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REISSNER–NORDSTRÖM BLACK HOLE
THERMODYNAMICS IN NONCOMMUTATIVE SPACES
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This paper considers the effects of space noncommutativity on the ther-
modynamics of a Reissner–Nordström black hole. In the first step, we ex-
tend the ordinary formalism of Bekenstein–Hawking to the case of charged
black holes in commutative space. In the second step we investigate the
effect of space noncommutativity on the thermodynamics of charged black
holes. Finally we compare thermodynamics of charged black holes in com-
mutative space with thermodynamics of Schwarzschild black hole in non-
commutative space. In this comparison we explore some conceptual relation
between charge and space noncommutativity.

PACS numbers: 02.40.Gh, 04.70.–s, 04.70.Dy

1. Introduction

Generally, black holes can be characterized by three (and only three)

quantities: mass (M), electric charge (Q) and angular momentum ( ~J) (for
a review see [1,2,3]). A charged black hole is a black hole that possesses
electric charge. Since the electromagnetic repulsion in compressing an elec-
trically charged mass is dramatically greater than the gravitational attrac-
tion (by about 40 orders of magnitude), it is not expected that black holes
with a significant electric charge will be formed in nature. When the black
hole is electrically charged, the Schwarzschild solution is no longer valid. In
this case the Reissner–Nordström geometry describes the geometry of empty
space surrounding a charged black hole.

If the charge of black hole is less than its mass (measured in geometric
units G = c = 1), then the geometry contains two horizons, an outer horizon
and an inner horizon. Between the two horizons space is much like a wa-
terfall, falling faster than the speed of light, carrying everything with itself.
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It should be stressed that fundamental charged particles such as electrons
and quarks are not black holes: their charge is much greater than their
respective masses, and they do not contain horizons.

The issue of black hole thermodynamics and its quantum gravitational
correction has been studied extensively [4,–7]. Since this problem is a key
attribute of quantum gravity proposal, investigation of its various aspects
will shed light on the perspectives of ultimate quantum gravity scenario.
It has been revealed that quantum corrections to the Bekenstein–Hawking
formalism of black hole thermodynamics can be performed in several al-
ternative approaches such as noncommutative geometry [6,8], the general-
ized uncertainty principle (GUP) [7,9,10] and modified dispersion relations
[4,5,11,12]. The goal of the present paper is to proceed one more step in this
direction. We consider the case of charged black holes. We firstly give an
overview to the original formalism of Bekenstein–Hawking for charged black
holes in commutative space. Then we consider the effects of space noncom-
mutativity on the thermodynamical quantities of charged black holes. We
compare Reissner–Nordström black hole thermodynamics in commutative
space with thermodynamics of Schwarzschild black hole in noncommutative
space. In this manner we are forced to conclude that space noncommuta-
tivity has something to do with charge. In other words, it seems that space
noncommutativity and charge have the same effects on thermodynamics of
a Schwarzschild black hole.

2. Charged black holes

By the Schwinger effect in the presence of a charged black hole, there
are pair-creation of charged particles [13]. When we consider the quantum
effects, a charged matter fluid will surround the singularity and then black
hole charge will be screened. Therefore, we will have an electric field which
modifies the geometry of the black hole.

Consider the Reissner–Nordström geometry, describing a static electri-
cally charged black hole with the following line-element

ds2 = f(r)dt2 − dr2

f(r)
− r2

(

dϑ2 + sin2 ϑdϕ2
)

, (1)

where

f(r) = 1 − 2M

r
+

Q2

r2
. (2)

This expression has been written in geometric units, where the speed of light
and Newton’s gravitational constant are set equal to unity, c = G = 1. This
metric has two possible horizon which can be found as follows

r = M ±
√

M2 − Q2 . (3)
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These two values are corresponding to the outer and inner horizons. There-
fore, when a black hole becomes charged, the event horizon shrinks, and
another one appears, near the singularity. The more charged the black hole
is, the closer the two horizons are. As more and more electric charge is
thrown into the black hole, the inner event horizon starts to get larger,
while the outer horizon starts to shrink. The maximum possible charge on
the black hole is when the two horizons come together and merge. If one
tried to force in more charge, both event horizons would disappear, leav-
ing a naked singularity. Since in the limit of Q = 0 we should recover the
Schwarzschild radius rs = 2M , we consider the plus sign in (3) and the cor-
responding radius will be radius of the outer horizon.
If we set M = rs/2 in equation (3), we find

r =
rs

2
±
√

rs
2

4
− Q2 =

1

2

(

rs ±
√

rs
2 − 4Q2

)

. (4)

In what follows we consider only the outer radius which is corresponding to
the radius of the Schwarzschild black hole. In this manner, equation (4) can
be rewritten as follows

r = rs −
Q2

rs
− Q4

rs
3

, (5)

where we have considered only the three first terms of the right hand side
since Q < M . When Q = 0, we get r = rs which is corresponding to the
event horizon radius of Schwarzschild black hole.

After a brief overview of the Reissner–Nordström black holes, we apply
the original Bekenstein–Hawking formalism to this type of black holes.

3. Thermodynamics of a charged black hole

The Hawking temperature of the Schwarzschild black hole is given by

T =
1

8πM
. (6)

Since rs = 2M , this relation can be written formally as T = M/(2πr2
s ). We

generalize this relation to the case of Reissner–Nordström black hole using
relation (5) for r instead of rs. We find

T ≃ M

2π

(

rs −
Q2

rs
− Q4

rs
3

)−2

, (7)

which leads to the following relation (note that Q < M)

T ≃ 1

8πM

(

1 +
Q2

2M2
+

5

16

Q4

M4

)

. (8)
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Now we calculate entropy of the charged black hole. In the standard Beken-
stein argument, the relation between energy and position uncertainty of
a particle in the vicinity of black hole event horizon is given by E ≥ 1/δx
[4]. We suppose δx ∼ r and, therefore, we find the following generalization

E ≥ 1
(

rs − Q2

rs
− Q4

rs
3

) . (9)

This relation implicitly shows the necessary modification of the standard
dispersion relations. These modified dispersion relations have appeared in
scenarios such as loop quantum gravity where Lorentz invariance violation
has been encountered [4,14]. Now let us consider a quantum particle that
starts out in the vicinity of an event horizon and then ultimately absorbed by
black hole. For a black hole absorbing such a particle the minimal increase
in the horizon area can be expressed as (∆A)min ≥ 4(ln 2)Eδx [4]. In this
situation, the increase of the event horizon area can be given as follows

∆A ≥ 4(ln 2)
1

(

1 − Q2

rs
2 − Q4

rs
4

) , (10)

where ln 2 is the calibration factor. This statement leads us to the following
relation

dS

dA
≈ ∆Smin

∆Amin
≃ ln 2

4(ln 2) 1
“

1− Q2

rs2
−

Q4

rs4

”

. (11)

Therefore, we can write

dS

dA
≃ 1

4

[

1 − Q2

rs
2
− Q4

rs
4

]

. (12)

Now we should calculate dA. Since A = 4πr2, we find

A = As − 8πQ2 − (4π)2Q4

As
+ 2

(4π)3Q6

As
2 , (13)

and therefore

dA =

[

1 +
(4π

As

)2
Q4 − 4

(4π

As

)3
Q6

]

dAs , (14)

where As = 4πr2
s . Integration of (12) leads to the following result

S≃ As

4
−πQ2 ln

As

4
+

1

3

(

πQ2
)2
( 4

As

)

+
5

2

(

πQ2
)3
(

4

As

)2

+O
(

(

4

As

)3
)

. . . ,

(15)
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If we calculate corrections of all orders, we will arrive at the following com-
pact and generalized form for entropy of Reissner–Nordström black holes in
commutative spaces

S =
As

4
− πQ2 ln

As

4
+

∞
∑

n=1

cn

( 4

As

)n

+ C , (16)

where C is a constant and expressions cn are quantum gravity model depen-
dent coefficients. A similar expression for entropy can be obtained in other
alternative approaches such as string theory and loop quantum gravity. In
the case of Q = 0 this equation yields the standard Bekenstein entropy,
S = As/4.

This is a generalization of Bekenstein–Hawking formalism to the case of
charged black holes in commutative space. In what follows, we consider the
effects of space noncommutativity on the Bekenstein–Hawking formalism of
charged black holes.

4. The effect of space noncommutativity

A noncommutative space can be realized by the coordinate operators
satisfying [15,16,17]

[x̂i, x̂j ] = iθij , i, j = 1, 2, 3 , (17)

where x̂i’s are the coordinate operators and θij is a real, antisymmetric and
constant tensor, which determines the fundamental cell discretization of
space much in the same way as the Planck constant ~ discretizes the phase
space. It has the dimension of (length)2. Canonical commutation relations
in noncommutative spaces read (with ~ = 1 )

[x̂i, x̂j ] = iθij , [x̂i, p̂j ] = iδij , [p̂i, p̂j ] = 0 . (18)

There is a new coordinate system with the following definitions

xi = x̂i + 1
2 θij p̂j , pi = p̂i . (19)

With these new variables, the values of xi and pi satisfy the usual (commu-
tative) commutation algebra

[xi, xj ] = 0 , [xi, pj ] = iδij , [pi, pj ] = 0 . (20)

In what follows we develop the arguments of the preceding section to the case
where space noncommutativity is present. For a noncommutative charged
black hole, we have

f(r) = 1 − 2M√
r̂r̂

+
Q2

r̂2
, (21)
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where r̂ satisfies conditions (19). The horizon of the noncommutative metric
as usual satisfies the condition ĝ00 = 0, which leads to[18,19]

1 − 2M√
r̂r̂

+
Q2

r̂2
= 0 . (22)

By a coordinate transformation from x̂i to xi and then using relation (19),
one can show that horizon of the noncommutative charged black hole satisfies
the following approximate conditionuation

1 − 2M
√

(

xi − θijpj

2

)(

xi − θikpk

2

)

+
Q2

(

xi − θijpj

2

) (

xi − θikpk

2

)

= 0 . (23)

This leads us to the following relation

1 − 2M

r

(

1 +
xiθijpj

2r2
− θijθikpjpk

8r2
+

3

8

(xiθijpj)
2

r4

)

+
Q2

r2

(

1 +
xiθijpj

r2
− θijθikpjpk

4r2
+

(xiθijpj)
2

r4

)

+ O(θ3) + . . . = 0 , (24)

where θij = 1
2ǫijkθk. Using the identity ǫijrǫiks = δjkδrs − δjsδrk, one can

rewrite (24) as follows

1 − 2M

r



1 +
~L.~θ

4r2
−

(

p2θ2 − (~p.~θ)2
)

32r2
+

3(~L.~θ)2

32r4





+
Q2

r2



1 +
~L.~θ

2r2
−

(

p2θ2 − (~p.~θ)2
)

16r2
+

(~L.~θ)2

4r4



+ O(θ3) + . . . = 0 , (25)

where Lk = ǫijkxipj, p2 = ~p.~p and θ2 = ~θ.~θ . If we set θ3 = θ and assuming
that all remaining components of θ vanish (which can be done by a rotation

or a re-definition of the coordinates), then ~L.~θ = Lzθ and ~p.~θ = pzθ. Since

Reissner–Nordström black hole is non-rotating, we set ~L = 0 and, therefore,
Lz = 0. In this situation equation (25) can be written as

r4−2Mr3+
M
(

p2 − p2
z

)

θ2

16
r+Q2r2−

Q2
(

p2 − p2
z

)

θ2

16
+O(θ3)+. . . = 0 . (26)

From this equation one can see that space noncommutativity has no effect
on Reissner–Nordström space-time in the first order approximation. Since
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p2 = p2
x + p2

y + p2
z, one can write (p2 − p2

z)θ
2 = (p2

x + p2
y)θ

2 and, therefore,
(26) can be rewritten as follows

r4 − 2Mr3 + Q2r2 +
M
(

p2
x + p2

y

)

θ2

16
r −

Q2
(

p2
x + p2

y

)

θ2

16
= 0 . (27)

With the following definitions

a ≡ −2M = −rs , b ≡ Q2 ,

c ≡
M
(

p2
x + p2

y

)

θ2

16
, d ≡ −

Q2
(

p2
x + p2

y

)

θ2

16
. (28)

We can write c = Mα = (rs/2)α and d = −Q2α, where

α =

(

p2
x + p2

y

)

θ2

16
. (29)

Note that α is so defined that contains the effects of space noncommutativity.
Equation (27) has four roots but when Q = 0 and space-time is commutative
we should recover r̂s = rs. Therefore, only one root is acceptable which is
given by

r̂s = −a +
b

a
− c

a2
+

2b2

3a3
− b

a3
(A + B) − 4cb

3a4
+

2c

a4
(A + B) , (30)

where

A =
2

1
3

3
(b2 − 3ac + 12d)

(

2b3 − 9abc + 27c2 + 27a2d − 72bd

+
√

−4(b2−3ac+12d)3+(2b3−9abc+27c2+27a2d−72bd)2
)− 1

3
(31)

and

B =
1

3 × 2
1
3

(

2b3 − 9abc + 27c2 + 27a2d − 72bd

+
√

−4(b2−3ac+12d)3+(2b3−9abc+27c2+27a2d−72bd)2
)

1
3
. (32)

Substitution of the values of a, b, c and d from (28) leads to the following
expression for radius of event horizon in noncommutative space

r̂s = rs −
Q2

rs
− α

2rs
− 2Q4

3r3
s

+
Q2

r3
s

(A + B) − 2αQ2

3r3
s

+
α

r3
s

(A + B) , (33)
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where now A and B have the following explicit forms

A =
2

1

3

3

(

2Q4 − 24αQ2 + 3αr2

s

)

(

16Q6 − 180αQ2r2

s +54α2r2

s + 576αQ4

−
√

−4(4Q4−48αQ2+6αr2
s )

3+(−16Q6+180αQ2r2
s −54α2r2

s −576αQ4)2

)

−

1

3

(34)

and

B =
1

6 × 2
1

3

(

16Q6 − 180αQ2r2

s
+ 54α2r2

s
+ 576αQ4

−
√

−4(4Q4−48αQ2+6αr2
s )

3+(−16Q6+180αQ2r2
s −54α2r2

s −576αQ4)2

)
1

3

.(35)

If we simplify expressions of A and B, we obtain for A + B

A + B =
∑

n,m,i

η
Qnαm

ri
s

, n,m = 0, 1, 2, ... and i = 0, 2, 4, ... , (36)

where η is a numerical coefficient. Note that only even powers of 1/rs appear
in this expansion and correspondingly, only odd powers of 1/rs will appear
in (33).

To obtain charged black hole thermodynamics in noncommutative space
we proceed in the line of previous section. For simplicity of calculations, we
consider only three first terms of expansions. For black hole event horizon
we have

r̂s = rs −
(2Q2 + α)

2rs
− 2(Q2 + α)Q2

3r3
s

. (37)

Using equations (6) and (37), we obtain the following generalized statement
for temperature of charged black holes in noncommutative spaces

T =
M

2π

(

rs −
(2Q2 + α)

2rs
− 2(Q2 + α)Q2

3r3
s

)−2

, (38)

which leads to the following relation

T =
1

8πM

(

1 +
(2Q2 + α)

4M2
+

13
3 (Q2 + α)Q2 + 3

4α2

16M4

)

. (39)

Now we calculate entropy of charged black hole in noncommutative space.
As previous section with δx = r̂s, we obtain the following generalization

E ≥ 1

r̂s
, (40)
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which after substitution of r̂s from (37) leads to the relation

E ≥ 1
(

rs − (2Q2+α)
2rs

− 2(Q2+α)Q2

3r3
s

) . (41)

Again, this relation implicitly shows the modification of standard dispersion
relations in noncommutative spaces. In this manner, the increase of event
horizon area in noncommutative space is given by

∆Âs ≥ 4(ln 2)
1

(

1 − (2Q2+α)
2r2

s
− 2(Q2+α)Q2

3r4
s

) . (42)

which leads to the following relation

dS

dÂs

≈
∆S(min)

∆Âs(min)

≃ ln 2

4(ln 2) 1
„

1−
(2Q2+α)

2r2
s

−
2(Q2+α)Q2

3r4
s

«

. (43)

Therefore, we can write

dS

dÂs

≃ 1

4

[

1 − (2Q2 + α)

2r2
s

− 2(Q2 + α)Q2

3r4
s

]

. (44)

Now we should calculate dA. Since Âs = 4πr̂2
s , we find

Âs = As − 4π(2Q2 + α) + (4π)2
(

−1
3(Q2 + α)Q2 + 1

4α2
)

As

+
2

3
(4π)3

Q2
(

2Q4 + 3αQ2 + α2
)

A2
s

(45)

and therefore,

dÂs =

[

1 −
(4π

As

)2(

− 1

3
(Q2 + α)Q2 +

1

4
α2
)

− 4

3

(4π

As

)3
Q2
(

2Q4 + 3αQ2 + α2
)

]

dAs , (46)

where As = 4πr2
s . Integration of (44) leads to the following relation for

entropy of charged black holes in noncommutative spaces

S ≃ As

4
− π

(2Q2 + α)

2
ln

As

4
+ π2

(1

3
(Q2 + α)Q2 +

1

4
α2
)( 4

As

)

+
1

4
π3
(

6Q6 + 9αQ4 +
5

2
α2Q2 − 1

4
α3
)( 4

As

)2
+ O

(

(

4

As

)3
)

. . . . (47)
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Generally, this relation can be written as the following compact form

S ≃ As

4
− π

(2Q2 + α)

2
ln

As

4
+

∞
∑

n=1

cn

( 4

As

)n

+ C , (48)

where C is a constant of integration. Such an event area dependence of
entropy have been obtained in other alternative approaches such as string
theory and loop quantum gravity (see for example [4,20]). Note that the
logarithmic pre-factor is a model dependent quantity [21–24]. In the case
where Q = 0 and α = 0, this expression yields the standard Bekenstein
entropy

S ≃ As

4
. (49)

5. The relation between charge and space noncommutativity

As we have shown, thermodynamics of charged black holes in commuta-
tive space can be described with the following equations

T =
1

8πM

(

1 +
Q2

2M2
+

5

16

Q4

M4

)

(50)

and

S =
As

4
− πQ2 ln

As

4
+

∞
∑

n=1

cn

( 4

As

)n

+ C . (51)

On the other hand, based on a simple analysis much similar to approach
presented in Section 4, one can show that temperature and entropy of a non-
commutative space Schwarzschild black hole are given as follows [8]

T ≈ 1

8πM

[

1 +
α

4M2
− 3α2

8M4

]

(52)

and

S =
As

4
− πα

2
ln

As

4
+

∞
∑

n=1

cn

( 4

As

)n

+ C . (53)

Irrespective of numerical factors which are model dependent, comparison
between equations (50) and (52) suggests that there is a similarity between
the notion of space noncommutativity and the charge. The same result
can be obtained in comparison of (51) and (53). Therefore, if we accept
the universality of black holes thermodynamics, we can conclude that space
noncommutativity has something to do with charge. In other words, at least
in the spirit of black hole thermodynamics, charge and space noncommuta-
tivity have the same effects.
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6. Summary and conclusion

In this paper we have developed formalism of Bekenstein–Hawking to the
case of charged black holes without rotation. A general statement for entropy
of charged black hole has been presented for this situation. Then we have
investigated the effects of space noncommutativity on the thermodynamics
of charged black holes. To formulate our proposal, we have considered the
effect of space noncommutativity on the radius of event horizons (there is
another point of view which considers the effect of space noncommutativity
on the energy-momentum tensor on the right hand side of Einstein’s equa-
tions [6]). In this manner, we have calculated approximate statements for
temperature and entropy of charged black holes in noncommutative spaces.
Our equations show a general mass or event horizon area dependence much
similar to statements which have been obtained in other alternative ap-
proaches [4,5,20,25]. If we accept that quantum gravitational corrections of
Bekenstein–Hawking formalism have enough generality (as it seems to be
the case since several alternative approaches give the same mass or event
horizon area dependence for temperature and entropy of black holes), then
by comparing equations of charged black holes in commutative spaces with
corresponding equations of Schwarzschild black holes in noncommutative
spaces, we can conclude that charge and space noncommutativity have close
relation. In other words at least their effects on black hole thermodynamics
are the same. We are forced to conclude that charge can be considered as
a source of space noncommutativity. This issue can be explained as follows:
space noncommutativity comes back to the quantum nature of space-time at
very short distances (string scale) where fractal nature of space-time leads
to a minimal observable length scale and therefore the notion of space-time
fuzziness. On the other hand, when charge is present, quantum mechanical
properties will arise. So, since the origin of space noncommutativity goes
back to quantum properties of space-time and these quantum properties can
be attributed to charge, one can relate the notions of space noncommuta-
tivity and the charge.
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