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A model system of a bright state coupled to a manifold of dark states
is analyzed with regard to the width distributions of the dark manifold
induced in the bright state. Independent box shaped distributions are
assumed for the energy distributions, the coupling distributions and the
dark level width-distributions. The width distributions induced via the
couplings from the dark levels into the bright state can be expressed in
terms of Lévy functions in the limit of a sparse level density which relates to
anomalous long-time relaxations of the state selected survival probabilities.

PACS numbers: 82.20.Db, 5.40.+j, 33.20.Tp

1. Introduction

Equilibrium statistical mechanics is based on two postulates: 1. The long
time average of an observable of a thermodynamic system equals the en-
semble average, and 2. All microstates compatible with the macroscopic
constraints of a thermodynamic system have equal a priori probability [1].
For simple systems like gases or fluids the long time average is established
on a time scale short compared to the timescale for typical time resolved
measurements. For complex systems like proteins this is not necessarily
so. For instance the rebinding kinetics of CO in myoglobin after a flash
induced dissociation can span at low temperatures over 12 orders of mag-
nitude from picoseconds to seconds or days. This process is described by
dispersive kinetics [2]. It implies the existence of an overlay of many systems
with different activation energies. The ensemble of such systems (proteins)
may be equilibrated in terms of the temperature but not with regard to their
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detailed microscopic structure. There may be water molecules in different
H-bonding positions, titratable groups may differ in their protonation state,
and flexible groups may be frozen in slightly different arrangements. Such
an ensemble can be characterized by an ensemble of Hamiltonians, which dif-
fer in their microstructure and as a result in microscopic parameters, such
as eigenvalues, interactions, lifetimes, etc. There is a certain amount of lack
of knowledge about the detailed structure of every element of the ensemble.
Models can characterize the range and probability distribution of these pa-
rameters. Since the Hamiltonians contain elements of randomness we use the
term “Random Matrix Theory” [3]. The ensemble becomes a grand canonical
ensemble in the sense that each representative system is part of a canonical
ensemble. But the different canonical ensembles are allowed to differ for in-
stance in the number of water molecules and consequently in their structure,
energy, etc. The difference to an equilibrium grand canonical ensemble lies
in the fact that the particle (water) exchange is slow compared to the time
scale of the measurements. Only at high temperatures, typically above the
melting point of ice, the diffusive exchange between the solvent and a protein
becomes so fast, that the dispersive kinetics approaches a normal kinetics
and the inhomogeneous grand ensemble becomes a normal grand ensemble
for which the two postulates stated above prevail.

In this paper we concentrate on the nonergodic limit. We analyze an en-
semble of model Hamiltonians, each consisting of a bright state coupled to
a manifold of dark states. The dark states are thought to be diagonalized in
the absence of the bright state, so that they do not interact directly among
each other [4]. We shall analyze the line shape as a function of the probabil-
ity distribution of the energies El of the dark states l, the distribution of the
interactions vsl between the bright and the dark states and the distribution
of the widths γl of the dark states in relation to the width γ0 of the bright
state. Related results have been published in the context of intermolecular
vibrational relaxations [5,6]. To simplify the model we assume that all three
random variables El, vsl and γl are independent and that the distribution
functions are always box shaped. We will find for the limit of a low density
of dark states Lévy distributions for the widths, whereby the Lévy index
depends on the location of the width of the bright state relative to the loca-
tion of the box for the dark-state width distribution. Possible applications
to stochastic processes in the time domain are also discussed.

2. Hamiltonian and line shape function

We consider a ‘bright’ state |s〉 with energy Es, which couples to L ‘dark’
states |l〉, with energies El, l = 1, 2, . . . L and finite lifetimes due to imaginary
parts −iγ0 and −iγl of the complex energies,
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H = |s〉(Es − iγ0)〈s| +
L

∑

l=1

|l〉(El − iγl)〈l| +
L

∑

l=1

(|s〉vsl〈l| + |l〉vls〈s|) . (2.1)

We introduce a statistical ensemble for the matrix elements of H with the
combined probability density

P (E1, . . . , EL, vs1, . . . , vsL, γ1, ..., γL) =

L
∏

l=1

f(El) g(vsl)h(γl) , (2.2)

with the uniform probability density for the dark states,

f(E) =

{

1/(2∆) if |E − Es| ≤ ∆
0 if |E − Es| ≥ ∆

, (2.3)

and the mean density of states

ρ0 =
N

2∆
. (2.4)

The functions g(vsl) and h(vsl) will be specified later. We further express
the absorption line shape function L(E) for nonabsorbing dark states in
terms of the Green’s function

Gss = [E+ − Es + iγ0 − R(E)]−1 , (2.5)

as

L(E) = −π−1Im{Gss} , (2.6)

with the level shift

R(E) =
L

∑

l=1

|vsl|2
E+ − El + iγl

, (2.7)

and

E+ = E + iε; ε → 0 . (2.8)

Following the derivation of Eq. (3.12) in Ref. [4], we consider a Poisson
distribution of the number of dark states. The ensemble line shape function
(ELSF),

L(E) =

∞
∑

L=0

e−N NL

L!
〈L(E)〉 , (2.9)



1232 S.F. Fischer, W. Dietz

then becomes

L(E) = π−1Re





∞
∫

0

exp {ik[E+ − Es + iγ0 − S(E, k)]}dk



 (2.10)

with the “shift function”

S(E, k)= ik−1N

〈 ∞
∫

−∞

[

exp

(

−ik
v2

E+ − El+iγl

)

−1

]

f(El)dEl

〉

v,γ

, (2.11)

where the angular brackets indicate average formation with respect to the
ensemble

〈. . .〉 =

∫

. . .

∫

. . . ΠN
l=1f(El)g(vsl)h(γl)dEldvsldγl , (2.12)

and

〈. . .〉v,γ =

∫

. . . g(v)h(γl)dvdγl . (2.13)

Here it is also instructive to perform the expansion

S(E, k)= ik−1N
∞
∑

j=1

(−ik)j

j!

〈

v2j
〉

v

〈 ∞
∫

−∞

(E+−El+iγl)
−jf(El)dEl

〉

γ

, (2.14)

considering the quasidegenerate limit of broad dark levels

√
N |vsl|, ∆ ≪ γl . (2.15)

In this limit we can neglect in Eq. (2.14) the energy part E+ − El in the
denominator, and see that terms of second and higher order under the inte-
gral are small compared to the first order term. Keeping only the latter we
obtain a constant shift function with a negative imaginary part only:

S(E, k) = −i

〈

L
∑

l=1

v2

γl

〉

γ,v

= −iN
〈

v2
〉

v
〈1/γl〉γ . (2.16)

Hence we get from (2.10)

L(E) = π−1Re





∞
∫

0

exp [ik(E+ − Es + iγ0) − k〈v2〉N〈1/γl〉]dk



 , (2.17)
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and the ELSF becomes the Lorentzian

L(E) =
Γ/(2π)

(E+ − Es)2 + Γ 2/4
, (2.18)

with the width being broadened relative to the unperturbed part 2γ0 by
twice the negative imaginary part of the shift function,

Γ ≡ Γd = 2γ0 + 2〈v2 〉N〈 1/γl〉 . (2.19)

In the other limit of an unbounded uniform probability density f(El) one
has to take the limits N,∆ → ∞ in (2.3) at a fixed mean density of the
l-states ρ0 ≡ N/(2 ∆). In this limit we obtain from (2.14)

S(E, k) = ik−1ρ0

∞
∑

j=1

(−ik)j

j!

〈

v2j
〉

v

〈 ∞
∫

−∞

(E+ − El + iγl)
−jdEl

〉

γ

. (2.20)

Here terms with j ≥ 2 vanish, as can be verified using Cauchy’s theorem
after the closure of the integration path in the upper half plane. Performing
the integration of the remaining (j = 1)-term results again in a constant
shift function

S(E, k) = −iπρ0〈v2〉 , (2.21)

which gives rise for the Lorentzian ELSF (2.18), now with the width

Γ ≡ Γu = 2γ0 + 2πρ0〈v2〉 . (2.22)

This result holds for all coupling distributions with finite moments. That
means, we found that the line shape function can become a Lorentzian for
a large class of systems, which describe an inhomogeneously distributed
noninteracting ensemble. More detailed information about the nature of
the underlying coupling- and width distributions can be obtained from time
resolved experiments.

3. Widths distributions

Here we evaluate the distribution of the homogeneous width, which is
induced in the bright state due to the coupling to the dark states. Confining
to leading order perturbation, we take the negative imaginary part of the
complex second order energy

Ẽs − iγ̃s = Es − iγ0 +

N
∑

l=1

v2
sl

Es − iγ0 − El + iγl
(3.1)
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as the width of the bright state

γ̃s = γ0 +

N
∑

l=1

λl (3.2)

with

λl =
v2
sl(γl − γ0)

(El − Es)2 + (γl − γ0)2
. (3.3)

Considering again the quasidegenerate limit, we obtain for a single dark level
the second order s-level width γ̃0 as γ0 + v2

sl/(γl − γ0), which we denote as
γ, for simplicity. For a positive constant γl − γ0 ≡ γ1, its distribution N(γ)
vanishes for γ values below γ0. For γ ≥ γ0 it is given by

N(γ) = g(vsl)|dvsl/dγ| =

√
γ1

2
(γ − γ0)

−1/2g(
√

γ1(γ − γ0)) . (3.4)

For a Gaussian coupling distribution with zero mean and variance v, the
Porter–Thomas distribution, which is also known from nuclear physics [7],
follows

N(γ) =

√
γ1

2
√

2πv
(γ − γ0)

−1/2 exp

[

−γ1(γ − γ0)

2v2

]

. (3.5)

For many l-states with equal constant widths γl = γ1 + γ0 the induced
second-order width is

γ − γ0 = γ−1
1

N
∑

l=1

v2
sl . (3.6)

If the coupling distributions have finite variances, the central limit
theorem applies, and γ is Gaussian distributed with a rms deviation of
√

N(〈v4〉 − 〈v2〉2)/γ1 around the mean value γ0 + N〈v2〉/γ1, regardless of
the coupling distributions.

Next, and most important for this paper, we incorporate the influence
of variable energies El and widths γl upon N(γ). Again we refer to the
Hamiltonian matrix ensemble (2.12), considering now

N(γ) = 〈δ(γ − γ̃s)〉 , (3.7)

where the angular brackets indicate the ensemble average (2.12). In this
case it is advantageous to consider instead of N(γ) its Fourier transform, or
its characteristic function

Q(β) =

∞
∫

−∞

N(γ) exp (−iβγ)dγ . (3.8)
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Then one retrieves N(γ) via the Fourier back-transform of Q(β) as

N(γ) =
1

2π

∫

Q(β) exp (iβγ)dβ . (3.9)

After substituting (3.7) for N(γ) and integrating over the Delta-function
one obtains from Eq. (3.8)

Q(β) = 〈exp (−iβγ̃s)〉 . (3.10)

Thanks to its exponential structure, and due to the separation of the second
order width γ̃s and the ensemble probability density into equivalent one-level
terms, according to the Eqs. (3.2) and (2.12), Q(β) factorizes into the s-level
part exp (−iβγ0) and the N -th power of the l-level average,

〈exp (−iβλl)〉Nl ≡
{

1 −
〈∫

[1 − exp (−iβλl)]f(El)dEl

〉

v,γ

}N

(3.11)

with the one-level average formation

〈. . .〉l =

∫

. . . f(El)g(v)h(γl)dvdγl . (3.12)

Choosing for the probability density of the l-state energies, f(El), again the
uniform density (2.3) with the unbounded limit N,∆ → ∞ at the given
mean density of states ρ0, we may write Q(β) as a power function with
an infinite exponent,

Q(β) = exp (−iβγ0) lim
N→∞

{

1− ρ0

N

〈∫

[1−exp (−iβλl)]dEl

〉

v,γ

}N

. (3.13)

This function represents an exponential function, yielding for Q(β) the re-
sult [5]

Q(β) = exp [−iβγ0 − q(β)] , (3.14)

with

q(β) = ρ0

〈∫

[1 − exp (−iβλl)]dEl

〉

v,γ

. (3.15)

In order to manage here the integrations we express the integrand as

iλl

β
∫

0

exp (−ixλl)dx , (3.16)
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and after exchanging the order of integrations we obtain for q(β)

q(β) = iρ0

〈 β
∫

0

q1(x)dx

〉

v,γ

(3.17)

with

q1(x) =

∫

λl exp (−ixλl)dEl , (3.18)

and with λl from (3.3). Substituting here the new integration variable

φ = 2arctan

(

El − Es

|γl − γ0|

)

, (3.19)

we get for q1(x) the expression

q1(x) = v2sign(γl − γ0)

π
∫

−π

exp

[

−i
xv2

γl − γ0
cos2 (φ/2)

]

dφ/2 , (3.20)

which we can rewrite as

q1(x) = v2sign(γl − γ0) exp

[

−i
xv2

2(γl − γ0)

]

×
{ π

∫

0

cos

[

xv2

2(γl − γ0)
cos φ

]

dφ − i

×
π

∫

0

sin

[

xv2

2(γl − γ0)
cos φ

]

dφ

}

. (3.21)

In this expression, the integral in the first term represents π times the zeroth
order Bessel function J0 with the argument xv2/[2(γl − γ0)] [9], whereas the
integral in the second term vanishes, because the integrand is an odd function
of φ with respect to the midpoint π/2 of the integration interval. Hence we
get for q1(x) the result

q1(x) = πv2sign(γl − γ0) exp

[

−i
xv2

2(γl − γ0)

]

J0

[

xv2

2(γl − γ0)

]

. (3.22)

By inserting this into (3.17) and performing the integration over dx, we
obtain

q(β) = 2πiρ0〈|γl − γ0|βlΦ(βl)〉v,γ , (3.23)
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with

βl = β
v2

2(γl − γ0)
, (3.24)

and
Φ(βl) = e−iβl [J0(βl) + iJ1(βl)] . (3.25)

Now we further specify the probability densities of the l-level widths and
of the bright-dark couplings as the box shaped distributions:

h(γl) =
{

1/∆γ0 if γ′
1 ≤ γl − γ0 ≤ γ′

2
0 else

(3.26)

with the lower and upper boundaries γ′
1 and γ′

2 taken relative to γ0, and
with

g(v) =
{

1/(2V ) if |v| ≤ V
0 else

, (3.27)

which is symmetric relative to the vanishing mean. Then, making use of this
symmetry, we obtain from Eq. (3.23)

q(β) =
2iπρ0

V ∆γ0

γ0+γ′

2
∫

γ0+γ′

1

V
∫

0

|γl − γ0|βlΦ(βl)dv dγl . (3.28)

After exchanging here the sequence of integrations, performing subsequently
the integration over γl, we get for q(β) the closed-form expression (Ap-
pendix A)

q(β) = iπβ
ρ0V

2

5∆γ0
[|γ′

2|F (α2) − |γ′
1|F (α1)] , (3.29)

with

αi = β
V 2

2γ′
i

, (3.30)

where i = 1, 2, and
F (α) = F1(α) + F2(α) , (3.31)

with

F1(α) = α−3/2

α
∫

0

√
yφ(y)dy , (3.32)

and

F2(α) = α

(signα)∞
∫

α

Φ(y)

y2
dy . (3.33)
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4. Limiting cases

In order to specify the conditions for limiting cases we like to point at
a formal analogy between the characteristic function of the homogeneous-
width distribution N(γ) and the ensemble averaged decay of the population
of the perturbed bright-states for the case that they decay independently
from each other. This scenario relates to the limit where the coherence
produced in the excitation process is quickly destroyed. In this case the
population p(t) decays like the superposition of exponentials weighted with
the probability density N(γ):

p(t) =

∫

N(γ) exp (−2γt)dγ . (4.1)

We see from Eq. (3.8) that p(t) is formally equivalent to the characteristic
function Q(β) of N(γ) taken at the argument β = −2it. Identifying thus
Q(−2it) with p(t), β has the meaning of an imaginary time constant. It
means p(t) relates in the limits of short and long times to the asymptotic
expansions of q(β) for small and large arguments β, respectively. With this
in mind we can define now limiting cases.

1. Large l-level width and short-time limit

This limit is specified by the conditions

ρ0γ′ ≫ 1 and t <
γ′

V 2
, (4.2)

with the mean amount deviations of the l-level width from the s-level width

γ′ ≡ 〈|γl − γ0|〉 . (4.3)

Eqs. (3.29)–(3.33) show that β enters q(β) via the functions F (α1) and
F (α2). Since their arguments increase linearly with β, due to Eq. (3.30),
we have to consider here the expansion of F (α) for small arguments α
(Appendix B):

F (α) =
5

3
+

i

2
α ln

(

iα

2

)

+

(

C

2
− 9

20

)

iα + O
(

α2
)

. (4.4)

Inserting this expansion into (3.29), we obtain for q > 0

q(β) = iβγm +
πρ0V

4

20∆γ0
|ln(q)|β2 + O

(

ρ0γ′α3
1,2

)

(4.5)

with

γm =
π

3
ρ0V

2 |q| − 1

|q − 1| , (4.6)
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and

q =
γ′
2

γ′
1

=
γ2 − γ0

γ1 − γ0
, (4.7)

where we introduced γ1,2 = γ0 + γ′
1,2. For q < 0 follows from (3.29)

q(β) = iβγm+

(

0.09− C

10

)

πρ0V
4

∆γ0
β2−πρ0V

4

10∆γ0
β2ln(q0|β|) + O

(

ρ0γ′α3
1,2

)

(4.8)
with

q0 =
V 2

4
√

|γ′
1γ

′
2|

. (4.9)

To get an estimate of the third order term within the Eqs. (4.5) and (4.8)
we take the relative boundaries γ′

1 and γ′
2 and the extension of the l-level

width distribution to be equal as γ′.
We further approximate in (4.8) the function β ln(q0|β|) by the double

parabola

p(β) = sign(β)

[

eq0

(

|β| − 1

eq0

)2

− 1

eq0

]

, (4.10)

with Euler’s number e = 2.718 . . ., which agrees in its extrema and in the
root at β = 0 with the original function. Thus we obtain for q(β) the
approximation

q(β) = iβγm +
∆2

G

4π
β2 + O

(

ρ0V
6/γ′2β3

)

(4.11)

with

∆G = πV 2

√

ρ0

∆γ0

{ √

|ln(q)|/5 if q > 0√
1.16 − 0.4C if q < 0

, (4.12)

and Euler’s constant C = 0.57721 . . .. Neglecting third and higher order
term in β in Eq. (4.11) and in Eq. (3.14) for Q(β), we get from Eq. (3.9)
a Gaussian integral for N(γ), yielding the Gaussian width distribution [5]

N(γ) = ∆−1
G exp

(

−π
(γ − γmp)

2

∆2
G

)

(4.13)

with
γmp = γ0 + γm . (4.14)

This result is justified for the small time limit. It holds particularly well for
the main portion of the decay function p(t) and the width distribution N(γ)
as long as the third order term is small within the range of β where N(γ)
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differs essentially from zero. Comparing the order of magnitudes ρ0V
4/γ′β2

and (ρ0V
4/γ′β2)3/2/

√

ρ0γ′ of the second and third order terms, one sees
that this condition is met if the above condition (4.2) for the level width
holds true. The short-time approximation might fail however for times,
where p(t) is nearly zero. For the width distribution N(γ) this corresponds
to a small width region above zero where γ is small compared to the most
probable width γmp.

2. Small l-level width limit and long-time limit

This limit prevails for

ρ0γ′ ≪ 1 and t >
γ′

V 2
. (4.15)

Considering now in Eqs. (3.29)–(3.33) for F (α) the asymptotic expansion
for large arguments (Appendix B)

F (α) =
5

3

√

2

iπα
+ O

(

|α|−3/2
)

, (4.16)

we get for q > 0, which means that γ0 < γ1, γ2 or γ0 > γ1, γ2

q(β) = r−[sign(γ′
2) + i sign(β)]

√

|β| + O
(ρ0

V
γ′3/2|β|−1/2

)

, (4.17)

and for q < 0 which implies γ1 < γ0 < γ2

q(β) = [r+ + ir−sign(β)]
√

|β| + O
(ρ0

V
γ′3/2|β|−1/2

)

(4.18)

with

r± =

√
2πρ0V

3∆γ0

(

|γ′
2|3/2 ± |γ′

1|3/2
)

. (4.19)

We may perform now the transform (3.9) using Eq. (3.14) for Q(β) and, de-
pending on the sign of q, the expressions (4.17) or (4.18) for q(β). Neglecting
terms of the order |β|−1/2, we obtain a Gaussian integral. By substituting

the new variable
√

|β|, applying subsequently Eq. (7.4.2) of Ref. [9] we get [5]
for q > 0

N(γ) = {1 + sign[(γ − γ0)γ
′
2]}

|r−|
2
√

2π|γ − γ0|3/2
exp

(

− r2
−

2|γ − γ0|

)

, (4.20)

with the most probable value

γmp = γ0 +
r2
−

3
sign(γ′

2) , (4.21)

and for q < 0 follows
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N(γ) =
1

2
√

π
Re

{

− r+ + ir−
[−i(γ − γ0)]3/2

w

(

i
r+ + ir−

2[−i(γ − γ0)]1/2

)}

(4.22)

with [(7.1.4) in Ref. [9]]

w(z) = exp
(

−z2
)

[1 − erf(−iz)] , (4.23)

and erf for the Gaussian error function.
The term of next order which enters q(β) differs from the reciprocal of the

term of leading order, which is of the order of magnitude (ρ0V
√

γ′
√

β)−1, by
the factor (ρ0γ′)2. Condition (4.15) makes sure, that this term is small versus
the term of leading order within that range of β-values, where the term of
leading order causes intermediate to strong damping of Q(β), since it is of the
same magnitude or larger than unity. The long-time approximation may fail
thus only for small β where Q(β) is nearly undamped. This β-range relates
via the Fourier back-transform (3.9) predominantly to the large-widths tail
of N(γ).

5. Results and discussion

The occurrence of the Gaussian distribution for the large level-width
limit ρ0〈|γl − γ0|〉 ≫ 1 is an outcome of the central-limit theorem. It holds
for the decay function particularly in the short-time limit t < 〈|γl −γ0|〉/V 2.
For long times, deviations from an expotential decay are expected, due to
the small widths part of the induced widths distribution. Here we are more
interested in the limit of small l-level widths, ρ0〈|γl−γ0|〉 ≪ 1, which finds its
applications also in the long time limit t > 〈|γl − γ0|〉/V 2. In this limit, the
width distributions are Lévy-stable distributions. We can distinguish two
cases regarding the location of the s-level width with respect to the distribu-
tion of the l-level widths. If the s-level width lies outside of that distribution,
we get for the widths of the perturbed s-levels the strongly asymmetric dis-
tribution (4.20), and Eq. (4.17) holds for function q(β), which appears in the
exponent of the characteristic function. The resulting distribution can be
identified with the Lévy distribution [8] L1/2,sign(γ′

2)(β). If the s-level width

lies within the l-level widths distribution, we get (4.18) for q(β), and we can
identify Q(β) with L1/2,η(β) with

η =
1 − |q|3/2

1 + |q|3/2
, (5.1)

and (4.7) for q. We see that the first index in the Lévy distribution relates
to the nature of the asymmetric time dependence in p(t). Here we find
only the value ǫ = 1/2. The second index η depends on the width of the
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s-level, γ0, taken relative to the widths of the l-levels. The figures show the
distributions of the induced widths γ rescaled at the most probable width
γmp [Eqs. (4.14) and (4.21)]

N0(∆γ) =
N(γ)

N(γmp)
(5.2)

as a function of
∆γ = (γ − γmp)N(γmp) . (5.3)

In Fig. 1, γmp is equal to the s-level width γ0, and the symmetry parameter
q is set equal to −1. This means that γ0 lies in the center of the linewidth
distribution h(γl). As parameter the dimensionless density

ρ =
π

2
ρ0γ

′
2 (5.4)

Fig. 1. Width-distributions scaled to the value at the most probable width γmp as function

of ∆γ for different values of ρ = π

2
ρ0(γ2 − γ0). ∆γ is the deviation of the width of the

perturbed s-state, γ, from γmp in units of the distribution width N(γmp)
−1 [Eq. (5.3)]. The

full drawn lines show N0(∆γ) distributions for different values of ρ, calculated numerically

from Eq. (5.2) using Eq. (3.9) for N(γ) together with Eq. (3.14) for Q(β) and Eq. (4.7)

for q. with the box distributions (3.26) and (3.27) for the l-level widths and couplings. The

dashed curve shows the Gaussian limit for large ρ. It was obtained from Eq. (4.13). The

dashed-dotted line gives the symmetric Lévy distribution for small ρ, and was obtained

from Eq. (4.22) using Eq. (4.19) with |γ′

1| = |γ′

2| for r±.
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is varied between the large l-level width limit, which joins into the Gaussian
function (4.13) and the small l-level width limit, which shows for ρ = 0.2
and q = −1 the sharpened function (4.22). In Fig. 2 the parameter q is
taken positive, and the s-level width γ0 lies to the left of the l-level width
distribution, and the dashed and dash dotted curves show the rescaled lim-
iting distributions for the induced widths γ − γmp in cases of large l-level
widths and small l-level widths bigger than the s-level width. In case of
large l-level widths the Gaussian distribution (4.13) results, and for small
l-level widths the Lévy distributions (4.20) with sign(γ′

2) = 1 emerge for
the induced width γ − γmp. It can be seen, that the distribution function
changes from a Gaussian distribution in the limit of large l-level widths to
a very asymmetric distribution for the limit of small l-level widths.

Fig. 2. Limiting width distributions for large and small ρ. For scaling see Fig. 1. The

dashed curve shows the distribution for a dense dark manifold. It is the same as in Fig. 1.

The dashed-dotted curve was obtained from Eq. (4.20) for γ′

2 > 0 with the lower sign

(4.19) for r−. It shows the limiting asymmetric Lévy distribution for the case that the

dark-state widths are bigger than the width of the bright state, γ0.

While the decay pattern of the Gaussian limit can be well characterized
by an exponential with a decay time given by the inverse of the width Γu

of (2.22), depending on the f(E) distribution, strong deviations can result
for the long tail distribution in the limit of small l-level widths. The decay de-
pends, however, on the nature of the excitation pulse and the destruction of
the coherence. As long as the coherence within the distribution is preserved
and the excitation pulse covers essentially the full line, an exponential decay
will result, given again by the inverse of the width Γu. However, if the dis-
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tributions change in time, they will destroy the coherence, and the long time
limit is characterized by the decay function (4.1) which is given then by Q(β)
with β = −2it and Eq. (4.17) for q(β) with sign(γ′

2) = ±1. Here the upper
or the lower sign holds, respectively, if all l-level widths are larger or smaller
than the s-level width. In the latter case the s-state width is diminished,
and p(t) diverges due to a missing cut-off of N(γ) for negative widths γ.
Confining to the former mentioned case, the s-state ‘borrows’ widths from
the l-levels. Substituting in Eq. (4.17) [1 + i sign(β)]

√

|β| =
√

2iβ = 2
√

t,
we obtain a square-root dependence of p(t), which stems from the long-time
small valued γ distributions. It consists of separately decaying states with
survival probabilities

p(t) = 〈|〈s|s(t)〉|2〉 = exp
(

−2γ0t − 2r−
√

t
)

(5.5)

with r− given in Eq. (4.19).

6. Summary

We studied the random matrix model of a bright state coupled to a man-
ifold of dark states under two conditions with regard to the energy distri-
bution function of the dark states: the nearly degenerate limit and the un-
bounded energy limit. Both limits provide Lorentzian line shape functions
under very general conditions for the coupling distributions and the width
distributions. We analyzed in detail the distribution of the level widths
induced via the couplings from the dark states into the bright state. For
the quasidegenerate limit we obtained the Gaussian distribution provided
a sufficiently large number of dark levels contributed to the broadening of
the bright state. However, for the case where a single level would contribute
with Gauss distributed couplings, we recovered the Porter–Thomas distri-
bution function for the induced widths. For the case of the unbounded
energy distribution we obtained as limiting cases either Gaussian distribu-
tions or Lévy distributions depending on the magnitude of the parameter
ρ0〈|γl−γ0|〉. For the large level-width and small-time limit we found a Gaus-
sian distribution but for the small-level width and large-time limit we found
Lévy distributions with Lévy indices depending upon the location of the
width of the bright state relative to the location of the dark-state width dis-
tribution. We consider this latter result as most remarkable, since it relates
different Lévy distribution functions to the width distributions of the dark
states. Interestingly, only two parameters, r+ and r− [Eq. (4.19)] are needed
to specify the Lévy function, even though four were needed to specify the
dark level distributions, namely the mean density of dark states ρ0, the lo-
cations γ1,2 of the boundaries of the dark level width distribution relative
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to the width of the bright state, and the extension 2V of the symmetric
coupling distribution. The exponent in the Lévy function characterizing
the long-time dependence of the survival probability comes out always as
η = 1/2.

Appendix A

Evaluation of the integral (3.28)

After performing in Eq. (3.28) the transform onto the new integration
variables γ′ = γl−γ0 and τ = v2/γ′, the old variable v writes sign(γ′)

√
γ′
√

τ ,
where we accounted for the positive sign of v with the proper prefactor. We
hence have to transform the differential dv in Eq. (3.28) as

dv = sign(γ′)

√
γ′

2
√

τ
dτ , (A.1)

and substitute there βτ/2 for βl [Eq. (3.24)]. Thus we get

q(β) =
iπρ0

2V ∆γ0

γ′

2
∫

γ′

1

dγ′

τ0(γ′)
∫

0

dτβγ′3/2√τΦ

(

βτ

2

)

, (A.2)

where the upper integration boundary of the second integral is a function of
the first integration variable

τ0(γ
′) =

V 2

γ′
. (A.3)

In order to perform in (A.2) the integration over γ′ we exchange there the
order of integrations. Taking care of the proper integration boundaries in
the γ′, τ -plane, we distinguish thereby three different combinations of signs
for γ′

1 and γ′
2. The double integral in Eq. (A.2) then transforms

for γ′
1, γ

′
2 > 0 into

V 2/γ′

2
∫

0

dτ

γ′

2
∫

γ′

1

dγ′ +

V 2/γ′

1
∫

V 2/γ′

2

dτ

V 2/τ
∫

γ′

1

dγ′ , (A.4)

and for γ′
1, γ

′
2 < 0 into

V 2/γ′

1
∫

0

dτ

γ′

2
∫

γ′

1

dγ′ +

V 2/γ′

2
∫

V 2/γ′

1

dτ

γ′

2
∫

V 2/τ

dγ′ , (A.5)
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whereas for γ′
1γ

′
2 < 0 it goes over in

V 2/γ′

1
∫

0

dτ

0
∫

γ′

1

dγ′+

−∞
∫

V 2/γ′

1

dτ

0
∫

V 2/τ

dγ′+

V 2/γ′

2
∫

0

dτ

γ′

2
∫

0

dγ′+

∞
∫

V 2/γ′

2

dτ

V 2/τ
∫

0

dγ′ . (A.6)

Subsequent to this we can perform in Eq. (A.2) the integration over γ′

for these cases. The results subsume in

q(β) =
iπρ0

5V ∆γ0

{ V 2/γ′

2
∫

0

βdτγ
′5/2
2

√
τΦ

(

βτ

2

)

−
V 2/γ′

1
∫

0

βdτγ
′5/2
1

√
τΦ(βτ/2) +

∫ ′

βdτV 5τ−2Φ(βτ/2)} . (A.7)

Here we introduced the following abbreviations; for γ′
1γ

′
2 > 0

∫ ′

= sign(γ′
1)

V 2/γ′

1
∫

V 2/γ′

2

, (A.8)

and for γ′
1γ

′
2 < 0,

∫ ′

=

−∞
∫

V 2/γ′

1

+

∞
∫

V 2/γ′

2

. (A.9)

After substituting into (A.7) the new integration variable y = βτ/2, and
on proper account of different cases for the phase factors, one recovers
Eq. (3.29).

Appendix B

Asymptotic expansions of F (α)

1. Small α

Performing a Taylor series expansions of the exponential and the Bessel
functions within Eq. (3.25) for the function Φ(y), we obtain for small argu-
ments

Φ(y) =

[

1 − i

2
y + O(y2)

]

. (B.1)
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By inserting this result into Eq. (3.32), we get for F1(α) for small α

F1(α) ≡ α−3/2

α
∫

0

[

y1/2 − i

2
y3/2 + O

(

y5/2
)

]

dy =
2

3
− i

5
α+O

(

α2
)

. (B.2)

Using further Eq. (3.25) for Φ(y), by substitution of the new integration
variable z = sign(α)y, we obtain from Eq. (3.33)

F2(α) = |α|
∞
∫

|α|

e−isign(α)zz−2J0(z)dz + iα

∞
∫

|α|

e−isign(α)zz−2J1(z)dz . (B.3)

Invoking here for the integrals the asymptotic expansions for small argu-
ments, given by Eq. (9) of Section 4.2 in Ref. [10] with µ = −2, ν = 0 and
ν = 1 and by the complex conjugate of this equation, we obtain after a little
algebra

F2(α) = 1 +
i

2
α ln

iα

2
+

(

C

2
− 1

4

)

iα . (B.4)

By substituting this result together with (B.2) for F1(α) into Eq. (3.31), we
arrive at Eq. (4.4).

2. Large α

We first rewrite Eq. (3.32) for F1(α) by performing there integration by
parts to get

F1(α) = Φ(α) − 2α−3/2

α
∫

0

y1/2 d[yΦ(y)]

dy
dy , (B.5)

and, by using the relations (9.1.27) of Ref. [9] for the derivatives of Bessel
functions, we find

F1(α) = 2Φ(α) − 2α−3/2

α
∫

0

y1/2e−iyJ0(y)dy . (B.6)

We may write this as

F1(α) = 2Φ(α) − 2α−3/2e−iα

[ α
∫

0

y1/2 cos (α − y)J0(y)dy

+ i

α
∫

0

y1/2 sin (α − y)J0(y)dy

]

. (B.7)
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Expanding the integrals in terms of Bessel functions, as in Eqs. (6.716.1)
and (6.716.2) of Ref. [11] with λ = 1/2 and ν = 0, we get

F1 =2e−iα

[

1

3
J0(α)+iJ1(α)−2

Γ (3/2)

Γ (−1/2)

∞
∑

n=1

in
Γ (n − 3/2)

Γ (n + 5/2)
nJn(α)

]

. (B.8)

Using further Eq. (9.2.1) of Ref. [9] together with symmetry of trigono-
metric and Bessel functions, we obtain expansions for large real arguments
of the Bessel function Jn(α). For even n we have

Jn(α) = in

√

2

π|α|
[

cos
(

|α| − π

4

)

+ O
(

|α|−1
)

]

, (B.9)

and for odd n

Jn(α) = in−1sign(α)

√

2

π|α|
[

sin
(

|α| − π

4

)

+ O
(

|α|−1
)

]

. (B.10)

By inserting these results into Eq. (B.8), we obtain for large α

F1 =

√

2

π|α|e
−iα

[

(

1

3
− Σ+

)

cos
(

|α| − π

4

)

+i sign(α)(1 − Σ−) sin
(

|α| − π

4

)

]

+ O
(

α−3/2
)

, (B.11)

with

Σ± =
Γ (3/2)

Γ (−1/2)

∞
∑

m=0

Γ (m + 2)Γ (m − 1/2)

Γ (m + 7/2)m!
[1 ∓ (−1)m] . (B.12)

We may sum up this series in terms of Hypergeometric Functions
[Eqs. (15.1.1), (15.1.20) and (15.1.21) in Ref. [9]],

Σ± =
Γ (3/2)

Γ (7/2)

[

F

(

2,−1

2
;
7

2
; 1

)

∓ F

(

2,−1

2
;
7

2
;−1

)]

= 1/6∓1/3 , (B.13)

and with this result we get from (B.11) after a little algebra

F1 =

√

2

iπα
+ O

(

α−3/2
)

. (B.14)
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Using further in Eq. (3.25) the Eqs. (B.9) and (B.10) with n = 0 and n = 1,
we obtain for Φ(y) for large real arguments y

Φ(y) =

√

2

π|y|e
−isign(y)π

4 , (B.15)

and by inserting this expansion for Φ(y) into (3.33) we obtain for large real
arguments α

F2(α) = α

√

2

π
e−isign(α)π

4

(sign(α))∞
∫

α

[

|y|−5/2

+O
(

|y|−7/2
) ]

dy =
2

3

√

2

iπα
+ O

(

α−3/2
)

. (B.16)

By substituting this result together with Eq. (B.14) for F1(α) into Eq. (3.31),
we finally arrive at Eq. (4.16) for F (α).
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