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GEOMETRICAL BROWNIAN MOTION

DRIVEN BY COLOR NOISE∗
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The geometrical Brownian motion driven by Gaussian or dichotomous
color noise is considered. The ordinary Malthusian evolution is observed
for long times, however the initial values seem lowered and additionally, in
the case of dichotomous noise, the rate of growth is decreased. In the latter
case the possibility of arbitrage is shown explicitly.
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1. Introduction

The continuous-time description of a wide range of natural and social
processes uses the stochastic differential equations (SDE) in order to re-
gard the presence of fluctuation. The case of additive noise usually cor-
responds to an overdamped Brownian motion in some external potential
and it is particularly important for nonequilibrium thermodynamics (see,
e.g., [1] and references therein). The case of multiplicative noise came both
from population dynamics as the random growth rate or random carrying
capacity models [2,3], from financial analysis (e.g., as the Black and Scholes
equation) [4–6], and from physical studies of a critical slowing down [7]
and noise-induced transitions [1,8]. In most application the Gaussian white
noise (GWN) is considered, not only because of a relatively simply descrip-
tion (e.g., within Fokker–Planck theory), but also because of nonanticipating

properties of the related Ito SDE. Let us remind [9,10] that the Ito equation

dxt = f(x)dt + g(x)d ◦ Wt , (1)

where the ◦ sign is to indicate that the equation is interpreted according to
the Ito definition that 〈g(x)d ◦ Wt〉 = 0 (nonanticipating property), results
with the following regression equation for averages
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d〈xt〉 = 〈f(x)〉dt , (2)

and (consequently) with the conventional drift term f(x) at the level of
Fokker–Planck equation. Wt is the Wiener process normalized by the con-
dition

〈exp(yWt)〉 = exp
(

Dty2
)

, (3)

or, equivalently,

〈ξtξ0〉 = 2Dδ(t) , (4)

where ξt ≡ dWt/dt is a GWN. The importance of Eq. (2) is particularly
visible if a process of interest is considered to be fair according to the
game theory (driftless Ito process f(x) ≡ 0, martingale) or if f(x) is a lin-
ear (or affinic) function (e.g., linear relaxation, Malthusian growth). Then
〈f(x)〉 = f(〈x〉), so the properties of deterministic evolution are exactly re-
flected within stochastic generalization. On the other hand the well known
consequence of the nonanticipating property is that the ordinary rules of
differentiation and integration are no longer valid, being replaced by the
specific Ito calculus. Particularly, it turns out that xt ≡ x(t,Wt), con-
sidered as a function of two variables, represents the solution to the Ito
Eq. (1) only if the usual condition ∂x/∂W = g(x) and the unusual one
∂x/∂t = f(x) − Dg(x)g′(x) are satisfied. This means that using the ordi-
nary calculus the same process x(t,Wt) is considered to be the solution of
the Stratonovich equation

dxt = [f(x) − Dg(x)g′(x)]dt + g(x)dWt (5)

(in our notation without ◦ sign) and in such sense both Eqs. (1) and (5)
are equivalent. The term Dgg′ is called “spurious drift”. The Stratonovich
interpretation is more popular in a physical literature because the well rec-
ognized (ordinary) methods of transforming the variables and solving the
differential equations can be used. Going beyond the white noise approxi-
mation (perfect randomness, ideal market, etc.) one should use appropriate
correlated (color) noise instead and, due to its nonsingular character, con-
sequently rather the Stratonovich form, Eq. (5), of the kinetic equation. In
contrast to the GWN case the exact results are rarely known even in the
asymptotic state. Because in the present paper we are particularly inter-
ested in nonstationary developing processes, so we restrict ourselves to the
linear geometrical Brownian motion (GBM) model.
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2. Geometrical Brownian motion

In his pioneering work [11] concerned on financial markets Bachelier
adopts arithmetical Brownian motion

ẋt = rx + ξt (6)

to describe the evolution of stock prices. Here r > 0 is an intrinsic growth
rate often identified simply with the interest rate. Except for the sign
r = −γ < 0, where γ is the friction coefficient, it is the famous Langevin
equation, for the Brownian particle’s velocity, of the Einstein–Smoluchowski
theory of Brownian motion [12]. Because the solutions of Eq. (6) are Gaus-
sian (Ornstein–Uhlenbeck processes [13]), they are in fact not well suited for
modeling prices, which are the nonnegative quantities. Assuming an inde-
pendent and Gaussian character of the relative changes Samuelson [4] and,
independently, Black and Scholes (B&S) [5] have obtained

dxt = rxdt + xd ◦ Wt (7)

or, equivalently,
ẋt = [r − D]x + xξt (8)

if the Stratonovich interpretation is used. The stochastic solution

xt = x0e
(r−D)t exp(Wt) (9)

immediately follows from Eq. (8). Using Eq. (3) one verifies that

〈xt〉 = x0e
(r−D)t〈exp(Wt)〉 = x0e

rt (10)

is in agreement with Eq. (7). Eq. (10) shows that the average return, related
to the passive investment “buy and hold,” is determined by the interest rate r.
Because the discounted price x̃t = e−rtxt is a martingale the consequence of
the games theory is that no other strategy can lead to a better result. The
Eq. (7) is simultaneously the simplest random growth rate model associated
to the pure Malthusian evolution, where r is a positive difference between
birth and death rate. The expected in future value of xt depend on the
initial capital (or population) x0 and interest (or growth) rate r according
to Eq. (10). We are going to analyze to which extent this result is changed
if the driving color noise is used. We will consider two cases:

The Gaussian color noise (GCN) (or the stationary Ornstein–Uhlenbeck
process) is defined as the Gaussian process of a zero mean and an exponen-
tially decaying autocorrelation function [9]

K(t) ≡ 〈ξtξ0〉 = Dτ−1 exp(−t/τ) , (11)
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where τ > 0 is the correlation-time. Because (as a generalized function)
K(t) → 2Dδ(t) for τ → 0 the GCN (11) approaches GWN (4) if the
correlation-time goes to zero.

Another exponentially correlated process, of a different origin, is the di-
chotomous Markov process (DM) ξt = σ(−1)Nt , where σ is a binary variable
equal ±|σ| with probability 1/2 and Nt is a Poisson counting process with
parameter λ [8, 9, 14, 15]

〈ξtξ0〉 = σ2 exp(−2λt) . (12)

It may be shown that at the limit σ2 → ∞, λ → ∞, σ2/2λ = D = const the
GWN (4) is also recovered [14]. The correlation-time of DM is 1/2λ (= τ).

Note that the above mentioned GWN-limit procedures are consistent
with the Stratonovich interpretation. Thus we will study Eq. (8) with color
noise (11) or (12).

3. GBM with GCN

Let
ẋt = (r − D)x + xξt , (13)

where ξt is GCN (11). Then

xt = x0e
(r−D)t exp





t
∫

0

ξsds



 . (14)

Using the general formula for stationary Gaussian processes and after that
Eq. (11)

〈

exp





t
∫

0

ξsds





〉

=exp





t
∫

0

ds1

s1
∫

0

ds2K(s1−s2)



=exp
[

Dt−Dτ(1−e−t/τ )
]

,

(15)
one obtains

〈xt〉 = x0e
rt exp

[

−Dτ(1 − e−t/τ )
]

≈ x0e
−Dτert ≈ x0(1 − Dτ)ert. (16)

Comparing to Eq. (10) the result (16) shows that the long-time growth
rate r remains unchanged in the presence of GCN, however the considered
process looks like beginning from the lowered value x0e

−Dτ ≈ x0(1 − Dτ).
Within economical language it means that the presence of a color noise
in Eq. (13) introduces certain correlations between successive changes of
prices. In contrast to the ideal market model the historical information
about prices can be in principle useful to improve the strategy of investment.
The provision to be payed is the ratio Dτ of an initial investment.
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4. GBM model with DM

Again, according to Eq. (8), consider

ẋt =
[

r − (σ2/2λ)
]

x + xξt , (17)

where ξt is the asynchronous binary noise (12). Because

xt = x0e
(r−σ2/2λ)t exp





t
∫

0

ξsds



 , (18)

we need

Φ(t) =

〈

exp





t
∫

0

ξsds





〉

(19)

in order to compute certain averages. Let

Ψ(t) =

〈

ξt exp





t
∫

0

ξsds





〉

. (20)

Then Φ̇ = Ψ and Ψ̇ = −2λΨ + σ2Φ, where the latter equation follows from
Shapiro–Loginov formula [16]. The solution of

Φ̈ + 2λΦ̇ − σ2Φ = 0 (21)

satisfying Φ(0) = 1, Φ̇(0) = 0 is

Φ(t) =

(

1

2
+

1

2q

)

eλ(q−1)t +

(

1

2
− 1

2q

)

e−λ(q+1)t , (22)

where q =
√

1 + σ2/λ2. For sufficiently long time and (2D/λ =) σ2/λ2 ≪ 1

Φ(t) ≈
(

1 − 1

4

σ2

λ2
+ . . .

)

exp

(

σ2t

2λ
− σ4t

8λ3
+ . . .

)

(23)

and thus
〈xt〉 ≈ x0(1 − Dτ)e(r−D2τ)t , (24)

where τ = 1/2λ and D = σ2/2λ. Comparing to Eq. (16) the case (24)
seems even worse, because, among the similar initial provision Dτ , the in-
trinsic growth rate is decreased from r to r − D2τ , or instantaneous losses
are generated in discounted prices. On the other hand the “buy and hold”
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strategy, for selfevident reasons, is quite inappropriate for this case. Let
us assume r = 0, which is equivalent to use the discounted prices. Then
Eq. (18) shows that the realization of xt consists of the periods of exponen-
tial decay x ∼ e−(|σ|+D)∆t separated by the periods of exponential growth
x ∼ e(|σ|−D)∆t (if |σ| < 2λ; otherwise the price always falls). The length
of the periods is random with the average equal to 1/λ. Moreover, the
trajectory of xt is continuous. “Playing with trend” one buys the stock
at the beginning of a growth period and sells immediately when the move
changes the direction. The distribution of waiting times for DM is given

by p(t) = λe−λt and the corresponding price x(t) = x0e
(|σ|−σ2/2λ)t, so the

expected return per one cycle of an investment is

x̄ =

∞
∫

0

p(t)x(t)dt = x0
2

(1 − |σ|/λ)2 + 1
. (25)

Note that at the GWN-limit, |σ| =
√

2λD, λ → ∞, the r.h.s. of Eq. (25)
is (still) equal x0, which reflects the fairness of the ideal market. The ratio
x̄/x0 > 1 if |σ|/λ < 2 (or D < 2λ). The maximum x̄/x0 = 2 corresponds to
|σ| = λ = 2D. Thus, in spite of the general decreasing tendency (24), the
market described by Eq. (17) provides easy earn opportunities.

5. Remarks

The GBM model (B&S equation), written in the Stratonovich form (8),
can be easily generalized by an appropriate replacement of the driving noise.
The B&S equation with a color noise remains exactly solvable. The general
conclusion is the following. The limit of zero correlation-time corresponds to
the ordinary B&S model, when the discounted price x̃t = e−rtxt is a martin-
gale and the expected future price is 〈xt〉 = x0e

rt. On the correlated market
(τ > 0) the expected price is lowered: 〈xt〉 ≈ x0(1 − Dτ)ert, Eq. (16), for

GCN and 〈xt〉 ≈ x0(1 − Dτ)e(r−D2τ)t, Eq. (24), for DM, respectively. Thus
the long-time investment is not particularly recommended. On the other
hand, in the presence of correlations the historical prices contain a certain
information which can be used to improve the investment. In the case of
DM it is easy to identify and use the short-time trends to get a certain earn,
as shows Eq. (25).
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