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We use the hyperbolic subdiffusion equation with fractional time deriva-
tives (the generalized Cattaneo equation) to study the transport process of
electrolytes in subdiffusive media such as gels and porous media. In par-
ticular, we obtain the formula of electrochemical subdiffusive impedance of
a spatially limited sample for large pulsation of electric field.

PACS numbers: 05.10.Gg, 74.25.Nf

1. Introduction

Subdiffusion occurs in systems where mobility of particles is significantly
hindered due to internal structure of the medium, as in porous media, gels or
amorphous semiconductors [1, 2]. The subdiffusion is characterized by the
time dependence of the mean square displacement of transported particle
〈

∆x2
〉

= 2Dαtα

Γ (1+α) , where Dα is the subdiffusion coefficient measured in the

units m2/sα and α is the subdiffusion parameter which obeys 0 < α < 1.
For α = 1 one deals with the normal diffusion.

The subdiffusion has been recently extensively studied. While the phe-
nomenon is theoretically rather well understood, there are very few experi-
mental investigations (see for example [2]). One of the methods to study the
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diffusive or subdiffusive systems is the so–called electrochemical impedance
method. The theoretical analysis was performed in the paper [3] where the
parabolic subdiffusion equation with fractional time derivative was used.
The method of impedance spectroscopy has been used to experimentally
study porous media such as nanopore electrode [4], cement [5–7], tooth
enamel [8] and gels [9].

In our paper we apply the hyperbolic Cattaneo equation with the frac-
tional time derivative to model the subdiffusion impedance. We find an
influence of τ (which is the delay time of flux with respect to the concen-
tration gradient, see below) on a formula describing the impedance of the
subdiffusive medium of finite thickness where the boundary condition for
fully absorbing wall at the sample surface is assumed. Particularly, we ob-
tain the formula of electrochemical subdiffusive impedance of a spatially
limited sample in the limit of large pulsation of electric field.

2. The generalized Cattaneo equation

To describe subdiffusion one usually uses the parabolic subdiffusion equa-
tion [1, 10]

∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
, (1)

where Dα is the subdiffusion coefficient and C(x, t) is the concentration of
the diffusing substance, with the Riemann–Liouville fractional time deriva-
tive, which is defined for α > 0 as [11]

∂αf(t)

∂tα
=

1

Γ (n − α)

∂n

∂tn

t
∫

0

dt′
f(t′)

(t − t′)1+α−n
.

Putting α = 1 in Eq. (1) we get the normal diffusion equation. For the
initial condition C(x, 0) = δ(x), where δ is the Dirac-delta function, the
solution of Eq. (1) (the Green’s function) has non-zero values for any x
and t (t > 0). Thus, for extremely small time variable there exists a finite
amount of the substance at very large distances from the origin, what can
be interpreted as infinite propagation velocity of some diffusing particles.
To avoid this ‘unphysical property’ Cattaneo derived the hyperbolic normal
diffusion equation which Green’s function achieve non-zero values for finite x.
The phenomenological derivation of this equation is based on the assumption
that the flux of the particles J is not generated by the concentration gradient
instantaneously (as in the process described by parabolic diffusion equation),
but it is delayed by time τ , what provides the relation

J(x, t + τ) = −Dα
∂C(x, t)

∂x
. (2)
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Expanding the left-hand side of Eq. (2) into the power series with respect
to τ and assuming that the parameter τ is sufficiently small, one gets

J(x, t) + τ
∂J(x, t)

∂t
= −Dα

∂C(x, t)

∂x
. (3)

Combining Eq. (3) with the continuity equation

∂C(x, t)

∂t
= −∂J(x, t)

∂x
, (4)

one obtains the hyperbolic normal diffusion equation

τ
∂2C(x, t)

∂t2
+

∂C(x, t)

∂t
= Dα

∂2C(x, t)

∂x2
. (5)

The parabolic subdiffusion equation can be derived form Continuous Time
Random Walk formalism or by using the phenomenological approach [1,10].
In the latter case one sets the Riemann–Liouville fractional time derivative
of the order 1 − α in the right-hand side of Eq. (2) (with τ = 0) or replaces
the time derivative of the first order in Eq. (4) to Caputo fractional time
derivative of order α. In similar way one can obtain hyperbolic subdiffusion
equation. In the paper [12] three possible generalizations of the Cattaneo
equation (5) were proposed and each of them leads to the one with the
fractional time derivative, each one supported by a different scheme. In
each of them the fractional time derivative replaces the one of natural order
in Eqs. (2) or (4), or it is putting in the right-hand side of Eq. (2). The
schemes provide the different hyperbolic subdiffusion equations which are
not equivalent of each other. To derive the hyperbolic subdiffusion equation,
we use the last scheme, which is the most natural in our opinion.

For many ‘typical systems’ (as the membrane one) it is hard to observe
the difference between the solutions of parabolic and hyperbolic subdiffu-
sion equations even for relatively large values of τ [13]. However, in some
processes the non-zero parameter τ plays crucial role. The example is the dif-
fusion in a system where boundary conditions are given by functions quickly
changing in time. Such a situation occurs in the electrochemical system with
(sub)diffusion impedance, where for large values of ω the concentration at
the sample surface oscillates with high frequency. As far as we know, till
now the Cattaneo equation was used to study electrochemical impedance
only for system where normal diffusion occurs [14].

As we mention above, in our paper we use the generalized Cattaneo
equation derived from continuity equation (4) and delayed flux-force relation,
which reads

J(x, t + τ) = −Dα
∂1−α

∂t1−α

∂C(x, t)

∂x
. (6)
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Equation (6) ensures that changes of the flux due to the concentration gra-
dient are delayed by the time τ . Assuming that τ is small and keeping linear
terms with respect to τ in the series expansion of l.h.s. of Eq. (6), we get

J(x, t) + τ
∂J(x, t)

∂t
= −Dα

∂1−α

∂t1−α

∂C(x, t)

∂x
. (7)

Combining Eq. (7) with the continuity equation (4), we obtain the general-
ized Cattaneo equation

τ
∂2C(x, t)

∂t2
+

∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
. (8)

3. Subdiffusion impedance

The impedance of electrochemical system Z(iω) can be defined by the
response to a voltage or current perturbation from a steady-state situation
as [15]

Z(iω) =
η̂(iω)

Î(iω)
, (9)

where η̂(iω) and Î(iω) are the Laplace transforms of the overvoltage and
current perturbation; ω is the angular frequency of the ac-voltage related
to the frequency f by the relation ω = 2πf . A parametric plot of the real
and imaginary parts of the impedance in the complex plane (Re Z,−Im Z),
where ω is treated as a parameter, is called the Nyquist plot.

The impedance of the diffusion layer is called the Warburg impedance.
For the layer of the infinite thickness the impedance is defined as [3]

Z(iω) =
R√
iω

=
R√
2ω

(1 − i) , (10)

where R is the diffusion resistance. On the Nyquist plot the Warburg
impedance is presented by the straight half line with the slop angle π/4
passing through the origin of coordinates. In real systems the diffusion layer
has a finite thickness. Let the diffusion layer be limited by the planes lo-
calized at x = 0 and x = L. The perturbation of the voltage is applied on
x = 0. The characteristic angular frequency is defined as [3]

ωd ≡ D

L2
, (11)

where D is the diffusion coefficient. The frequency (11) is the inverse of
the average time of passing of transported ion through the sample. When
ω ≫ ωd the size of the sample plays no role and the impedance is the
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Warburg impedance (10). However, for a small frequency the ions can be
absorbed by the opposite wall before end of the period.

The oscillating overvoltage η(t) = E0 sin(ωt + ϕ) cause the oscillation of
the concentration on the surface layer according to the formula [3]

η|x=0 (t) =

(

dη

dC

)

eq

C(0, t) , (12)

where ‘eq’ denotes a derivative computed in the local equilibrium. The
conduction current I(t) at x = 0 corresponds to the flux of diffusing particles
J(0, t)

I(t) = qAJ(0, t) , (13)

where q is the charge of diffusing particle and A is the area of the sample
surface. From Eqs. (9), (12) and (13) one obtains the relation [3]

Z(iω) = RW
Ĉ(0, iω)

Ĵ(0, iω)
, (14)

where RW = 1
qA

(

dη
dC

)

eq
.

Let us assume that at x = 0 there is the oscillating concentration of
diffusing particles and at x = L there is a fully absorbing wall (Fig. 1).
Consequently,

C(0, t) = C0 sin(ωt + ϕ) , (15)

where C0 = RWqAE0, and
C(L, t) = 0 . (16)

x=0 x=L

h w j(t)=E sin( t+ )0 absorbing
wall

diffusion
layer

Fig. 1. The system under considerations, η denotes the overvoltage, E0 — its
amplitude, ω is the angular frequency.

We assume that the transport process is described by the Cattaneo equa-
tion (8) with the following initial conditions

C(x, 0) =
∂C(x, t)

∂t

∣

∣

∣

∣

t=0

= 0 . (17)
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The Laplace transform of (8) for the initial conditions (17) is

τs2Ĉ(x, s) + sĈ(x, s) = Dαs1−α d2Ĉ(x, s)

dx2
. (18)

The solution of Eq. (18) is

Ĉ(x, s) = B1 exp [γ(s)x] + B2 exp [−γ(s)x] , (19)

where

γ(s) =
sα/2

√
Dα

√
1 + τs . (20)

The Laplace transform of the flux reads

Ĵ(x, s) = −Dα
s1−α

1 + τs

dĈ(x, s)

dx
. (21)

Combining Eqs. (14)–(16) and (19)–(21) we obtain

Z(s) = −RW
1

λ(s)
tanh [γ(s)L] , (22)

where

λ(s) = s1−α/2

√

Dα

1 + τs
. (23)

We add that for subdiffusive systems the relation (11) should be changed as
ωd ≡ (Dα/L2)1/α (see also [3]).

We are particularly interested in the case of large ω, since then a sub-
stantial influence of τ is expected. In the limit ω → ∞ we obtain from
Eqs. (22) and (23)

• For τ 6= 0

Z(iω) =
RW

√
τ√

Dαω(1−α)/2

[

cos

(

π
1 − α

4

)

− i sin

(

π
1 − α

4

)]

, (24)

thus, the Nyquist plot of the impedance is a linear function passing
through the origin of coordinates with the angle slope given by

tan ϕ = tan

(

π
1 − α

4

)

, (25)

0 < α < 1, ϕ ∈ (0, π/4).
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• For τ = 0

Z(iω) =
RW√

Dαω1−α/2

[

cos

(

π
1 − α/2

2

)

− i sin

(

π
1 − α/2

2

)]

, (26)

where

tan ϕ = tan

(

π
1 − α/2

2

)

, (27)

ϕ ∈ (π/4, π/2).

Let us illustrate our considerations by four plots performed for different
values of the parameters α and τ . Calculating Re Z and Im Z from (22) for
s = iω we obtain the Nyquist plots (Figs. 2–5), where for larger values of
ω the points on the plots are laid nearer the origin. In our calculations we
take ω ∈ (10−1, 105), RW = 1, L = 1 and Dα = 1 (all quantities are given
in arbitrary units).
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 1.0

- I
m

 Z

Re Z

Fig. 2. The Nyquist plots for α = 0.4 and for τ given in the legend. The curves for
τ = 0 and τ = 0.01 are practically undistinguishable.

In Figs. 2 and 3 the plots for τ = 0 and τ = 0.01 are practically undistin-
guishable, but for larger values of the subdiffusion parameter α these plots
differ from each other for large ω (see Figs. 4 and 5). Let us note that for
relatively large τ the Nyquist plots show ‘chaotic’ behavior, which is stronger
when α and τ increase. So, in presented cases there is no reason to consider
values of τ larger than the one presenting on the plots. The plots suggest
that the curves for different values of parameter τ aim to one curve for very
small values of ω.
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Fig. 3. The Nyquist plots for α = 0.6. Similar as in Fig. 2, the curves for τ = 0

and τ = 0.01 are practically undistinguishable.
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Fig. 4. The Nyquist plots for α = 0.8.

The plot for α = 1 and τ = 0 for small ω is approximated by a part of
circle. This is characteristic for normal diffusion [15] and subdiffusion [3] for
the system with fully absorbing wall located at x = L with τ = 0. More
detailed analysis (especially for large ω) will be presented elsewhere [13].
Here we note that:
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Fig. 5. The Nyquist plots for α = 1.0.

• For ω → 0 and for given α the plots are not dependent on τ and they
are going to the one curve.

• For ω → ∞ the slope of the plot gradually decreases as τ increases.
When α = 1 and τ 6= 0 the plots going to the point for which −ImZ
is very closed to zero whereas Re Z is finite. We suppose that in the
following it goes to the origin with zero slope (according to the formula
(25)).

4. Final remarks

The main result of our paper is Eq. (22) with the asymptotic formulas
(24)–(27). These functions and Figs. 2–5 show the following

• For ω → ∞ the Nyquist plot is the linear function passing through the
origin of coordinates with the slop angle given by Eq. (24) and (26).

• For non-zero τ , ϕ does not dependent on τ .

• It is possible to determine the values of parameters of the system from
experimental data. For example, measuring the slop angle for large ω,
one can extract the subdiffusion parameter α.

Let us note that for the layer with infinite thickness (L → ∞) the
impedance (22) takes the form

Z(iω) = RW

√
1 + τiω√

Dα(iω)1−α/2
, (28)

which for τ = 0 and α = 1 corresponds to the classical Warburg impedance.
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