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Comparing the experimental results to theoretical functions, we esti-
mate the subdiffusion coefficient of PEG2000 in agarose gel. The experi-
ment was performed with the two-membrane system where thin membranes
separated homogeneous solution of PEG2000 for pure solvent at an initial
moment. The theoretical function was found by solving analytically the
subdiffusion equation.
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1. Introduction

The subdiffusion is a transport process where the mean square displace-
ment of a Brownian particle is a power function of time [1]

〈

∆x2(t)
〉

=
2Dα

Γ (1 + α)
tα , (1)

where Dα is the subdiffusion coefficient measured in the units m2/sα and
α is a subdiffusion parameter which obeys 0 < α < 1. The case of α = 1
corresponds to the normal diffusion. The subdiffusion occurs in a medium
where a mobility of the particle is strongly hindered due to the internal
structure of the medium, as for example in porous media or gels [1, 2]. The
subdiffusion is described by the equation [1]

∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
, (2)
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where C(x, t) denotes the concentration of transported substance. The
Riemann–Liouville fractional time derivative is defined for α > 0 as

∂αf(t)

∂tα
=

1

Γ (n − α)

∂n

∂tn

t
∫

0

dt′
f(t′)

(t − t′)1+α−n
, (3)

where the integer number n fulfills the relation n − 1 < α ≤ n.
Till now, there were only a few methods to extract the subdiffusion

coefficient from experimental data [2, 3]. We mention here the method of
measuring time evolution of near membrane layers in the one membrane
system [2], and the study of [3] where the subdiffusion coefficient was de-
termined experimentally for the first time — the interdiffusion of heavy and
light water in a porous medium was observed by means of nuclear magnetic
resonance.

In our paper we exploit the system in which the homogeneous solution
of substance under study is divided into three parts by two thin membranes.
At the initial moment the substance is present only in the middle part of
the system whereas the external parts contain only the pure solvent. We
experimentally measure the concentrations in the middle part of the system
and next we compare the experimental data with the solutions of the sub-
diffusion equation where Dα and the parameters of membrane permeability
λ1 and λ2 are the fit parameters.

2. Experiment

The measurement has been conducted in a membrane system, shown in
Fig. 1. The membrane system under study is a cell with three glass cuvettes
separated by horizontally located membranes. Initially, we fill the lower
and upper cuvettes with the agarose hydrogel solvent while in the middle
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Fig. 1. Experimental setup. Detailed description is in the text.
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cuvette there is an aqueous gel solution of transported substance. Then, the
substance diffuses from the middle cuvette to the exterior ones through the
membranes. Since the concentration gradients are in the vertical direction
only, the diffusion is expected to be one-dimensional (along the axis x). The
substance concentration is measured by means of the laser interferometric
method [4, 5]. The output of a 15mW He–Ne laser is spatially filtered and
split into two beams. The first beam goes through the membrane system
parallel to the membrane surface while the second reference beam goes di-
rectly to the light detecting system. The interferograms, which appear due
to the interference of the two beams, are controlled by the refraction coef-
ficient of the solute, which in turn depends on the substance concentration.
The analysis of the interferograms allows one to reconstruct the time depen-
dent concentration profiles of the substance transported from middle cuvette
across the top and bottom membranes to the outside cuvettes. We note that
measurement does not disturb the system under study. The experimental
set-up is described in detail in the previous papers [4–6]. Here we only
mention that it consists of the cuvette with membrane, the Mach–Zehnder
interferometer including the He–Ne laser, TV–CCD camera, and the com-
puterized data acquisition system. For each measurement we prepared two
gel samples: the pure gel 2% (w/v) water solution of agarose and the same
gel dripped by the solute of polyethylene glycol 2000 (PEG). PEG2000 is
a polymer of general formula [HO-(CH2-CH2)n-O] where n ∼= 40. The con-
centration of solutes in the gel was fixed to be 0.0075 mol/dm3. The three
cuvette of the membrane system were then filled with the samples and the
processes of the solute transport through membranes started. The agarose
gel water solvent was prepared by dissolving agarose powder (Sigma) in 90◦ C
water. All experiments were performed at room temperature (22 ± 0.5)◦ C.
The agarose gels are assumed to be inert to the solute at our experimen-
tal conditions. The polymer membranes (which are of the thickness 20µ m)
were needed for two reasons. It initially separated the homogenous solute gel
solution in one cuvette from the pure gels in another ones. It also precisely
fixed the geometry of the whole system. At the beginning of the experi-
ment the cuvettes were pressed to each other in close contact so that the
diffusion across membranes was initiated. The change of solute concentra-
tion in the middle cuvette during the experiment involves variation in the
refractive index of the gel solution. The interferograms provide quantitative
measurements of the solution refractive index within the membrane system.
The measurement of the refractive index of the gelled solutions containing
different concentration of the solute under study enabled us to calculate the
values of the concentration at different distances from the membranes and
at different times inside of the middle cuvette. If the solution in the ob-
servation cell is homogeneous, the fringes are straight, parallel, and evenly
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spaced. The solute concentration at x is determined by deflection of fringes
d(x, t) from their straight line run. Since the relation between the concen-
tration C(x, t) and the refraction coefficient n(x, t) is assumed to be linear,
we have:

C(x, t) = C0 ±
ald(x, t)

hf
, (4)

where C0 is the initial substance concentration in middle cuvette of the
membrane system, a is the proportionality factor between the concentration,
and the refraction index, l is the wavelength of the laser light, h denotes the
distance between the fringes in the area where they run parallel, f is the
thickness of the solution layer in the measurement cuvette.

3. Theory

The system under consideration is assumed to be homogeneous in a plane
perpendicular to the x axis, thus it is effectively one-dimensional. The sys-
tem has three parts with two infinitely thin partially permeable membranes
located at x = x1 and x = x2 (see Fig. 2). The walls divide the system
into three homogeneous parts which in the following will be denoted as 1 for
x < x1, M for x1 < x < x2 and 2 for x > x2.

g, D
g

g, D
g

g, D
g

x
1

x
2

x

C

C
0

Fig. 2. The schematic view of the system under consideration at an initial moment.

We choose the initial condition as

C(x, 0) =







0 , x < x1 ,
C0 , x1 < x < x2 ,
0 , x > x2 .

(5)

The boundary conditions demand the constant ratio of the concentrations
at two sides of the membrane

C1(x
−

1 , t)

CM (x+
1 , t)

= λ1 ,
C2(x

+
2 , t)

CM (x−

2 , t)
= λ2 , (6)
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the dimensionless parameters λ1 and λ2 control the permeability of the mem-
branes. These boundary conditions are supplemented by the equations ex-
pressing the continuity of the fluxes at the membrane surfaces

J1(x
−

1 , t) = JM (x+
1 , t) , JM (x−

2 , t) = J2(x
+
2 , t) . (7)

The boundary conditions (6) and (7) were already used to model the (sub)-
diffusion in membrane system [7].

The concentration profile C(x, t) of the system is found by solving Eq. (2)
with the initial conditions (5) and boundary ones (6) and (7) by means of
the Green’s function and Laplace transform. The solution for the middle
part M of the system reads

CM (x, t) = C0 −
C0

2

[
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(
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√

Dγ

)
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(
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. (8)

4. Comparison of experimental and theoretical functions

In Fig. 3 we present the experimentally measured concentrations in the
middle part of the system. The theoretical functions, which also show there,
are calculated for C0 = 0.0075mol/dm3 , Dα = 2.55 × 10−10 m2/s0.86 and
α = 0.86. The subdiffusion parameter α was found analyzing the time
evolution of the near membrane layer by means of the method presented
in [2]. As we mention above Dα and λ1,2 were treated as fit parameters.
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Fig. 3. The concentrations profiles for the times given in the legend. Symbols rep-
resent the experimental data, continuous lines represent the theoretical functions.

However, the parameter λ1,2 appears to be a function of time. For the time
interval (0, 2400) s the function of λ1,2 can be approximate by the linear
functions (Fig. 4) and read as λ1(t) = 7.98 × 10−5t + 0.028 and λ2(t) =
7.90 × 10−5t + 0.023.
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Fig. 4. Time dependence of λ1 and λ2.
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5. Final remarks

We have obtained the subdiffusion coefficient of PEG2000 in 2% agarose
gel equal to 2.55× 10−10 m2/s0.86. We have estimated the error of the fitted
parameters as 10% (as well as in the study presented in [2]). The order of
this coefficient is in agreement with the orders of subdiffusion coefficients
for glucose and sucrose in agarose gel [2]. The experimental data are well
described by the solution of the Eq. (2) with the boundary conditions (6)
and (7) where λ1 and λ2 are assumed to be constant. To obtain satisfactory
fit, it was needed to assume that the parameters λ1 and λ2 linearly grow
with time. We explain this fact observing that the permeability of the
membranes increase in time due to the decrease of the concentration near
the membranes. We add that the theoretical model of transport in the two-
membrane system where the permeability of the membrane changes with
time will be discussed elsewhere [8].
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