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In this paper, we investigate higher dimensional spherically symmetric
perfect fluid collapse with positive cosmological constant. We take higher
dimensional spherically symmetric metric in the interior region and higher
dimensional Schwarzschild–de Sitter metric in the exterior region. The
junction conditions between interior and exterior space-times are derived.
We discuss the apparent horizons and their physical significance and con-
clude that the cosmological constant slows down the collapse of matter and
hence limits the size of the black hole. This analysis gives the general-
ization of the four-dimensional perfect fluid collapse to higher dimensional
perfect fluid collapse. We recover the results of the higher dimensional dust
case (p = 0).

PACS numbers: 04.50.–h, 04.50.Gh

1. Introduction

The cosmological constant denoted by the Greek letter Λ was first in-
troduced by Einstein to obtain a static, homogeneous cosmological model
in 1917. Einstein included this term in his equations for General Relativity
because he was not sure that his equations allow for a static universe. Grav-
ity affects the universe to contract. To avoid this possibility, he introduced
a term called the cosmological constant that would act as a repulsive form
of gravity to balance the attractive nature of gravity. Einstein rejected his
introduction of the cosmological constant after the expansion was discovered
by Hubble.

Over the past decade, it was discovered that the expansion of the uni-
verse is accelerating. This was first observed from type Ia supernova [1, 2]
results. To include this acceleration, one needs to add a cosmological con-
stant term to the Einstein field equations. The study [3] of the peculiar
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motion of low-red shift galaxies give further support for the possibility of
finite cosmological constant. Since the Einstein field equations relate the
metric of the space-time and the stress-energy tensor of matter. Thus the
effects of a cosmological constant can be analyzed if one can specify the met-
ric and the stress-energy tensor and then relate them through the Einstein
field equations.

Gravitational collapse is one of the key issues in General Relativity. This
results in formation of compact stellar objects such as white dwarf and neu-
tron star. It is interesting to investigate this issue by considering the appro-
priate geometry of interior and exterior regions and determine proper junc-
tion conditions which allow the matching of these regions. The pioneering
work on gravitational collapse was first started by Oppenheimer and Sny-
der [4]. They studied collapse of dust by considering static Schwarzschild
solution in the exterior and Friedman like solution in the interior. Since
then many people [5–9] have studied gravitational collapse by taking an
appropriate geometry of interior and exterior regions.

There is a large body of literature available [10–16] which shows a keen
interest in this issue with cosmological constant. The work done by Oppen-
heimer and Snyder [4] was generalized by Markovic and Shapiro [17] in the
presence of positive cosmological constant. Later, Lake [18] extended this
work both for positive and negative cosmological constant. Cissoko et al.
[19] discussed explicitly gravitational dust collapse with positive cosmologi-
cal constant. Recently, Ghosh and Deshkar [20] have extended this work for
higher dimensional space-times.

Motivated by string theory and other field theories, some recent inves-
tigations [21–26] show keen interest to study gravitational collapse in more
than four-dimensions. Recently, we have extended the analysis [27] on gravi-
tational perfect fluid collapse with cosmological constant to five-dimensional
space-times [28]. In this paper, we extend this study to higher dimensional
space-times. The paper is organized as follows. In next section, we de-
rive junction conditions between static and non-static spherically symmetric
space-times. Section 3 is devoted to discuss spherically symmetric perfect
fluid solution of the Einstein field equations with a positive cosmological
constant. This solution is specialized in Section 4. In Section 5, we dis-
cuss the apparent horizons and the role of the cosmological constant. The
summary of the results is presented in the last section.

2. Junction conditions

To discuss junction conditions, we assume that the given n + 2-dimen-
sional space-time is divided by a time-like n + 1-dimensional hypersurface
Σ, into two regions interior and exterior space-times, denoted by V − and
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V +, respectively. The interior space-time is described by n + 2-dimensional
spherically symmetric metric [21, 23, 25]

ds2
− = dt2 − X2dr2 − Y 2dΩ2 , (1)

where X and Y are functions of t and r only and

dΩ2 =

n
∑

i=1





i−1
∏

j=1

sin2 θj



 dθ2
i = dθ2

1 + sin2 θ1dθ2
2 + sin2 θ1 sin2 θ2dθ2

3

+ . . . + sin2 θ1 sin2 θ2 . . . sin2 θn−1dθ2
n , (2)

is the metric on n-sphere and n = D − 2 (where D is the total number of
dimensions). For the exterior space-time, we take the (n + 2)-dimensional
Schwarzschild–de Sitter metric,

ds2
+ = AdT 2 −

1

A
dR2 − R2dΩ2 , (3)

where

A(R) = 1 −
2M

(n − 1)Rn−1
−

2ΛR2

n(n + 1)
, (4)

M is a constant and Λ is the cosmological constant. The junction condi-
tions [29, 30] demand that the first and second fundamental forms from the
interior and the exterior space-times are the same. These conditions can be
defined as follows:

(i) The continuity of the first fundamental form over Σ gives

(ds2
−)Σ = (ds2

+)Σ = ds2
Σ . (5)

(ii) The continuity of the second fundamental form over Σ gives

[Kab] = K+
ab − K−

ab = 0 , (a, b = 0, 2, 3...n + 1) , (6)

where Kab, the extrinsic curvature, is given by

K±
ab = −n±

σ

(

∂2xσ
±

∂ξa∂ξb
+ Γ σ

µν

∂x
µ
±

∂ξa

∂xν
±

∂ξb

)

, (σ, µ, ν = 0, 1, 2...n + 1) , (7)

Γ σ
µν are the Christoffel symbols calculated from the interior or exterior met-

rics (1) or (3), respectively, n±
µ the unit normal vectors to Σ, xσ

± are the
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coordinates of the interior and exterior space-times and ξa are the coordi-
nates of hypersurface Σ. The equations of hypersurface Σ in the coordinates
xσ
± are written as

f−(r, t) = r − rΣ = 0 , (8)

f+(R,T ) = R − RΣ(T ) = 0 , (9)

where rΣ is a constant.
Using Eq. (8) the interior metric on Σ can be written as

(

ds2
−

)

Σ
= dt2 − [Y (rΣ , t)]2 dΩ2 . (10)

Similarly, using Eq. (9) the exterior metric on Σ takes the form

(

ds2
+

)

Σ
=

[

A(RΣ) −
1

A(RΣ)

(

dRΣ

dT

)2
]

dT 2 − RΣ
2dΩ2 , (11)

where we assume that

A(RΣ) −
1

A(RΣ)

(

dRΣ

dT

)2

> 0 , (12)

so that T is a time-like coordinate. From Eqs. (5), (10) and (11), it follows
that

RΣ = Y (rΣ , t) , (13)

[

A(RΣ) −
1

A(RΣ)

(

dRΣ

dT

)2
]

1

2

dT = dt . (14)

The outward unit normals to Σ in V − and V + follows from Eqs. (8)
and (9)

n−
µ = (0,X(rΣ , t), 0, 0, 0, ...0) , (15)

n+
µ = (−ṘΣ, Ṫ , 0, 0, 0, ...0) , (16)

where dot means differentiation with respect to t. The components of the
extrinsic curvature K±

ab are

K−
00 = 0 , (17)

K−
22 =

(

Y Y ′

X

)

Σ

= csc2 θ1K
−
33 = csc2 θ1 csc2 θ2K

−
44 = . . .

= csc2 θ1 csc2 θ2... csc
2 θn−1K

−
n+1n+1 , (18)
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K+
00 =

(

ṘT̈ − Ṫ R̈ −
A

2

dA

dR
Ṫ 3 +

3

2A

dA

dR
Ṫ Ṙ2

)

Σ

, (19)

K+
22 =

(

ARṪ
)

Σ
= csc2 θ1K

+
33 = csc2 θ1 csc2 θ2K

+
44 = . . .

= csc2 θ1 csc2 θ2... csc
2 θn−1K

+
n+1n+1 , (20)

where prime denotes differentiation with respect to r. The continuity of the
extrinsic curvature gives

K+
00 = 0 , (21)

K−
22 = K+

22 . (22)

When we use Eqs. (17)–(22) along with Eqs. (13), (14) and (4), the junction
conditions turn out to be

(XẎ ′ − ẊY ′)Σ = 0 , (23)

M =

[

n − 1

2
Y n−1 −

(n − 1)

n(n + 1)
ΛY n+1

+
(n − 1)

2
Y n−1Ẏ 2 −

(n − 1)

2X2
Y n−1Y ′2

]

Σ

. (24)

3. Solution of the field equations

The Einstein’s field equations for perfect fluid with cosmological constant
are given by

Gµ
ν − Λδµ

ν = 8π[(ρ + p)uµuν − pδµ
ν ] , (25)

where ρ is the energy density, p is the pressure and uµ = δ0
µ is the n+2-dimen-

sional velocity in co-moving coordinates. For the metric (1), these equations
can be written in component form as

G0
0 = −

n(n − 1)

2Y 2

(

Y ′2

X2
− Ẏ 2 − 1

)

+
n

XY

(

ẊẎ +
X ′

X2
Y ′

)

−
n

X2

Y ′′

Y

= Λ + 8πρ , (26)

G1
1 = −

n(n − 1)

2Y 2

(

Y ′2

X2
− Ẏ 2 − 1

)

+ n
Ÿ

Y
= Λ − 8πp , (27)

G2
2 =

(n − 1)(n − 2)

2Y 2

(

Y ′2

X2
− Ẏ 2 − 1

)

+
(n − 1)

XY

(

ẊẎ +
X ′

X2
Y ′

)

+
(n − 1)

Y

(

Ÿ −
Y ′′

X2

)

+
Ẍ

X
= Λ − 8πp , (28)
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G3
3 = G4

4 = . . . = Gn+1
n+1 = G2

2 = Λ − 8πp , (29)

G0
1 = −n

Ẏ ′

Y
+ n

Ẋ

X

Y ′

Y
= 0 . (30)

To solve these equations, we first integrate Eq. (30) w.r.t. t and get

X =
Y ′

W
, (31)

where W = W (r) is an arbitrary function of r. The energy conservation
equation for perfect fluid with interior metric T ν

µ;ν = 0 implies that the
isotropic pressure is a function of t only i.e., p = p(t). From Eqs. (27)
and (31), it follows that

n
Ÿ

Y
+

n(n − 1)

2

(

Ẏ

Y

)2

+
n(n − 1)

2

(1 − W 2)

Y 2
= Λ − 8πp(t) . (32)

To obtain the explicit solution of this equation, we consider p in the following
form [31]

p(t) = p0t
−s , (33)

where p0 and s are positive constants. Further, we integrate Eq. (32) by
considering s = 0 for simplicity i.e., p(t) = p0 and get

Ẏ 2 = W 2 − 1 +
2m

Y n−1
+

2(Λ − 8πp0)

n(n + 1)
Y 2 , (34)

where m = m(r) is an arbitrary function of r and is related to the mass of
the collapsing system. Using Eqs. (31) and (34) in (26), it turns out that

m′ =
8π

n
(ρ + p0)Y

nY ′ . (35)

For physical reasons, we assume that density and pressure are non-
negative. Integrating Eq. (35) w.r.t. r, we obtain

m(r) =
8π

n

r
∫

0

(ρ + p0)Y
nY ′dr . (36)

Here we take constant of integration to be zero. Also, the function m(r)
must be positive as m(r) < 0 implies negative mass which is not meaningful.
When we use Eqs. (31) and (34) into the junction condition (24), we obtain

M = m(n − 1) −
8πp0(n − 1)

n(n + 1)
Y n+1 . (37)
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Eq. (4) implies that the exterior space-time becomes the n + 2-dimensional
Schwarzschild space-time for Λ = 0 and M as the total energy inside the
surface Σ. The total energy M̃(r, t) up to a radius r at time t inside the
hypersurface Σ can be calculated by using the definition of the mass func-
tion [5, 20]. For the metric (1), this is given by

M̃(r, t) =
(n − 1)

2
Y n−1(1+ gµνY,µY,ν) =

(n − 1)

2
Y n−1

[

1 −

(

Y ′

X

)2

+ Ẏ 2

]

.

(38)
Using Eqs. (31) and (34) in Eq. (38), it follows that

M̃(r, t) = (n − 1)m(r) +
(n − 1)

n(n + 1)
(Λ − 8πp0)Y

n+1 . (39)

4. Solution with W (r) = 1

For Λ − 8πp0 > 0, the analytic solution in closed form can be obtained
from Eqs. (31) and (34) as follows

Y (r, t) =

[

n(n + 1)m

Λ − 8πp0

]1/n+1

sinh2/n+1 α(r, t) , (40)

X(r, t) =

[

n(n + 1)m

Λ − 8πp0

]1/n+1
[

m′

(n + 1)m
sinhα(r, t)

+t0
′

√

2(Λ − 8πp0)

n(n + 1)
cosh α(r, t)

]

sinh(1−n)/(1+n) α(r, t) ,

(41)

where

α(r, t) =

√

(n + 1)(Λ − 8πp0)

2n
[t0(r) − t] . (42)

Here t0(r) is an arbitrary function of r. In the limit Λ → 8πp0, the above
solution corresponds to the n + 2-dimensional Tolman–Bondi solution [32]

lim
Λ→8πp0

Y (r, t) =
[m

2
(n + 1)2(t0 − t)2

]1/n+1
, (43)

lim
Λ→8πp0

X(r, t) =
m′(t0 − t) + 2mt′0

[2(n + 1)n−1mn(t0 − t)n−1]1/n+1
. (44)
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5. Apparent horizons

When the boundary of trapped n spheres is formed, we obtain the ap-
parent horizon. Here we find this boundary of the trapped n spheres whose
outward normals are null. For Eq. (1), this is given as follows

gµνY,µY,ν = Ẏ 2 −

(

Y ′

X

)2

= 0 . (45)

Using Eqs. (31) and (34) in Eq. (45), we obtain

(Λ − 8πp0)Y
n+1 −

n(n + 1)

2
Y n−1 + n(n + 1)m = 0 . (46)

The solutions of the above equation for Y give the apparent horizons. For
Λ = 8πp0, it becomes the Schwarzschild horizon, i.e., Y = (2m)1/n−1. When

m = 0, p0 = 0, it yields the de Sitter horizon Y =

√

n(n+1)
2Λ . The approxi-

mate solutions of Eq. (46) up to first order in m and Λ− 8πp0, respectively,
are given by

Y1 =

[

n(n + 1)

2(Λ − 8πp0)

]1/2

−

[

2(Λ − 8πp0)

n(n + 1)

](n−2)/2

m . . . , (47)

Y2 = (2m)1/n−1 +
2(Λ − 8πp0)

n(n − 1)(n + 1)
(2m)3/n−1 . . . . (48)

For m = 0, from Eqs. (47) and (48), it follows that Y1 =
√

n(n+1)
2(Λ−8πp0) and

Y2 = 0. For m 6= 0, Y1 is called the generalized cosmological horizon and Y2

is called the generalized black hole horizon for Λ 6= 8πp0 [11]. From Eqs. (40)
and (46), the time for the formation of apparent horizon is given by

ts = t0 −

√

2n

(n + 1)(Λ − 8πp0)
sinh−1

(

Ys
n−1

2m
− 1

)1/2

, (s = 1, 2) .

(49)
This equation shows that the cosmological constant modifies the time of
formation of apparent horizon. If the formation of the apparent horizon
precedes the formation of the singularity then it will necessarily be covered,
i.e., it is a black hole. On the other hand, if apparent horizon forms after
the singularity formation then it will be naked. In the limit Λ → 8πp0, we
obtain the result corresponding to Tolman–Bondi [32]

tah = t0 −
(2nm)1/n−1

n + 1
. (50)
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Eq. (49) implies that both the black hole horizon and the cosmological hori-
zon form earlier than the singularity t = t0. This shows that the singularity
is covered, i.e., it is a black hole. The black hole is characterized by an event
horizon. Eq. (50) gives the time for the formation of event horizon in higher-
dimensional Tolman–Bondi space-time. For naked singularity, the necessary
condition is tah > t0.

6. Conclusion

In this paper, we have generalized the previous work on gravitational per-
fect fluid collapse with cosmological constant [27, 28] to n + 2-dimensional
space-times. We have taken n+2-dimensional spherically symmetric metric
in the interior region and n + 2- dimensional Schwarzschild–de Sitter met-
ric in the exterior region. The exact solution for the interior space-time
with perfect fluid is derived. The effects of the cosmological constant on
gravitational collapse are discussed as follows.

The Newtonian potential φ = 1
2(1 − g00) for the exterior metric can be

found from Eqs. (13) and (37) as

φ(R) =
m

Rn−1
+

(Λ − 8πp0)

n(n + 1)
R2 . (51)

The corresponding Newtonian force is given by

F = −
(n − 1)m

Rn
+

2(Λ − 8πp0)

n(n + 1)
R . (52)

This force vanishes for R = 1
(Λ−8πp0)1/n and m = 2

n(n−1)(n+1)(Λ−8πp0)1/n

which implies that the force becomes repulsive/attractive for larger/smaller
mass and radius, respectively, than these values. Thus the size of the black
hole can be visualized by comparing the repulsive and attractive forces. The
repulsive force generates from the cosmological constant for Λ > 8πp0. From
Eq. (34), the rate of collapse turns out to be

Ÿ = −
(n − 1)m

Y n
+

2(Λ − 8πp0)

n(n + 1)
Y . (53)

For collapsing process, the force should be attractive, i.e., the acceleration

should be negative which implies that Y <
[

n(n−1)(n+1)m
2(Λ−8πp0)

]1/n+1
. This can be

explained in terms of geodesics as follows. The geodesic deviation equation
characterizes the coming together or moving away of space-time geodesics as
a result of the space-time curvature [33]. This implies that the geodesics will
move towards or away from each other depending whether the space-time
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curvature is negative or positive. The geodesic deviation becomes zero if
and only if all the components of the curvature tensor vanish. Since in gen-
eral relativity, force is described in terms of curvature. Thus it corresponds
to the fact that for collapsing/expanding processes, force should be attrac-
tive/repulsive, i.e., acceleration should be negative/positive. It follows from
Eq. (53) that the cosmological constant slows down the collapsing process if
Λ > 8πp0. This means that, for p0 > Λ

8π , the force becomes attractive and
hence the cosmological constant does not slow down the collapsing process.

Also, due to the presence of the term Λ−8πp0, there are several apparent
horizons but only two are physical. One is the black hole horizon and the
other is the cosmological horizon. The time difference between the formation
of the apparent horizon and singularity is affected by the presence of the
cosmological constant. We conclude that the cosmological constant affects
the process of collapse and hence it limits the size of the black hole. In perfect
fluid case, these results are valid only for Λ > 8πp0 while in dust case [19]
these are valid for all Λ > 0. Thus the pressure term creates a bound for
the cosmological constant to act as a repulsive force. It is worth mentioning
here that for n = 2 and n = 3, we recover the results given in the papers [27]
and [28], respectively. We also recover the results of higher dimensional dust
case [20] for p0 = 0. Thus our analysis gives the generalization of the earlier
results.

We would like to thank the Higher Education Commission Islamabad,
Pakistan for the financial support during this work.
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