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In this paper, we investigate the Hawking radiation of the Taub-NUT
black hole by Hamilton–Jacobi method. When the unfixed background
space-time and self-gravitational interaction are considered, the tunnelling
rate is related to the change of Bekenstein–Hawking entropy and the ra-
diation spectrum deviates from the purely thermal one. This result is in
accordance with Parikh and Wilczek’s opinion and gives a correction to the
Hawking radiation of the black hole.
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1. Introduction

Hawking radiation [1,2] is viewed as tunnelling process caused by vacuum
fluctuations near the black hole horizon. It can be explained as a virtual
particle pair spontaneously created inside the horizon of the black hole; the
positive energy particle tunnels out the horizon and materializes as a true
particle, while the negative energy particle is absorbed by the black hole.
It can be also interpreted as the virtual particle pair created outside the
horizon; the negative energy particle tunnels into the horizon and is absorbed
by the black hole, while the positive energy particle is left outside the horizon
and moves to infinite distance and forms the Hawking radiation.
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Based on the above tunnelling picture, Parikh and Wilczek studied the
Hawking radiation of the static Schwarzschild and Reissner–Nordström black
holes. After considering the self-gravitational interaction and unfixed back-
ground space-time, the derived radiation spectrum deviates from the purely
thermal one and the tunnelling rate is related to the change of Bekenstein–
Hawking entropy [3–5]. The essence of this methodology is dynamical treat-
ment to the Hawking radiation. In their work, they pointed out the potential
barrier is afforded by the outgoing particle self, thus the cause mechanism
of the potential barrier is resolved. Meanwhile, there are two key points.
Firstly, the unfixed background space-time and self-gravitational interac-
tion, which were often overlooked, were considered. Secondly, to eliminate
the coordinate singularity, the Painlevé coordinate was introduced, and this
coordinate is quite appropriate to describe the Hawking radiation of slowly
evaporating black holes. Following this work, people investigated the Hawk-
ing radiation of various space-times [6–14]. Hemming and Keski–Vakkuri
studied the Hawking radiation of Anti-de Sitter background space-time [6],
Medved researched that of de Sitter background space-time [7] and Zhao
and Zhang et al. investigated the case of the stationary axisymmetric black
holes [8–10]. However, all of these researches are limited to massless parti-
cles. In 2005, this work was extended to the case of massive and charged
particles by Zhang and Zhao and a great deal of progress was made [15–18].

In the same year, Angheben et al. adopted another method to explore
the action of radiation particles and discuss the Hawking radiation [19]. This
method is different from Parikh and Wilczek’s and shall be reffered to as
Hamilton–Jacobi method [20]. In fact, this work is the extension of that of
Srinivasan and Padmanabhan [21]. In this method, since the action of the
radiation particle is derived by the Hamilton–Jacobi equation, one can avoid
exploring the equation of motion of the radiation particle in Painlevé coor-
dinate system and calculating the Hamilton equation. Meanwhile, although
the equations of motion of massive and massless particles are different, one
need not differentiate them. However, since the self-gravitational interaction
and the unfixed background space-time were not considered, the derived ra-
diation spectrum is only a leading term. To get the actual radiation spec-
trum, the self-gravitational interaction and unfixed background space-time
should be considered.

Our work in this paper is to incorporate these and review the Hawk-
ing radiation of the Taub-NUT black hole by the Hamilton–Jacobi method.
The result shows the tunnelling rate is related to the change of Bekenstein–
Hawking entropy and the radiation spectrum deviates from the purely ther-
mal one, which is fully in accordance with Parikh and Wilczek’s opinion and
gives another method to study the Hawking radiation. The Taub-NUT so-
lution, where there is a NUT parameter [22], was first obtained by Newman
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et al. in 1963. In the subsequent researches, people found the parameter is
related to gravitational monopole [23, 24]. The NUT space-time is asymp-
totically flat and its properties are very special. Due to the existence of
the closed time-like geodesics, it violates the causality condition. There are
half-closed time-like geodesics in Taub area that can be explored in NUT
area, so the naked singularity exists. Meanwhile, for the Taub-NUT black
hole, the angular velocity at the event horizon is equal to zero and there is
not super-radiation. The axial-symmetry is not caused by the rotation of
the black hole, while it is caused by the fact that the vector potential cannot
be selected as spherical symmetry but should be axial-symmetric. In light
of these properties, the research on the Taub-NUT black hole is necessary
and meaningful.

The paper is organized as follows. In the next section, taking the unfixed
background space-time and self-gravitational interaction into account, we
review the Hawking radiation of the Taub-NUT black hole by the Hamilton–
Jacobi method and get the actual radiation spectrum. Section 3 contains
some discussion and conclusion.

2. Hawking radiation as tunnelling from the Taub-NUT

black hole

The line element of the stationary axisymmetric Taub-NUT black hole
is given by [25]

ds2 =

(

1 −
2
(

mr + l2
)

r2 + l2

)

(dt − 2lsinθdϕ)2

−

(

1 −
2
(

mr + l2
)

r2 + l2

)−1

dr2 −
(

r2 + l2
) (

dθ2 + sin2θdϕ2
)

, (1)

where t represents the time coordinate, m is the mass of the black hole,
and l is the NUT parameter. For the convenience of the discussion, we
define ∆ = r2 − 2mr − l2 and ρ2 = r2 + l2, and then the line element can
be written as

ds2 = −
∆

ρ2
dt2 +

ρ2

∆
dr2 +ρ2dθ2 +

(

ρ4 − 4∆l2
)

sin2θ

ρ2
dϕ2−

4∆lsinθ

ρ2
dtdϕ . (2)

The event horizon and entropy of the black hole are obtained as

rh = m +
√

m2 + l2 , S = π
(

r2
h + l2

)

. (3)
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Obviously, the event horizon coincides with the outer infinite red-shift sur-
face, which means the geometrical optics limit can be applied here. Using
the WKB approximation [26], we can get the relationship between the tun-
nelling rate and the action of the radiation particle as Γ ∼ exp (−2ImI).
Considering that the axial-symmetry is not caused by the rotation of the
black hole, we need not perform the dragging coordinate transformation on
the line element here. In the discussion of the Hawking radiation, the deriva-
tion of the action is crucial. There are two methods to derive it, namely the
Hamilton–Jacobi method and radial geodesic method. The radial geodesic
method was developed by Parikh and Wilczek et al. and the derivation of
the action mainly relies on the exploration of the equation of motion in the
Painlevé coordinate systems and the calculation of Hamilton equation. In
the Hamilton–Jacobi method, the derivation of the action was dependent on
the Hamilton–Jacobi equation. In this paper, we adopt the Hamilton–Jacobi
equation to derive the action. Near the event horizon, the line element takes
on the form

ds2 = −
∆,r (rh) (r − rh)

ρ2 (rh)
dt2 +

ρ2 (rh)

∆,r (rh) (r − rh)
dr2 + ρ2 (rh) dθ2

+ρ2 (rh) sin2θdϕ2 +
4∆,r (rh) (r − rh) lsinθ

ρ2 (rh)
dtdϕ , (4)

in which ∆,r (rh) = ∂∆
∂r

∣

∣

r=rh

= 2 (rh − m) and ρ2 (rh) = r2
h + l2. The ac-

tion I of the outgoing particle satisfies relativistic Hamilton–Jacobi equation,
namely

gµν (∂µI) (∂νI) + u2 = 0 , (5)

where u and gµν are the mass of the particle and the inverse metric tensors
derived from the line element (4). The non-null inverse metric tensors are

g00 = −
ρ2 (rh)

∆,r (rh) (r − rh)
, g11 =

∆,r (rh) (r − rh)

ρ2 (rh)
,

g22 =
1

ρ2 (rh)
, g33 =

1

ρ2 (rh) sin2 θ
,

g03 = g30 =
2l

ρ2 (rh) sin θ
. (6)

Substituting them into the Hamilton–Jacobi equation yields

−
ρ2 (rh)

∆,r (rh) (r − rh)
(∂tI)2 +

∆,r (rh) (r − rh)

ρ2 (rh)
(∂rI)2

+ g22 (∂θI)2 + g33 (∂ϕI)2 + 2g03 (∂tI) (∂ϕI) + u2 = 0 . (7)
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Obviously, it is difficult to solve the action I for it is a function of t, r, θ
and ϕ. Considering the properties of the black hole space-time, we carry out
the separation of variables as

I = −ωt + R (r) + H (θ) + jϕ , (8)

where ω and j are the energy and angular momentum of the particle. At the

event horizon, Ωh = dϕ
dt

∣

∣

∣

r=rh

= 0. Substituting Eq. (8) into (7) and solving

R (r) yields

R (r) = ±
ρ2 (rh)

∆,r (rh)

∫

dr

r − rh

×

√

ω2 −
∆,r (rh) (r − rh)

ρ2 (rh)

[

g22 (∂θH (θ))2 + g33j2 + 2g03ωj + u2
]

= ±
πiρ2 (rh)

∆,r (rh)
+ ζ , (9)

where ± sign comes from the square root and ζ is integral constant. Inserting
Eq. (9) into Eq. (8), we can get two different actions which correspond to
the outgoing and ingoing solution, respectively. Therefore the imaginary
parts of the two actions are

ImI± = ±
πρ2 (rh) ω

∆,r (rh)
+ Re (ζ) . (10)

According to Ref. [27], to ensure that the incoming probability is unity in
the classical limit — when there is no reflection and everything is absorbed
— instead of zero or infinity, one should select the appropriate value of ζ.

We can let ζ = πiρ2(rh)ω
∆,r(rh) + Re (ζ), and then ImI− = 0. Then I+ with I give

the imaginary part of the corresponding outgoing solution as

ImI =
2πρ2 (rh) ω

∆,r (rh)
=

(

r2
h + l2

)

πω

rh − m
. (11)

Using the WKB approximation, the tunnelling rate can be obtained. How-
ever, we find the radiation spectrum is only the leading term. The reason
is that the unfixed background space-time and self-gravitational interaction
were not taken into account. Now let us incorporate these and move on
the discussion. Considering the unfixed background space-time, we fix the
ADM mass of the total space-time and allow that of the black hole to fluctu-
ate. When a particle with energy ω tunnels out, the mass of the black hole



1334 Deyou Chen, Xiaotao Zu, Shuzheng Yang

should change into m−ω. At the event horizon, due to the angular velocity
Ωh = 0, the angular momentum is equal to zero. Taking self-gravitational
interaction into account, the imaginary part of the true action should be

ImI = π

ω
∫

0

(

r′
2
h + l2

)

dω′

r′h − m

= −2π

ω
∫

0

(m − ω′)2 + l2 + (m − ω′)

√

(m − ω′)2 + l2
√

(m − ω′)2 + l2
dω′

= −π

[

(m−ω)2−m2+(m−ω)

√

(m−ω)2+l2−m
√

m2+l2
]

. (12)

So the tunnelling rate is

Γ ∼ exp (−2ImI) = exp

{

2π

[

(m − ω)2 − m2 + (m − ω)

√

(m − ω)2 + l2

−m
√

m2 + l2

]}

= exp
[

π
(

r2
f − r2

i

)]

= exp (∆SBH) , (13)

where rf = (m − ω) +
√

(m − ω)2 + l2 and ri = m +
√

m2 + l2 are the

locations of the event horizon before and after the particle emission, and
∆SBH = SBH (M − ω) − SBH (M) is the change of Bekenstein–Hawking en-
tropy. Clearly, the tunnelling rate is related to the change of Bekenstein–
Hawking entropy and the radiation spectrum deviates from the purely ther-
mal one. The result satisfies an underlying unitary theory and is fully in
accordance with the well known result.

3. Discussion and conclusion

When l = 0, the stationary axisymmetric Taub-NUT black hole is re-
duced to the Schwarzschild black hole, and the tunnelling rate can be accord-
ingly obtained from Eq. (1) as Γ ∼ exp (−2ImI) = exp

[

−8πω
(

m − ω
2

)]

,
which is fully consistent with that obtained by Parikh and Wilczek.

From the discussion in Section 2, we find some virtues in the investiga-
tion of Hawking radiation by Hamilton–Jacobi method. Firstly, one does
not introduce the Painlevé coordinate transformation. In fact, applying this
method, we can get the same result in the Painlevé coordinate system and
dragging coordinate system. But considering the simplicity, we would like to
adopt the metric (4). Secondly, since the derivation of action depends on the
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Hamilton–Jacobi equation, one can avoid differentiating massless and mas-
sive particles. In the former treatment, the massless and massive particles
should be differentiated for their equations of motion are different, which cor-
respond to light-like and time-like character, respectively. Thirdly, one does
not need to solve the Hamilton canonical equations. Moreover, since one can
obtain not only the actions of radiation particles from the stationary black
holes but also these of the non-stationary black holes by Hamilton–Jacobi
equations, this method can be easily extended to non-stationary black holes.
Meanwhile, we should notice that the self-gravitational interaction and un-
fixed background space-time should be taken into account; otherwise the
derived spectrum is only the leading term.

To summarize, we have considered the unfixed background space-time
and self-gravitational interaction and revised the Hawking radiation of the
Taub-NUT black hole. The Hawking radiation spectrum obtains a correc-
tion.
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