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We study systems with Hamiltonian dynamics type coupled to reser-
voirs providing free energy which may be converted into acceleration. In
the first part we introduce general concepts, like canonical dissipative sys-
tems and find exact solutions of associated Fokker–Planck equations that
describe time evolutions of systems at hand. Next we analyze dynamics
in ratchets with energy support which might be treated by perturbation
theory around canonical dissipative systems. Finally we discuss possible
applications of these ratchet systems to model the mechanism of biological
energy conversion and molecular motors.
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1. Introduction

The study of mechanical systems with support of energy goes back to
the investigations of Helmholtz and Rayleigh on the origin of sustained os-
cillations. In his fundamental book “The theory of sound”, published 1894,
Rayleigh proposed the following equation as the basis for the treatment of
sustained oscillations

dv

dt
+ ω2

0x = (a − bv2)v . (1)
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Here x, v are the position and velocity of the oscillator of a mass m = 1, ω0

its frequency and a, b are positive constants which determine the input of
energy according to the balance for the Hamiltonian H:

dH

dt
= (a − bv2)v2 . (2)

We see from (2) that for small velocities the energy input (and correspond-
ingly the acceleration of the particle) is positive up to the state, when the

velocity reaches the characteristic value v0 = ±
√

a/b. Generalizations of the
“active friction” introduced by Rayleigh found many applications including
the concept of “Active Brownian Motion” which extends the notion of stan-
dard Brownian motion as studied by Einstein, Smoluchwski, Fokker, Planck
and others to the field of driven motions [1–5,9] including a developing the-
ory of swarming motions [6–8, 10, 11]. In the second section we introduce
the concept of canonical-dissipative systems, which was developed by Haken
and Graham [12,13], and proved to be very useful in the context of systems
with energy support [2, 14, 15].

In the remaining part of the paper we study more specific applications to
transport problems on Hamiltonian ratchets, to molecular energy conversion
and to molecular motors. Since the fundamental work of Smoluchowski [16]
the problem of transport on ratchets is under a constant debate. Some of
the most interesting applications are related to biological energy conver-
sion [17, 18]. Here we will discuss several problems related to Hamiltonian
ratchets and their possible role in modeling the functioning of ATP and
ADP in cells and the related transport mechanisms. We have in mind possi-
ble applications to biological systems as e.g. proton and electron pumps. In
particular we are interested in the role of the ATP-synthese. One of the aims
of our work is to explore the possibility to model the absorption of ATP as
an energetic support from an energy reservoir. The basic model assumption
is that free energy is provided by an ATP reservoir in continuous or discrete
form and transferred into a ratchet. The energy quanta formed by hydrol-
ysis of ATP are able (in principle) to provide work and move the particle
“uphill”. This could imply a movement of the particle against a mechanical
or electrical potential gradient. We propose two schemas how to transform
the ATP-energy into work:

(i) by a continuous support with free energy which is converted to work, or

(ii) by absorption of energetic quanta which are modeled as a kind of
energetic shot noise.
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2. Canonical-dissipative dynamics as a solvable case

of driven systems

The Rayleigh equation cannot be solved exactly in an analytic form.
However with a little change in the driving term we can get a solvable
problem. For the motion on a limit cycle of radius r, dynamic equilibrium
conditions between centripetal and centrifugal forces require

mv2

r
= mω2r ,

E = mv2 , (3)

so that, due to the equipartition of energy the relation

〈v2〉 =
〈H〉
m

(4)

holds. This may justify to make in Eq. (1) the replacement

v2 → H

m
, (5)

which for linear oscillators is not true at any time moment, but holds in
average. By the replacement (5) we get a system which is solvable as was
observed already by Poincaré

m

(

dv

dt
+ ω2

0x

)

=

(

a − b

m
H

)

v . (6)

Since

H =
mv2

0

2
+

mω2
0x

2

2
= H0 = m

a

b
(7)

is an invariant and an attractor of Eq. (6), all trajectories converge to the
surface H = H0. The motion on this surface is purely Hamiltonian in
nature and the solution is the standard one of a linear oscillator with just
this energy. The exact solution of the dynamic equations on the surface
H =H0 is

x(t) =

(

v0

ω0

)

sin(ω0t + δ) , v(t) = v0 cos(ω0t + δ) . (8)

This stable motion corresponds to a sustained oscillation with stationary
amplitude x0 = v0/ω0 which represented in the phase space form a closed
separated orbit, i.e. a limit cycle. Systems of this type, characterized by
dissipative forces depending only on the form of Hamiltonian were called
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later by Graham “canonical dissipative” [13]. The stochastic theory of this
rather interesting class of systems was developed by Klimontovich [1] starting
with a Langevin analogue of Eq. (6) that incorporates action of random
(white and Gaussian) forces ξ(t):

m

(

dv

dt
+ ω2

0x

)

=

(

a − b

m
H

)

v + m(2Dv)
1/2ξ(t) , (9)

with Dv representing strength of velocity fluctuations. The full (2-dimen-
sional) Fokker–Planck equation corresponding to Eq. (9) reads (m = 1)

∂P (x, v, t)

∂t
+ [H,P ] =

∂

∂v

[

(bH − a) vP (v, t) + Dv
∂P (v, t)

∂v

]

(10)

with the RHS representative for the dissipative motion. This equation has
the stationary solution which factorizes to the product of functions (in x
and v variable, respectively) with the stationary probability density P0(v)
given by

P0(v) = ρ(H) = C exp

[

aH − bH2/2

Dv

]

. (11)

For the passive case, a < 0, this distribution is quite similar to a Maxwellian.
For a > 0 the system is driven away from equilibrium. In this case the
velocity distribution is bistable and has a maximum above the limit cycle

v2

2
+

ω2
0x

2

2
=

a

b
. (12)

This corresponds to a system of particles which perform self-sustained os-
cillations. For a < 0 the oscillations are damped, for a = 0 the deter-
ministic system goes through a bifurcation which leads for a > 0 to the
auto-oscillating regime. The distribution function for the transition point
has a rather large dispersion as characteristic for all phase transitions. In
the limit of small noise (Dv → 0) the curve of maximal probability is exactly
above the deterministic limit cycle. This is, of course, a necessary condition
which any correct solution of the Fokker–Planck equation has to fulfill. Fur-
ther we note, that the term in the exponent (H − a/b)2 corresponds to the
Lyapunov function of the system. We found this way a model system which
is exactly solvable in equilibrium and for any distance away from equilib-
rium. Admittedly, the force function which we used, F = (a − bH)v is not
very realistic. However it may be shown, that the more realistic Rayleigh
force F = (a − bv2)v introduced for modeling sound oscillations as well as
the van der Pol force F = (a− bx2) introduced for modeling electric oscilla-
tions may be converted in good approximation to our canonical-dissipative
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force F = (a − bH)v. This may be proven by using the procedure of phase-
averaging [1]. Our solvable model system is quite useful as a starting point
for perturbative schemes. Now we will generalize the concept and treat
a whole class of solvable systems. This idea is mainly based on works of
Haken and Graham [12, 13]: For this special class of far from equilibrium
systems, a general ensemble theory similar to Gibbs approach may be de-
veloped [12–14]. The theory of canonical-dissipative systems is the result
of an extension of the statistical physics of Hamiltonian systems to a spe-
cial type of dissipative systems where conservative and dissipative elements
of the dynamics are both determined only by invariants of the mechanical
motion. There exists close relation to a recently developed theory of ac-
tive Brownian particles [3, 15]. We start the development of the theory of
canonical-dissipative systems with a study of the phase space dynamics of
a driven many-particle system with f degrees of freedom i = 1, ..., f . As-
suming that the Hamiltonian is given by H(q1...qfp1...pf ) the mechanical
motion is given by Hamilton equations. The solutions are trajectories on
the plane H = E = const. The constant energy E = H(t = 0) is given by
the initial conditions, which are (in certain limits) arbitrary. We construct
now a canonical-dissipative system with the same Hamiltonian

dpi

dt
= −∂H

∂qi
− g(H)

∂H

∂pi
, (13)

assuming that the dissipation function g(H) is nondecreasing. Equation (13)
defines a canonical-dissipative system which does not conserve the energy.
In regions of the phase space where g(H) is positive, the energy decays
and in regions where g(H) is negative, the energy increases. The simplest
possibility is constant friction g(H) = γ0 > 0 which corresponds to a decay
of the energy to the ground state. Of more interest is the case when the
dissipative function has a root g(E0) = 0 at a given energy E0 e.g.

g(H) = c(H − E0) . (14)

Then the states with H < E0 are supported with energy, and from states
with H > E0 energy is extracted. Therefore, any given initial state with
H(0) < E0 will increase its energy up to reaching the shell H(t) = E0 and
any given initial state with H(0) > E0 will decrease its energy up to the
moment when the shell H(t) = E0 is reached. The surface H = E0 is an
attractor of the dynamics, any solution of Eq. (13) converges to it. On the
surface H = E0 itself the solution corresponds to a solution of the original
Hamiltonian equations for H = E0. The speed of the relaxation process is
proportional to c−1. More general dissipative functions were considered in
the theory of active Brownian motions [15]. We mention that in particular
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all noninteracting systems are canonical-dissipative. The attractor of the
dissipative system (13) is located on the surface H = E0. This does not mean
that the full (2f−1)-dimensional surface is the attractor of the system. Such
a statement is correct only for the case f = 1, which has been considered in
the last section, further this statement may be true also for systems which
are ergodic on the surface H = E0. In the general case the attractor may
be any subset of lower dimension, possibly even a fractal structure.

A more general class of canonical-dissipative systems is obtained, if be-
side the Hamiltonian also other invariants of motion are introduced into
the driving functions. Let us assume that the driving functions depend on
H = I0 and also on some other invariants of motion I0, I1, I2, ..., Is. For the
equation of motion we postulate

dpi

dt
= −∂H

∂qi
− ∂G(I0, I1, I2, ...)

∂pi
. (15)

These are generalized canonical-dissipative systems.
We return to the simpler case g = g(H) and include an external white

noise source which leads us to the Langevin equations

dpi

dt
= −∂H

∂qi
− g(H)

∂H

∂pi
+ (2D(H))1/2ξ(t) . (16)

The essential assumption is, that noise and dissipation depend only on H.
The corresponding Fokker–Planck equation reads

∂ρ

∂t
+

∑ ∂H

∂pi

∂ρ

∂qi
−

∑ ∂H

∂qi

∂ρ

∂pi
=

∑ ∂

∂pi

[

g(H)
∂H

∂pi
ρ + D(H)

∂ρ

∂pi

]

. (17)

An exact stationary solution is

ρ0(q1...qfp1...pf ) = Q−1 exp



−
H

∫

0

dH ′
g(H ′)

D(H ′)



 . (18)

The derivative of ρ0 vanishes if g(H = E0) = 0. This means, the probability
is maximal at the surface H = E0. For the special case of a linear dissipation
function we find the stationary solution

ρ0(q1...qfp1...pf ) = Q−1 exp

(

cH(2E0 − H)

2D

)

= Q−1
1 exp

(−c(H − E0)
2

2D

)

. (19)
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Although these distributions might be formally correct they, nevertheless,
may be not of interest for applications to problems of physics. In par-
ticular, distributions of type (18) do not admit translational or rotational
flows. In order to include such properties, other invariants of motion may
be introduced [2] or perturbations which break the high symmetry of the
canonical-dissipative systems.

The rest of the paper is devoted to applications of the concept of cano-
nical-dissipative systems to ratchet systems. We will show that canonical-
dissipative systems are a useful concept which allows to treat these systems
on the basis of perturbation theories. We will study ratchets coupled to
energy reservoirs and possible applications to molecular energy conversion
and special types of molecular motors.

3. Hamiltonian ratchets coupled to sources of energy

3.1. Models of the ratchet and the energy source

In recent papers several new types of inertia ratchets with energy input
were studied which are related to our problem of canonical-dissipative sys-
tems [22, 23]. Let us consider first a 1D-ratchet system described by the
Hamiltonian H = p2/(2m)+U(x), consisting of a particle located at x with
momentum p = mv, subjected to the action of a periodic potential.

As a particular simple case we consider the continuous ratchet potential
introduced by Mateos, Machura and others [24, 25]. This potential model
U(x) has one free parameter (h, the height of the maximum)

U(x)=h{0.499−0.453{sin[2π(x+0.1903)]+0.25 sin[4π(x+0.1903)]}} . (20)

 0
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Fig. 1. Ratchet potentials of the type proposed by Mateos et al. [24, 25] with

different height h = 1.0, 0.5, 0.25.
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Finally, we use for comparison also the quasilinear (continuous but not dif-
ferentiable) standard ratchet which is in the first segment defined by [22]

U(x) = −F1x , if 0 < x < xm , (21)

U(x) = −F2(x − 1) , if xm < x < 1 , (22)

where

F1 = − h

xm

, F2 =
h

1 − xm

. (23)

Here 0 < xm < 1 is the place of the maximum. The ratchet potentials
introduced above have all the period 1. We assume that the basic cell of
periodic boundary conditions is L = 1 or L > 1 (integer). It is important
to realize that the excitations might have a period which is larger than
the period of the basic cell. Having in mind biological applications where
typically some transfer from chemical to mechanic or electric energy appears,
we will study now ratchets which are connected to an energy reservoir. The
driving force is in our model proportional to the velocity and has a time
dependence defined by an extra equation for a depot energy e(t):

dv(t)

dt
+ γv(t) + U ′(x) = F0 + de(t)v(t) +

√
2Dξ(t) , (24)

de(t)

dt
= q(t) − ce(t) − de(t)v2(t) . (25)

Here γ is a mechanical friction, q(t) may be a deterministic or stochastic
source of energy, d is a transmission rate and F0 stands for a possible tilt of
the ratchet. The mass m has been set to m = 1. The physical meaning is
that we have a permanent inflow of energy, which in simplest case is constant
q(t) = q0 = const., and flows with rate dv2(t)e(t) to the mechanical degree
of freedom. The term ce(t) expresses the rate of internal losses in the depot.
The driving mechanism corresponding to Eq. (25) is a generalization of the
Rayleigh system discussed above [3, 4, 22, 23]. We use here a mechanical in-
terpretation but due to the equivalence of mechanical and electrical circuits,
it could as well be an electrical circuit which is modeled by our equations.
There exist other driving mechanisms which are nearer to the van der Pol
oscillator, but we leave a study of these mechanisms to future work.

3.2. The cases of free particles and constant external force

We will solve now the deterministic equations for several instructive spe-
cial cases:

ẍ(t) + U ′(x) + [γ − de(t)]ẋ(t) = F0 , (26)

ė(t) − q + ce(t) + de(t)ẋ2(t) = 0 . (27)
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As a zeroth approximation we neglect in the first equation the potential
assuming U ′(x) = 0 and assume stationarity i.e. ė = 0. This leads to the
case of free motion (U(x) = const). Treating the set of equations we make
use of the equilibrium relation for the first equation e = d/γ which is due to
the stable flux of energy that counterbalances the dissipation term. We will
take later this exact solution as the starting point of a perturbation theory.
The bifurcation parameter of our problem is

β =
q

γ
− c

d
. (28)

If β ≥ 0, the system is driven to non-equilibrium states and has all together
3 stationary states of the velocity: v = 0, v = v0 and v = −v0. Here v0

is the velocity where friction and stationary driving compensate each other.
The state v = 0 is unstable. The condition of equilibrium leads to

e0 =
q

c + dv2
0

⇒ v2
0 =

q

γ
− c

d
. (29)

For small energy transfer, such as for low amplitude of the corresponding
limited dynamics, the particle gets trapped in one well and does sustained
oscillations similar as described by the original. The case of trapped motions
is not studied here, we refer to another paper [26].

We consider now the case of a constant force, corresponding to a constant
tilt

F = F0 = −a . (30)

Here a is the slope of an equivalent potential U0(x) = −ax. Mostly we will
assume a positive slope a > 0, F0 < 0. Let us first consider the case that
there is no additional ratchet potential i.e. U(x) = 0. This problem still
admits an exact solution. Without an energy flux q from the reservoir, the
particle would fall down (if a > 0 from right to left). Including the reser-
voir provides the possibility of uphill motions. The condition of stationary
motion under the action of this force leads to the cubic equation

γdv3
0 + adv2

0 + (cγ − qd)v0 + ac = 0 . (31)

The solutions may be found graphically (see Fig. 2) Somehow simpler is the
solution in the case c = 0, i.e. there is no internal dissipation. Then we get
the explicite solution

v0 = − a

2γ
±

√

a2

4γ2
+

q

γ
. (32)
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In this limit the solution is bistable and does not depend on the parameter
d. We may improve this result if we assume that dissipation c and the slope
a are so small that ac may be neglected. This leads to the solution

v0 =
F0

2γ
±

√

F 2
0

4γ2
+

q

γ
− c

d
, (33)

This way, in the general case we have a cubic equation for the stationary
velocities, which is easy to solve numerically, and in some approximation
analytically. The downhill motion exists in all cases, for our standard case
a > 0;F0 < 0 the downhill motion is directed to the left. However, in the
case of positive energy input q0 > 0 also a stationary uphill motion may exist
v0 > 0, provided the force driving downhill is not too large. For example if
a = 1;F0 = −1, the trivial downhill solution is v0 = −5 and the stable uphill
solution is v0 = +0.5 for d = 1; for d = 0.3 no uphill solution exists. It is
interesting to note that uphill motion may exist even without any ratchet
effects provided the driving is sufficiently strong. However, even if uphill
motion is possible, the question remains, what is the influence of ratchet
effects and what is the efficiency of the energy transfer.

The results which we obtained for constant forces allow us a simple
approximation of the dynamics for the piecewise linear potentials defined
by Eq. (22). These ratchets are formed of two segments each with constant
force. The first one is increasing with a1 = h/xm > 0 and the second one
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Fig. 2. Stationary solution: The force F0 = −a as a function of the velocity for

γ = 0.2 and 2 fixed d-values (d = 0.3 and d = 1 with c = 0.1) and the asymptotic

curve with c = 0. The comparison is made with Stokes law F = γv. The solution

representing free motion corresponds to the roots on the axis F = 0.
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is decreasing with a2 = h/(xm − 1) < 0. In a rough approximation we
may compose the dynamics from two pieces corresponding to constant force
dynamics, the approximative character is due to the fact that the segments
have a finite length, while the solutions given above assume strictly speaking
infinite length.

In our approximation we see the conditions for ratchets with unidirec-
tional current:

(i) The average value of the flatter slope should be in the range where the
uphill motion is possible, and

(ii) the average value of the steeper slope should not allow the uphill mo-
tion.

Under these conditions the particle can go uphill from left to right, how-
ever the motion backwards is not possible and we get a unidirectional motion.
We may take this construction as a rule of thumb in order to to find the
conditions for constructing unidirectional ratcheting devices.

4. The flux regime of ratchets coupled to energy reservoirs

4.1. Analytical results and simulations

In the general case, the equations of motion for ratchets coupled to energy
reservoirs cannot be solved analytically. However a few analytical results
may be obtained by using perturbation expansions around the solvable cases,
which are in fact canonical-dissipative systems. As pointed out above, for
small energy input the particle cannot leave a well, its getting trapped and
possibly even comes to rest at the bottom. Accordingly we have 3 regimes:

(i) complete rest (point attractor of the dynamics),

(ii) sustained oscillations in one well (bounded attractor),

(iii) flux regime (open attractors).

We leave a detailed investigation of the different regimes to another work [26]
and study here only the flux regime which is most interesting for applications.

In the framework of perturbation theory we write

v = v0 + v1(t) + . . . , e = e0 + e1(t) + . . . , (34)

where v0, e0 represent the exact solutions for free motion given above. For
large driving and small forces (U ′(x) ≈ 0) the particles move nearly free.
We find for free motion two attractors of the velocity

v+
0 =

√

β , v−0 = −
√

β , e0 =
γ

d
. (35)



1262 W. Ebeling, E. Gudowska-Nowak, A. Fiasconaro

We take these solutions as the first term in a perturbation series. Inserting
the zero-approximation into the Eq. (26), with an appropriate choice of the
constant the first order of approximation is:

v1(x) ≈ v0 −
U(x)

v0

+
h

2v0

. (36)

The solutions given here may be further developed [26]. The perturbation
theories are limited in range of validity to ratchets with small height h, i.e.
ratchets with a rather flat profile. In the opposite case of a strong profiles we
may get some good estimates form the formulae for constant tilt, assuming
that the motion consists of two parts, the uphill and the downhill motion,
which both are described by our formulae for constant force.

In general however, one is forced to rely on simulations. We have car-
ried out a few simulations for ratchets with parameters of interest for the
problem of transformation energy input to work. Already Tilch et al. [22]
have shown by simulations for the case of ratchets with piecewise constant
forces, that around the stationary states v+

0 and v−0 the dynamical system
possesses — at least for larger values of driving — open attractors corre-
sponding to left or right current states [22]. In the present work we have
studied several realizations of systems driven in Mateos ratchets potential.
As we see in Fig. 3 the Mateos ratchet driven by active friction with strong
coupling depot-particle (strong energy transfer i.e. strong driving) also pos-
sesses several kinds of momentum-dependent attractors: Closed attractors
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Fig. 3. Examples for trajectories which go to different attractors starting from

different initial velocities. Due to the ratchet asymmetry negative initial velocities

can give rise to positive asymptotic ones and vice versa.
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corresponding to limit cycle oscillations on one of the wells, and open at-
tractors. Fig. 3 shows for different initial velocities (v(0) = 6; 2; 1;−6), that
depending on the initial conditions either one of the open attractors (left or
right driven translation) or a closed attractor (sustained oscillation in one
particular well) is approached. Another example is shown in Fig. 4. Here
we investigated a rather steep continuous Mateos ratchet with h = 7. We
see in the upper part of Fig. 4 the shape of the ratchet and in the lower part
an open right left trajectory in intermittence with a transient limit cycle.
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x)

,U
(x

)

x

Fig. 4. Simulation results for a very steep Mateos ratchet h = 7 which is shown

above. The parameters of driving are q = 1, c = 0.1, d = 1.2. Two trajectories are

shown, the first one makes a transient limit cycle and then is running to the left.

A second trajectory starting from a different initial condition is trapped first in

a transient cycle and then in a stable limit cycle.

4.2. Tilted ratchets

Under the name tilted ratchets we understand here ratchets with a con-
stant average slope. In other words we have a global incline of the ratchet
which is due to some constant average force. This may model a constant
external load against which the ratchet has to do work. In our example we
studied a tiltet ratchet with h = 0.5 and a load force which is directed right
to left, the force parameter is a = 0.03. The parameters of driving are as
before q = 1, c = 0.1, γ = 0.1. As demonstrated in Fig. 5 the attractor of
the uphill motion has a big attractor region which is trapping most initial
conditions even such with (small) negative initial velocity. However, if the
initial velocity is negative and large enough, the trajectory will be trapped
by the downhill attractor.
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directed right to left, the force parameter is a = 0.03. The attractor of the uphill

motion has a big attractor region. However, trajectories with a large negative

initial velocity as shown below, may be trapped by the downhill attractor.

The ratchet system which we studied above is in principle able to perform
work on the cost of chemical energy imported by the flow q > 0. However,
it is not excluded that large (negative) fluctuations will bring the system
to the downhill attractor. Therefore, we were looking for conditions were
only the uphill attractor exists. Studying Mateos ratchet we made a choice
of parameters such that the average of the smaller slope (increasing left to
right) can still be overcome by the driving mechanism. However, the large
slope (from right to left) is too large to be overcome. In other words, there
exists an uphill solution for the smaller slope and no uphill solution for the
larger slope. This prevents any possibility to go left in our case. The ratchet
with such parameters is a unipolar, rectyfying device.

5. The influence of noise

5.1. Langevin white noise in the mechanical equations

In the simplest case we have only Langevin white noise modeling a sto-
chastic uncorrelated force acting on the particle of unit mass m = 1

dv(t)

dt
+ γv(t) + U ′(x) = F0 + de(t)v(t) +

√
2Dξ(t) , (37)

de(t)

dt
= q − ce(t) − de(t)v2(t) , (38)
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a = 0, 0.03, 0.1. With increasing load the velocity decreases, however downhill

motion is impossible.

where q is the constant source of energy. In the stationary case (ė = 0)
and neglecting the energy fluctuations in the reservoir the Fokker–Planck
equation reads

v
∂P (x, v)

∂x
+F (x)

∂P (x, v)

∂v
=

∂

∂v

[(

γ− qd

c+dv2

)

vP (x, v)+D
∂P (x, v)

∂v

]

.(39)

In the case of U ′(x) = F0 = 0 the corresponding Fokker–Planck equation
may be solved exactly. The solution reads [5]

P0(v) = C exp

[

−γv2

2D
+

q

2D
log

(

1 +
d

c
v2

)]

. (40)

Including a coordinate-dependent force expressing the tilt and a ratchet
force F (x) = −a − U ′(x) the Fokker–Planck equation may be solved by
perturbation theory. In the special case of constant force F = −a we get
(m = 1)

P0(v) = C exp

[

−γv2 + 2av

2D
+

q

2D
log

(

1 +
d

c
v2

)]

. (41)
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This solution gives now an unsymmetrical distribution with two maxima
corresponding to the deterministic stable flux velocities (see Fig. 7).

 0
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-8 -6 -4 -2  0  2  4  6  8

P
(v

)

v

exp(-0.1*x**2 -a*x+0.5*log(1+x**2))

Fig. 7. Example of an unsymmetrical velocity distribution corresponding to a flux

on the tiltet ratchet. The downhill motion has a higher probability.

The stochastic flux on a ratchet may be estimated from the formula

J =

∫

dvvP (x, v) . (42)

Another useful quantity is the fraction of particles with positive or negative
net velocity in average over a larger time. We started an experiment with
the initial condition

P (x, v, t = 0) = δ(x)δ(v) (43)

and measured after some time T ≃ 300 the fraction of particles which are
located in the positive half-space.

Nr

N
=

∞
∫

0

dx

∫

dvP (x, v, T ) . (44)

This quantity shows, how strong might be the influence of thermal noise on
the transport on ratchets. Fig. 8 displays an example of the fraction of the
right-going particles as a function of the noise strength and for different val-
ues of the tilt. The non-monotonous character of that partition is surprising
and calls for some further explanations of the dynamics.
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5.2. Shot noise in the energy dynamics

In this model we will assume that the energy input q(t) consists of quanta
all of the same energy δe which arrive at stochastic times which are Poisson-
distributed.

de(t)

dt
= q(t) − ce(t) − de(t)v2(t) . (45)

The idea is, to model processes similar to the ATP absorption. In ATP-driven
processes the system absorbs energy in packets (quanta), each of about
13 kBT . The ATP quanta have nearly the same intensity δe ≃ (1/3) eV
and are assumed to be independent events whose occurrence in a given
time-interval follows a uniform (in time) Poisson process. In such case the
time-distance between subsequent events (the waiting time distribution) of
absorbtion is stochastically distributed and can be well approximated by an
exponential distribution. In the simplest possible case with no energy trans-
fer to the ratchet system d = 0, the energy of the reservoir evolves in time
following the pattern of an Ornstein–Uhlenbeck process driven by a shot
noise:

de(t)

dt
= −ce(t) + q(t) . (46)

Shot noise and corresponding applications have been carefully explored since
the pioneering works of Campbell (1909) and Schottky (1918). For newer
investigations and analysis of the asymptotics to the process Eq. (46), we
refer to [27–29]. Obviously, the situation, as described in our model is by far
more complicated, since the additional coupling between the energy source
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and mechanical degrees of freedom does not allow to analyze both equations
separately. Staring with this remark, we shall investigate only a few features
of our model, leaving a more detailed study to a future work [31]. In a decou-
pled limit, the energy balance Eq. (45) leads to the following deterministic
equation for the means

d〈e(t)〉
dt

= 〈q(t)〉 − c〈e(t)〉 − d〈e(t)〉〈v2(t)〉 (47)

and in the stationary state to

〈e〉 =
〈q(t)〉

c + d〈v2〉 . (48)

If the shot noise is sufficiently dense in time and the intensity of distributed
energy quanta is high enough, we may expect the same behavior as with
a continuous energy support. In other words, replacing 〈q(t)〉 by a con-
stant (or slowly varying function qeff) yields qualitatively the same results
as described in former paragraphs.

In contrast, if the distributed energy quanta are small, a new class of
phenomena may be expected. During a shot the energy reservoir is filled
with one energy portion which has to be consumed in the time interval up
to the next shot. In an extreme case the scenario is the following:

(i) At some time the reservoir is empty, the system waits in a minimum
of the ratchet-type potential for the energy support.

(ii) After some (exponentially-distributed) stochastic time one energy
quantum δe is absorbed.

(iii) Using the given quantum, the particle may move up the next of the
neighboring hills, up to the moment when the reservoir is empty again.

Then the particle comes to rest and the cycle may begin again with step (i).
There exist several possibilities to model shot noise. We study here only
white shot noise (WSN) consisting of a sum of delta-functions [30]. We
tested a white shot noise with a number of spikes Poissonian distributed in
time and, consequently, with the waiting times distributed according to

P (δt) =
1

τc
exp

(

−δt

τc

)

, (49)

where τc = 〈δt〉 and quanta per shot Q = 3. We have performed several test
simulations of the process driven by a Poisson shot-noise. Our experience is
that driving by a Poisson noise whose variance is equal the mean is inefficient
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for processes undergoing motion in steep ratchets. For this reason, we first
examined motion in a rather flat Mateos’ ratchet-potential with h = 1. For
illustration we display an exemplary result in Fig. 9, in comparison to the
case of constant energy influx. The parameter of a constant energy influx
was adapted in such a way that in both cases the average energy content
of the reservoir is the same. The Mateos ratchet used for the simulations
demonstrated in Fig. 9 is rather flat h = 1 compared to earlier examples. The
motion is driven by a Poisson-type shot noise with the characteristic time
τc = 0.1 and quanta Q = 3. We show for comparison the results for a ratchet
driven by a constant energy input q = 1.2. The apparent variations in the
energy content, as displayed in the right corner of Fig. (9) are due to the
Poisson distribution of energy spikes. In the two upper panels the velocity
and the coordinate as functions of time are presented. The left corner panel
below displays in turn, the velocity as a function of space. The parameters
are chosen in such a way that the energy content of the reservoir is in average
equal for the shotnoise-driven ratchet and for the ratchet with a continuous,
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deterministic energy input. We note that the average velocity attained by
particles moving in the system is lower for the shot-noise driven dynamics
with respect to the case of a continuous and constant energy influx. In
overall, we see that the efficiency of shot-noise driving in inducing transport
properties of the system is much lower than for a deterministic case. We
may muse that this situation improves in the region of possible synchrony.

A more careful theoretical investigation of the implications of shot noise
in our model will be given in a separate work [31].

6. Conclusions and applications

We developed here the general schema of Hamiltonian systems coupled to
energy reservoirs. As an application we studied the uphill motion of particles
on ratchet-type potentials. We investigated the case when the support of
external energy to the system is constant in intensity and continuous in time
and compared this scenario with a situation when the support of energy is
discrete and occurring randomly in time. The latter case was proposed to
be modeled as an energetic shot noise. Possibly both models could be used
to describe the energy support of biological systems and the conversion to
mechanical or electrical work. Possible examples are the energy-converting
systems as e.g. the ATPase [17, 18, 32].

Our model starts from the observation that there is in biology an ele-
mentary energetic act and ATP is the “energetic valuta of the cell”. This
means the source of all energetic processes in the cell are the absorption
of energetic quanta carried by the molecule ATP (adenosine triphosphate
acid). The molecule ATP contains 2 phosphate bindings which release in
hydrolysis a large amount of free energy:

ATP + H2 → ADP + Pi , ∆G0 = −31.8 kJM−1 ≈ −13kBT . (50)

In the processes connected with the transformation of ATP–ADP in most
cases a specific enzyme, the ATPase, is involved. This enzyme is the ba-
sic generator of work in form of proton-gradients. The ATPase is also an
important enzyme working like a motor, which participates in proton and
electron transport. It is connected with rotations and works in a 6-steps-
regime. The rotations are stochastic and counterclockwise per 120◦ step.
Under certain conditions the system may work also in opposite direction
and generate ATP at the cost of mechanical or electrical work. This way
ATP-synthase is also the basic generator of ATP molecules in the living or-
ganism. It synthesizes ATP from ADP and phosphate and is connected with
a rotation clockwise. Both processes are related to each other as motor and
dynamo in electrotechnics.
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We do not claim that our model provides a realistic theory of the energy
conversion processes discussed above. However, we assume that it could be
used as possible schema supplementing existing models [18].

Standard models of molecular motors are based on the Smoluchowski
equations for discrete systems having several states which correspond to
attachment or detachment [17,18]. Many models have been developed which
follow similar lines. We followed in this work another route which is based
on Hamiltonian ratchets. We studied several Hamiltonian ratchets which
are connected to an energy reservoir and gave special attention to possible
applications to pumping processes as e.g. proton transfer. We investigated
the motion of a particle against a gradient of the potential i.e. uphill motion
under conditions where the external force is pointing downhill. The general
schema is the following: chemical energy is absorbed and introduced into
our “machine” increasing the reservoir of e(t) by a certain amount. This is
first modeled by a continuous inflow q and later in a more refined model or
by discrete energy quanta, representing the absorption of one molecule ATP.
Then the energy flows to the “motor” and is transformed into mechanical or
electrical energy. This should model the increase of the energy of protons
by transport through the membrane. We have shown that the particles on
Hamiltonian ratchets driven by an uptake of energy from an energy reservoir
are able to move uphill (in our case left to right), doing work and consuming
reservoir energy e(t) in an efficient way. The question remains how realistic
our model is with respect to the proposed applications. We will address this
issue in the forthcoming studies.
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der the COCOS project (6th EU Framework Programme, contract
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