 − r)) − 1/r6] if r ≤ RS

(∆r3(b1∆r2 + b2∆r + b3)θ(rc − r) if r > rc
, (4.5)

where ∆r = r− rc and ai, bi were adjusted as to make the second derivative
of u(r) continues for all r. Two sets of cut-off parameters rs and rc were
used. The short range potential for rs = 1.4, rc = 1.65 and the long range
potential for rs = 1.9, rc = 2.25.

The simulations were performed for different thermodynamic conditions.
The conditions and simulation results are presented in Table I. The simula-
tion points S1 and S3 present the results from previous simulations [21,22].
The remaining points (S2 and S4-S10) have been obtained form the classical
NVE simulations for N×L3 = 216000×216 and a = σ. Minimum two values
of c have been considered for each point: c0 = 0.00125̺ and c = 0.01̺. The
resulted Fc(t) curves were always qualitatively identical to that from Fig. 1.
For S5 and S8, the simulations for two extra values of c (0.02̺ and 0.04̺)
have been performed and any dependence of Fc(t) on c has not been noticed.
The short range potentials were used, except for S5L and S8L for which the
long range potentials were applied. The value of diffusion constant, D, was
determined using the Einstein formula [26]. Table I gives also the parame-
ters of the Fc(t) curves: the value of Dt that Fc(t) = 0 (denoted as Dt[0])
and the maximum value of Fc(t) (denoted as Max(Fc)). The relative error
of these values should not exceed 0.1. The last column presents the excess
in the rate coefficient from the model ((4.2), (4.3)) at Dt = 10.0, ∆kmod,
obtained using the procedure described in Ref. [25].

The most important conclusion from the simulations is that the change
of u(r) as well as of the thermodynamic parameters did not influence, qual-
itatively, the properties of Fc(t). The values of Dt[0] and Max(Fc) from
Table I enables us also to derive some conclusions on the influence of the
potential shape and of the thermodynamic parameters on the “strength” of
GEVE. However, Dt[0] and Max(Fc) are a result of both GEVE and the
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TABLE I

u(r) ̺ kBT D Dt[0] Max(Fc) ∆kmod/c

S1 (3.1) 0.72 1.25 0.158 19.0 33. 0.55
S2 (3.1) 0.80 1.25 0.112 10.1 27. 0.38
S3 (3.1) 1.04 1.25 0.023 4.5 11. 0.06
S4 (3.1) 0.72 1.00 0.133 20.2 34. 0.50
S5 (4.4) 0.72 1.25 0.158 15.5 30. 0.50
S5L (4.4) 0.72 1.25 0.161 15.0 27. 0.51
S6 (4.4) 0.80 1.25 0.115 11.8 30. 0.37
S7 (4.4) 0.72 1.00 0.132 12.9 25. 0.45
S8 (4.5) 0.72 1.25 0.097 15.8 27. 0.32
S8L (4.5) 0.72 1.25 0.107 16.5 26. 0.33
S9 (4.5) 0.80 1.25 0.061 8.5 22. 0.20
S10 (4.5) 0.72 1.00 0.073 15.1 24. 0.20

fluctuations in concentration, but some approximate qualitative conclusions
are possible since the fluctuations “strength” should be less sensitive to the
changes in u(r) and the thermodynamic conditions than GEVE is. Table I
clearly shows that the strength of the effect mainly depends on the density
and decreases with increasing ̺ (S1-S3, S5-S6, S8-S9). The influence of the
temperature is much weaker. Considering the simulation errors, only for the
potential (4.4) some low decrease in both Dt[0] and Max(Fc) with decreas-
ing kBT is observed. This is in full agreement with the form of (4.3). An
increase in ̺ increases both the first maximum in gBB(r) and the values
of gBB(r) for r < a (here, a = σ), which results in a significant decrease
of |R(a, r)|. A decrease in kBT increases the first maximum but decreases
gBB(r) for r < a and the cumulative result is much lower. The influence
of the potential range (S5-S5L, S8-S8L) is completely negligible since the
changes in rs and rc have a very low influence on gAB(r). Table I shows
also a decrease in the strength of GEVE with changing u(r) from the purely
repulsive (3.1) to the attractive ones (4.4) and (4.5) (compare S1 to S5 and
S8). Taking in to account (4.3), this is in full agreement with our expec-
tations. It is also worthy to note, a strong qualitative correlation between
Dt[0] and ∆kmod for a given form of u(r) (it fails only when compared S10
to S8 and S9). The correlation suggests that the model (4.2) may be a good
first step for theoretical description for the process.

4.4. A comment on the independency of Fc(t) from c

Fc(t) from figures 1 and 2 is independent (to the accuracy of simulation
errors) of the concentration of B. The independency has been fully confirmed
by the simulations S5 and S8 presented in Section 4.3. Relation (2.6) is in
accordance, to O(c3), with the density expansion for the time dependence of
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S(t, c) of diffusing particles in the presence of randomly distributed diffusing
traps [30]. But the highest values of c considered here are not small (0.0288
for the liquid and 0.0144 for the Brownian system), which suggests that the
formula (2.8) is not only a simply expansion to O(c3).

The property does not hold for the gas. A possible reason is that for the
gas state the nature of the excess is more complex. In a general case one
can write:

1

c
∆k = JG + JU ,

where JG and JU are the contributions from the excesses in the conditional
probability density and in the excess in relative velocity of A towards B,
respectively. More information is given in Ref. [23] (in the relation (2.7) in
the cited paper the factor 1/c has been missed, by mistake). The simulations
presented there showed that, except for one case, both for the liquid and
for the Brownian systems JU was negligible. JU was noticeable (however
still less important than JG) only for the liquid at low density (where the
relaxation is not very fast) and a = σ. Contrary to the non-gas systems,
|JU | for the gas was not lower than |JG|. On the other hand, according to
Fig. 3 from Ref. [23], ∆σAB(l, c, t)/c for the gas behaves very similar to that
for the Brownian systems (upper curves in Fig. 3 presented here) and is also
independent of c. This suggests that, the independence of Fc(t) from c is
a property of JG. For the gas, ∂Fc/∂c is non-zero because of a high value
of JU .

5. Summary

Recent results of molecular dynamics simulations on the influence of the
quencher concentration on the rate of reaction (2.1) have been presented
and discussed. An important result was that ∆k appeared to be positive
for the whole simulation times of the Brownian systems [22] (Fig. 2) as
well as for quite long times for the deterministic liquids [21, 22] (Fig. 1).
The positive deviations were also noted in ∆σAB(l, c, t) [22] (Fig. 3), which
is strongly correlated with ∆k. The effect has been explained using the
method of parallel systems [25] that enabled to investigate the influence
of interactions between molecules of given kinds on the excess values. It
was shown that the positive excess values are a result of the interactions
between B molecules [25] (Figs. 4–6). An important factor of the effect is
the interparticle repulsion (the excluded volume effect), which results in the
positive contributions. However, the influence of the liquid structure can not
be neglected. For the liquid the increase in ∆k is significantly weaker than
for the Brownian systems (compare Fig. 4 to 5), which has been interpreted,
using the model (4.2), (4.3), as a consequence of the difference in the liquid
structures between the two systems.
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The problem of QCDE has been generalized by performing additional
simulations for different interparticle potentials and at different thermody-
namic conditions. The generalized excluded volume effect (GEVE) gives
a significant contribution to the excess values for different potentials ((3.1),
(4.4), (4.5)) at varying temperatures and densities (Table I). No qualitative
changes in Fc(t) is noted. The property of Fc(t) to be independent of c has
been fully confirmed also for the potentials (4.4) and (4.5). The strength
of GEVE significantly decreases with increasing ̺. The influence of another
factors is much weaker. This agrees with the form of (4.3). The values
of Dt[0] and Max(Fc) for a given u(r) are surprisingly good qualitatively
correlated with ∆kmod obtained from (4.2) and (4.3). This shows that the
model, in spite of its simplicity, brings us an important information about
the physics of the problem. This also confirms the validity of the consider-
ations about the role of the liquid structure for QCDE.
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