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We consider an A + B → 0 reaction in a flat subdiffusive medium in
contact with two well mixed reservoirs of particles of both types on the
sides. We show that the behaviour of the stationary concentration and re-
action intensity profiles in subdiffusion differs strikingly from that observed
in simple diffusion. The most marked differences correspond to accumu-
lation peaks and depletion zones in the concentration profile. The height
of these peaks as well as the height of the reaction zones exhibit a non-
monotonic behaviour with respect to the reactant’s concentrations at the
boundaries. These characteristics are due to an effectively nonlinear trans-
port under reaction which emerges from the non-Markovian property of the
subdiffusion process.

PACS numbers: 05.40.Fb, 82.33.Ln

1. Introduction

Many phenomena in systems out of equilibrium corresponding to spa-
tial dispersion and interaction of individuals can be modelled by reaction-
diffusion equations. Examples cover a wide range of disciplines, such as
trapping and annihilation of excitons and electron-hole recombination of
charge carriers in physics, predator-prey-relationships in ecology or reaction
of molecules in chemistry. In the case of normal diffusion, the corresponding
reaction-diffusion equations are obtained by adding a classical kinetic rate
term to the right hand side of a diffusion equation:

Ċj(r, t) = Dj∆Cj(r, t) ± κjC
n1

1 (r, t)Cn2

2 (r, t) ... CnN

N (r, t) , (1)
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where Dj is the diffusivity of component j, nj are the stoichiometry factors
and the κj denotes the reaction rate coefficient of of each of the reacting
components. These equations hold whenever there is a strong scale separa-
tion between the characteristic size of the inhomogeneities of the system and
the typical reaction scale. The stationary concentrations of particles in the
system constantly fed by reactants is given by the same equations (under
corresponding boundary conditions) with the left hand sides put to zero.

However, in many cases the diffusion process is anomalous [2], as recently
found e.g. for motion in bacterial cytoplasm [3] or in gels [4]. Whereas
in normal diffusion the mean square displacement is proportional to the
time t, anomalous diffusion exhibits a mean square displacement that goes as
〈

r2
〉

∝ tα, where α > 1 corresponds to the superdiffusive case and 0 < α < 1
to the subdiffusive case. In recent years, subdiffusion has been modelled
successfully within the framework of continuous time random walks (CTRW)
with a heavy-tailed waiting time density function of the form ψ(t) ∝ t−(1+α),
which yields a fractional diffusion equation instead of a Fickian one [5].

Although reaction-diffusion systems with anomalous transport have been
extensively studied, a full theory of reaction-subdiffusion is still missing.
Fractional reaction-diffusion equations of different types have been proposed
on a phenomenological basis [6–10]. Analogous to reaction-diffusion, a frac-
tional derivative was either posited in front of the spatial Laplacian or in
front of both the Laplacian and the reaction term of Eq. (1) [8]. The latter
variant holds for situations where the reaction on small scales is subdiffusion-
controlled so that particles are able to react only instantaneously at the be-
ginning (or end, respectively) of a waiting time period, as discussed in [9,10]
using a microscopic approach. However, it is not quite clear whether the
former proposal corresponds to any physical reaction-diffusion setting.

In this paper we adhere to the situation where the reaction on small scales
is diffusion controlled, corresponding e.g. to reaction-diffusion in porous me-
dia. From a mesoscopic point of view, non-Markovian transport is here
induced by trapping of the particles in cavities on all length scales. The
stagnant particles can still react and the reaction locally follows classical
kinetics. Using a CTRW-approach, Ref. [11] have shown for linear reaction
kinetics that reaction-subdiffusion equations in this case do not follow by
simply changing the normal diffusion operator for a fractional one, since the
reaction affects the transport term. Ref. [12] proposed a rather general ap-
proach to reaction-subdiffusion; its application to Turing instability [13, 14]
as well as to front propagation in systems with Fisher-type kinetics [15]
showed only quantitative differences with reaction-diffusion.
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In what follows we discuss the simplest problem in which nontrivial spa-
tial structures appear, namely the irreversible A + B → 0 reaction, and
show that stationary structures formed under subdiffusion differ strikingly
from those in reaction-diffusion, or are even absent under certain conditions
where their reaction-diffusion analogues exist. The A + B → 0 reaction
equation corresponds to a bimolecular irreversible reaction between the par-
ticles of two different sorts, where the product of the reaction is either inert
(like in the chemical examples of Refs. [16–18]) or immediately leaves the
system (as it is the case in the recombination reactions when this product
is a photon). The above situation can be realized in an experimental set-
ting proposed in [4] or in a porous medium fed by a well mixed reservoir on
either side. Here we assume the particle concentrations to depend only on
the x-coordinate.

2. Reaction-subdiffusion equations

We first derive the reaction-subdiffusion-equations following the scheme
put forward in [11]. In a CTRW, a particle arriving at site i stays there for a
sojourn time t drawn at random according to a probability density function
(pdf) ψ(t). Leaving a site it makes a random step in either direction. For an
unbiased random walk, the probabilities of going to the left and to the right
are equal to 1/2. The generalized reaction-diffusion equations are based on
two balance conditions; a local one corresponding to the balance between
probability loss and gain at one site, and another according to transitions
between two neighbouring sites, i.e. particle conservation during a jump.
The balance equation for A-particles at each site reads:

Ȧi(t) = j+i (t) − j−i (t) +Ri{A,B} (2)

= 1
2j

−

i−1(t) + 1
2j

−

i+1(t) − j−i (t) +Ri{A,B} . (3)

where j−i (t) is the loss flux of A-particles at site i, i.e. the probability for
an A-particle to leave i per unit time, j+i (t) is the gain flux at the site,
and Ri{A,B} = −κAiBi is the reaction term, describing loss of particles
due to reaction. Since in our case the equations for A- and B-particles are
symmetric, we concentrate on the equations for Ai. A reaction-subdiffusion
equation is a combination of the continuity equation (3) and the equation for
the loss fluxes j−(t) following from the waiting time distribution ψ(t) and the
survival probability P (t, t0). The loss flux for site i at time t is connected to
the gain flux at the site at all previous times and to the survival probability.
That is to say, the particles leaving site i at time t were either there from
the very beginning and survived until t, or arrived there at some time t′ < t
and survived until t. The probability density to make a step at t having
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arrived at t′ is given by the waiting time pdf ψ(t− t′). We have then

j−i (t) = ψ(t)Pi(t, 0)Ai(0) +

t
∫

0

ψ(t− t′)Pi(t, t
′)j+i (t′)dt′ . (4)

Rewritten by means of Eq. (2), this yields

j−i (t) = ψ(t)Pi(t, 0)Ai(0) +

t
∫

0

ψ(t− t′)Pi(t, t
′)

×
[

Ȧi(t
′) + j−i (t′) + κAi(t

′)Bi(t
′)
]

dt′ . (5)

The survival probability of A at site i is given by the classical kinetic
rate equation

d

dt
Pi(t) = −κBi(t)Pi(t) (6)

and depends on Bi(t):

Pi(t, t0) = exp



−κ

t
∫

t0

Bi(t
′)dt′



 . (7)

The equations (3), (5) and (7) and the corresponding equations for B repre-
sent the full system of equations for the time dependent concentrations. At
this stage we also can assume the relative change in concentration to be small
compared to the lattice spacing a, and change to a continuous coordinate
x = ai. Our system of equations finally reads

Ȧ(x, t) =
a2

2
∆j−(x, t) − κA(x, t)B(x, t) ,

j−(x, t) = ψ(t)P (x, t, 0)A(x, 0) +

t
∫

0

ψ(t− t′)P (x, t, t′)

×
[

Ȧ(x, t′) + j−(x, t′) + κA(x, t′)B(x, t′)
]

dt′

P (x, t, t′) = exp



−κ

t
∫

t′

B(x, t′′)dt′′



 , (8)

together with the corresponding system for the B-concentrations.
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3. Stationary equations for the Dirichlet boundary value problem

In our previous discussion we considered an initial condition problem,
where the particles were introduced into the system at time t = 0 and
we followed the subsequent evolution of their concentrations. In the case
of reaction-diffusion, a steady state can be obtained by fixing the particle
concentrations at the boundaries of the system, e.g. by external sources.
The corresponding equations remain the same as in the initial condition
problem, with the time derivatives at the left hand side put to zero. For
reaction-subdiffusion, it is not quite evident that this assumption still holds.

Let us assume that a steady state characterized by constant concentra-
tions A(x) and B(x) exists. Let us furthermore assume that no sources of
A- and B-particles are present in the interior of the system and that the
steady state is maintained through the sources at the boundaries. In the
present boundary value problem, new particles are permanently fed into the
system. Accordingly, the equations for the initial value problem have to
be modified. The particles now are labelled according to the time t0 they
were introduced, so that A(x, t|t0)dt0 is the concentration at x at time t of
A-particles that were introduced between t0 and t + dt0. The partial con-
centration A(x, t0|t0) of newly introduced particles is zero everywhere in the
interior of the system, and the overall concentration is given by the integral

A(x) =

t
∫

−∞

A(x, t|t0)dt0 . (9)

Due to translation invariance in time, in a steady state A(x, t|t0) can only
be a function of the elapsed time te = t− t0, so that A(x, t|t0) = A(x, t− t0)
and A(x) =

∫

∞

0 A(x, te)dte . We have

Ȧ(x, te) =
a2

2
∆j−(x, te) − κA(x, te)B(x) . (10)

for all A(x, t|t0). With constant A(x) and B(x), also the survival probability
becomes a function of the difference of its time arguments,

P (x, t, t′) = exp
[

−κB(x)(t− t′)
]

, (11)

and the integral in the equation for the flux takes the form of a convolution:

j−(x, t|t0) = ψ(t)P (x, t − t0)A(x, t0|t0) +

t
∫

t0

ψ(t− t′)P (x, t− t′)

×
[

Ȧ(x, t′|t0) + j−(x, t′|t0) + κA(x, t′|t0)B(x)
]

dt′ (12)
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with j−(x, t′|t0) being the loss fluxes for those A-particles which were in-
troduced into the system at time t0. Passing to the Laplace domain with
respect to te and denoting Ã(x, u) =

∫

∞

t0
A(x, t|t0) exp[−u(t − t0)]dt, we

obtain

j̃−(x, u) =
[u+ κB(x)]ψ̃(u+ κB(x))

1 − ψ̃(u+ κB(x))
Ã(x, u) , (13)

where the Laplace transform of the product Ψ(t, x) = ψ(t) exp [−κB(x)t]

is given by the shift theorem with Ψ̃(u, x) = ψ̃(u + κB(x)). Inserting this
into the equations for the partial concentrations (10), we get in the Laplace
domain:

uÃ(x, u) −A(x, t0|t0) (14)

=
a2

2
∆

[u+ κB(x)]ψ̃(u+ κB(x))

1 − ψ̃(u+ κB(x))
Ã(x, u) − κÃ(x, u)B(x) .

Since there are only sources at the boundaries, A(x, t0|t0) vanishes in the

interior of the system. Taking the limit u→ 0 and putting A(x) = Ã(x, 0),
the stationary concentration of A-particles in the interior of the system yields

a2

2
∆
κB(x)ψ̃(κB(x))

1 − ψ̃(κB(x))
A(x) − κA(x)B(x) = 0 , (15)

together with the appropriate boundary conditions. For the case of Marko-
vian transport, i.e. for waiting time pdfs of the form ψ(t) = 1

τ exp[− t
τ ], we

get ψ̃(u) = 1/(1 + uτ) and correspondingly:

a2

2τ
∆A(x) − κA(x)B(x) = 0 , (16)

the stationary reaction-diffusion equation for A with the diffusion coefficient
D = a2/(2τ ). In the non-Markovian case, the waiting time pdf in the

Laplace domain can be approximated by ψ̃(u) ≃ 1−(τu)αΓ (1−α) for small
u, provided that the cut-off parameter κB(x)τ ≪ 1. Eq. (15) becomes

a2

2

1

ταΓ (1 − α)
∆B(x)1−αA(x) − καA(x)B(x) = 0 , (17)

where Dα = a2/2ταΓ (1−α) is the generalized diffusion coefficient. The sys-
tem of equations with additional temporal operator acting on the Laplacian
in the case of an initial-condition problem turns to a system of reaction-
diffusion equations with a nonlinear diffusion term for a stationary state
with given boundary conditions. For α = 1, Eq. (17) reduces to the Marko-
vian stationary reaction-diffusion equation. Eq. (15) together with the corre-
sponding equation for B constitutes the full system of steady state equations.
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4. Stationary particle concentrations and

stationary reaction intensities

We consider a system on an interval (0, 1) with given concentrations of
reactants on the boundaries, e.g. a subdiffusive gel reactor in contact with
two well mixed reservoirs on both sides. These reservoirs contain reacting
mixtures of both species at different concentrations. To simplify matters,
we examine a symmetric situation with B(x) = A(1 − x) and put A(0) =
B(1) = 1. In what follows, we denote the left boundary of the medium as
the major source of A, whereas the left boundary will be referred to as to
the minor source (except for A(1) = B(0) = 1). To solve Eq. (17), we first
change to new variables A∗(x) = B1−α(x)A(x) and B∗(x) = A1−α(x)B(x).
They are considered to be formally dependent on the new time variable ξ.
The new equation

δ

δξ
A∗(x, ξ) = Dα∆A∗(x, ξ) − κα(A∗(x, ξ)B∗(x, ξ))1/(2−α) (18)

with B∗(1 − x, ξ) = A∗(x, ξ) was integrated numerically from the initial
condition A(x, 0) = (A(1) − 1)x + 1 using the Crank–Nicholson algorithm
until the solution reaches stationarity.

The concentration profiles for subdiffusion (α < 1) are compared to
those of normal diffusion (α = 1), Figs. 1(a) and 2. The A(0) = B(1)
concentration at the major source is fixed to be A(0) = 1, the other concen-
tration varies from B(0) = A(1) = 1, corresponding to the symmetric case,
when the CTRW-reactor separates two stoichiometric reacting mixtures, to
B(0) = A(1) = 10−4.
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Fig. 1. (a) Stationary particle concentration A(x) and (b) stationary reaction in-

tensity R(x) = κA(x)B(x) for α = 1; different boundary values: A(1) = 1 (dash-

dot-dotted), 0.5 (solid line), 5 × 10−2 (dashed), 5 × 10−3 (dotted), and 1 × 10−4

(dash-dotted); κ = 0.001 , Dα = 1/2.
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In the symmetric case, reaction-diffusion and reaction-subdiffusion con-
centration profiles behave similarly with maximal concentrations in the re-
gions close to the boundaries where the system is fed by reactants. Under
asymmetric conditions the behaviours of the concentrations differ consider-
ably. The most marked difference corresponds to accumulation of A-particles
in the interior of the system close to the major source in the subdiffusive
case, the counterpart on the other side of the system is a depletion zone
corresponding to the symmetric accumulation zone for B. The height of the
accumulation peak exhibits a nonmonotonic dependence on the strength of
the minor source. The reduction of the minor source strength A(1) = B(0)
leads first to its growth, and then to its outwards motion accompanied by
decay. For equally strong A(0) and B(0) = A(1), the particles react in
the vicinity of the boundaries, where their concentratioin is high, before
they could cover a considerable distance. For smaller B(0), some of the
A-particles can travel further into the medium without reaction. In the case
of subdiffusive transport, the effective mobility of the particles decays in the
course of time, the number of performed steps goes as tα−1. The particles
accumulate inside the system which leads to the formation of a peak. For
very weak minor sources the peak moves closer to the boundary and eventu-
ally dissappears. Low α amplify the effects of subdiffusive transport on the
concentration profiles. The smaller is the α, the more pronounced get the
peak and the depletion zone. Fig. 2 shows the profiles for different boundary
conditions for α = 0.9, 0.8, 0.7 and 0.6.

Whereas in reaction-diffusion A(x) reaches a limiting form for A(1) → 0,
no stationary concentration profile exists in the subdiffusive case. The ef-
fective diffusion coefficient vanishes at the corresponding side of the system
preventing the inflow of reactants from their major sources into the system.
To explain this long time behaviour, one can also consider the time evolution
of concentrations by discussing the inverse Laplace transform of Eq. (15).

We put ψ̃(u) ≃ 1 − (τu)αΓ (1 − α):

∂A(x, t)

∂t
=
a2

2
∆

t
∫

0

Φ(t− t′)A(x, t′)dt′ − κB(x)A(x, t) , (19)

where the Laplace transform of the integral kernel is Φ̃(u) = [ταΓ (1 −
α)]−1(u+ κB(x))1−α. This yields:
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Fig. 2. Stationary particle concentrations A(x) for a) α = 0.9 , (b) α = 0.8 ,

(c) α = 0.7 , (d) α = 0.6 ; A(1) see Fig. 1; κ = 0, 001, Dα = 1/2Γ (1 − α).

The smaller the α, the more pronounced get the peak and the depletion zone.

∂A(x, t)

∂t
=

a2

2ταΓ (1 − α)
∆

[

d

dt

t
∫

0

e−κB(x)(t−t′)

(t− t′)1−α
A(x, t′)dt′

+κB(x)

t
∫

0

e−κB(x)(t−t′)

(t− t′)1−α
A(x, t′)dt′

]

−κB(x)A(x, t) . (20)

As in the case of linear reaction dynamics [11], the reaction affects the trans-
port term, which however becomes nonlinear due to its dependence on B(x).
The factor exp[−κB(x)t] imposes a cut-off upon the long tail of the waiting
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time pdf ψ(t). The effective diffusivity in a stationary state remains constant
in time but varies in space, depending on B(x). In the case of B(x) = 0,
the effective diffusivity close to the boundary where the B-concentration is
kept at zero, decreases permanently as tα−1. This permanent change in the
effective diffusivity is mirrored by the fact that the stationary concentration
profile does not exist.
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Fig. 3. Stationary reaction intensity κA(x)B(x) for (a) α = 0.9 , (b) α = 0.8 ,

(c) α = 0.7 , (d) α = 0.6 ; A(1) see Fig. 1; κ = 0, 001, Dα = 1/2Γ (1 − α). The

smaller the α, the smaller becomes the reaction intensity. Smaller α require a

smaller A(1) for a reaction zone to evolve between both reacting mixtures (note

the solid curve for A(1) = 0.5 ).

The reaction intensity profiles under subdiffusion show striking differ-
ences in comparison to the normal situation, Figs. 1(b) and 3. For decreas-
ing A(1) the reaction zone starts to form in the middle of the system. In
the normal case, for small A(1) the form of the reaction zone depends only
marginally on A(1), and there exists a clear limiting form for A(1) = 0.
In reaction-subdiffusion, the dependence of the height of the reaction zone
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on the strength of the minor source is nonmonotonic. When lowering A(1),
the maximum of the reaction intensity first gets higher and then starts to
lower; the distribution as a whole broadens. There is no limiting form for
A(1) → 0. A stationary reaction zone can only exist if a permanent current
of reacting particles from the corresponding sides is maintained. The reac-
tion zone is the higher and the narrower, the larger is the particles’ inflow
into the reaction area. In the subdiffusive case, this inflow depends on the
effective diffusion coefficient and hence on the concentration of the reacting
counterpart. For A(1) = B(0) = 0 the effective diffusion coefficient van-
ishes and no stationary front exists, the reaction zone blurs and fades out.
Fig. (refbildRa shows stationary reaction intensity profiles in dependence of
the concentrations at the boundaries for α = 0.9, 0.8, 0.7 and 0.6.

5. Conclusions

We considered a subdiffusive medium fed by reacting mixtures on its
both sides. Stationary particle concentration profiles and reaction inten-
sity profiles formed under subdiffusion differ vastly from those in reaction-
diffusion. Due to the non-Markovian character of subdiffusive motion, the
corresponding stationary equations possess a nonlinear coupling not only in
the reaction- but also in the transport term. Accumulation and depletion
zones emerge close to the boundaries, and a non-monotonic behavior both
of the reaction intensity and of the particle concentration with respect to
the strength of the minor source can be observed in the anomalous case.
If one of the A- or B-particle concentrations is zero at the boundaries, no
stationary solution exists.
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