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We propose a modification of the hydrodynamic model of the dynam-
ics in ultrarelativistic nuclear collisions. A modification of the energy-
momentum tensor at the initial stage describes the lack of isotropization of
the pressure. Subsequently, the pressure is relaxing towards the equilibrium
isotropic form in the local comoving frame. Within the Bjorken scaling so-
lution a bound is found on the decay time of the initial anisotropy of the
energy-momentum tensor. For the strongest dissipative effect allowed, we
find a relative entropy increase of about 30%, a significant hardening of the
transverse momentum spectra, and no effect on the HBT radii.

PACS numbers: 25.75.–q, 25.75.Dw, 25.75.Ld

1. Introduction

Relativistic hydrodynamics is a common framework for the modeling of
the expansion and the freeze-out of the hot and dense region formed in ul-
trarelativistic nuclear collisions [1]. Depending on the initial conditions and
on the freeze-out temperature a substantial amount of collective flow can
be built up during the hydrodynamic evolution. The physical picture of
the freeze-out combines a thermal emission of particles from the local fluid
element with the collective flow due to the movement of the fluid element.
Choosing azimuthally asymmetric initial conditions for collisions at finite
impact parameter, the hydrodynamic evolution generates elliptic asymme-
try in the momentum distributions similar to the experimentally observed
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one. Perfect fluid dynamics (without shear viscosity) generates a strong
elliptic flow, and a relatively moderate radial flow. The evolution has to
be followed for a long time in order to reproduce the transverse momen-
tum spectra and the elliptic flow for different particle species [1]. It means
that the freeze-out temperature is low. Stronger asymmetry of the shape
of the initial interaction zone is predicted by the Color-Glass-Condensate
model [2] or is due to event-by-event eccentricity fluctuations [3]; naturally
it leads to stronger elliptic flow. The strong elliptic flow is reduced if shear
viscosity is important for the liquid formed in ultrarelativistic collisions at
RHIC energies [4]. Shear viscosity reduces the work of the fluid in the lon-
gitudinal direction, which means a slower cooling rate, and consequently a
larger pressure to drive the transverse radial flow. For the Hanbury–Brown–
Twiss (HBT) radii the presence of viscous terms at the freeze-out could be
important, but does not explain the observed HBT radii [5].

The actual value and the range of applicability of the ideal fluid hydrody-
namics in the development of the dense medium in the collision is uncertain.
Recent calculations indicate that the shear viscosity coefficient should be
small [6], of the order of the conjectured lower bound [7]. The build up of
the transverse collective flow is greatly facilitated by the shear viscosity but
the effect is reduced by viscous corrections at the freeze-out; calculations
indicate that a required amount of transverse flow appears.

Even if we assume that the bulk evolution of the hot and dense mat-
ter created in heavy ion collisions is well described by the ideal fluid hy-
drodynamics, dissipative effects may appear in the very early stage of the
collision. The physical motivation for this picture is the fact that in the
initial stage, for evolution times before 1 fm/c, one cannot expect a full lo-
cal thermalization of the medium. This effect can be phenomenologically
taken into account in the hydrodynamic evolution as a modification of the
initial condition for the energy-momentum tensor. This idea is at the origin
of an extreme scenario in the collision dynamics, where the expansion is
two-dimensional, only in the transverse direction [8–10]. Assuming that the
anisotropy of local momentum distribution does not equilibrate during the
evolution of the fireball, a strong effect on the transverse expansion is seen.
The transverse flow builds up faster [8, 9].

In the present work, we study a more realistic scenario where the aniso-
tropy in the initial conditions dissipates with time and eventually the limit of
the ideal fluid with an isotropic pressure is recovered. The dynamics of the
equilibration of the local pressure is based on the second order dissipative
relativistic hydrodynamics with shear viscosity [11]. In this paper we study
of the effects of the initial anisotropy only, therefore we assume that the
shear viscosity coefficient is zero and the energy-momentum tensor relaxes
to the ideal fluid one. A new phenomenological parameter is introduced, the
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relaxation time of the pressure anisotropy. We study the modified hydrody-
namic evolution with initial anisotropy for two different geometries of the
flow: the Bjorken scaling solution with longitudinal expansion only, and the
boost-invariant flow in the longitudinal direction with an azimuthally sym-
metric expansion in the transverse directions. The dissipation in the early
stage of the evolution leads to an increase of the entropy of the system. This
effect must be compensated by a suitable retuning of the initial conditions.
As a result, a slight hardening of the transverse momentum spectra of emit-
ted particles is found and almost no effect on HBT radii in central collisions
is visible.

2. Early dissipation

Nonzero shear viscosity is believed to be the most important modification
of ideal fluid hydrodynamics in ultrarelativistic collisions [4,12]. The energy-
momentum tensor is modified by the shear tensor πµν

T µν = (ǫ + p)uµuν − gµνp + πµν , (1)

uµ is the velocity of the fluid element, the energy density ǫ and the pressure
p are related by the equation of state. Besides the equation of state and the
hydrodynamic equations

∂µT µν = 0 (2)

one has a relaxation equation for the shear tensor [11]

τπ∆
µ
α∆

ν
βuγ∂γπαβ = η 〈∇µuν〉 − πµν

−1

2
ηTπµν∂α

(

τπuα

ηT

)

+ τππα(µων)
α , (3)

∆
µν = gµν − uµuν . The last term contains the vorticity of the fluid ωµν =

∆
µα

∆
νβ (∂αuβ − ∂βuα), which is zero for the flows considered here. T is the

local temperature and

〈∇µuν〉 = ∇µuν + ∇νuµ − 2

3
∆

µν∇αuα , (4)

η is the shear viscosity coefficient, and τπ is the relaxation time of the shear
tensor. The term η 〈∇µuν〉 in Eq. (3) is the Navier–Stokes (first-order)
viscous correction to the energy-momentum tensor. The viscosity and the
relaxation time are related to the rates of equilibration processes in the
plasma. The viscosity coefficient can be estimated to be η ≃ 1.04s for a
Boltzmann massless gas [13], η ≃ 0.7–1.1s for (Nf = 0) QCD [14], and is
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expected [7] to fulfill the bound η ≥ 1
4πs, where s is the entropy density.

Estimates for the ratio of τπ and η range from τπ/η = 6
Ts to τπ/η ≃ 0.2

Ts .
In the early stage of the collision the flow is dominated by the flow in the

longitudinal (z) direction. We assume a Bjorken flow with the four-velocity

of the form uµ = (t/τ, 0, 0, z/τ), τ =
√

t2 − z2. For the Bjorken boost
invariant scaling solution of hydrodynamic equations the stress tensor is

πµν =









− sinh2 y 0 0 − sinh y cosh y
0 1/2 0 0
0 0 1/2 0

− sinh y cosh y 0 0 − cosh2 y









Π , (5)

where Π is the solution of a dynamical equation [12]

τπ
dΠ (τ)

dτ
=

4

3

η

τ
−Π (τ) − Π (τ)

2

(

τπ

τ
+

Tη

τπ

d

dτ

(

τπ

Tη

))

(6)

and y is the rapidity of the fluid element. In the first-order dissipative
hydrodynamics we have the steady-flow result

Π (τ) =
4η

3τ
(7)

for the shear viscosity corrections to the energy-momentum tensor [4]. Solv-
ing the dynamical equation (6) requires the knowledge of the value of the
viscous strength Π (τ0) at the initial time. The role of the initial condition in
the further evolution until the freeze-out depends on the relaxation time τπ.
For a typical choice of parameters τπ and η, the initial value of Π (τ) relaxes
fast and is not determinant for the further evolution [6, 15, 16]. The initial
value for viscous corrections should fulfill the conditions of the applicability
of hydrodynamics with viscosity

√
πµνπµν ≪ p. In practice, for the Bjorken

flow, the condition Π (τ0)
p+ǫ ≤ 1 or Π (τ0) ≤ p is used. Another natural restric-

tion is the condition that the relative viscous correction Π

p+ǫ decreases with

time [16].
In this paper we study a different type of local deviation from equi-

librium in the hydrodynamic evolution. The initial local momentum dis-
tributions in the transverse and longitudinal directions could be different,
there is no reason to expect instantaneous isotropization of the momentum
distributions. One could assume that this asymmetry remains until the
freeze-out [8, 9]. Such a hydrodynamic evolution in the transverse direction
only gives stronger transverse flow, faster expansion, small HBT radii and
a realistic elliptic flow [8–10]. A fast build up of the transverse flow is com-
patible with experimental indications of a rapid break-up and hadronization
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of the fireball. The assumption that the local momentum distribution is of
the form [8,9]

f(p) ∝ δ(y − η)fthermal(pT) , (8)

where y and η are the rapidity and the space-time rapidity, whereas the
thermal distribution fthermal applies only for the transverse momenta, is
very strong. One expects that during the evolution of the system the local
momentum distribution is naturally driven towards an isotropic thermal
distribution fthermal(p) depending on the total momentum p of the particle
in the local fluid element rest frame. An anisotropic momentum distribution
is natural in the initial condition, reflecting the presence of the longitudinal
direction in the collision. However, during the expansion of the system, the
density drops. Local thermalization processes adjust the temperature, which
decreases as well. Similar, but not necessarily the same, processes would also
lead to the isotropization of the momentum distribution. Hydrodynamics
requires local equilibrium, with only small deviations introduced in the form
of viscous corrections. The range of deviations from equilibrium we consider,
i.e. the relaxation from a system with two-dimensional equilibrium, which is
far from the three-dimensional one, to the usual isotropic equilibrium, breaks
the condition that the corrections are small. In fact in the initial state the
correction to the longitudinal pressure is equal in magnitude and opposite in
sign to the equilibrium pressure itself. It means that the generalization we
propose must be understood as phenomenological description of the process
of local equilibration.

The energy momentum tensor in the local rest fame is allowed to have
an anisotropic pressure. It starts with two components of nonzero pressure
in the transverse direction and relaxes to a full isotropic one. It is written
as a sum of an ideal fluid energy momentum-tensor and a correction

T µν =









ǫ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p









+









0 0 0 0
0 Π /2 0 0
0 0 Π /2 0
0 0 0 −Π









. (9)

Maximal asymmetry at the initial time means Π (τ0) = p(τ0). For the sub-
sequent evolution of the deviation from the equilibrium pressure we assume
a relaxation equation similar to Eq. (6)

Π (τ) = Π (τ0) exp

(

−τ − τ0

τπ

)

, (10)
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which means that apart from the initial deviation from equilibrium shear
viscosity effects are small. The simplest relaxation equation (10) is the most
natural assumption for a phenomenological description of the local equi-
libration. Microscopic processes behind the isotropization of the pressure
could be collisions or instabilities [17]. Without a reliable estimate of the
relaxation timescale we use a phenomenological constant parameter τπ .

For the boost-invariant flow the hydrodynamic equations reduce to the
evolution of the energy density

dǫ(τ)

dτ
= −ǫ(τ) + p(τ)

τ
+ Π (τ0) exp

(

−τ − τ0

τπ

)

. (11)

The above equation is equivalent to an entropy production equation

d (s(τ)τ)

dτ
=

Π (τ)

T
. (12)

Deviations from the ideal energy-momentum tensor lead to a gradual en-
tropy production [11, 18]. If we relate the entropy per unit rapidity to the
particle multiplicity, a constraint on the dissipative effects in the hydrody-
namic evolution appears [16]. If the ratio of the entropies at the end at the
beginning of the hydrodynamic evolution was known, one could estimate
its production in the dissipative hydrodynamics. A measure of the ratio of
the final to initial entropy is given as the ratio of the particle multiplicity
per unit rapidity as observed in heavy-ion collisions to the multiplicity pre-
dicted in models without a hydrodynamic collective stage. It is difficult to
falsify or confirm directly the predictions of such models, since a strongly
interacting collective phase in the dynamics, such as the hydrodynamic evo-
lution, cannot be excluded. An argument in favor of such models is that
they predict the centrality dependence of the multiplicity [19, 20]. These
models explain through an initial state effect, the increased multiplicity of
particles produced in heavy-ion collisions as compared to proton–proton col-
lisions and its centrality dependence at the same time. Consequently, there
is not much additional entropy production allowed during any supplemen-
tary hydrodynamic evolution. However, a different scenario is not excluded.
Assuming that the initial entropy (multiplicity) per participating nucleon is
the same as in nucleon–nucleon collision, the increased particle production
in heavy-ion collision is due to the entropy production during the hydrody-
namic evolution and the hadron cascade stages. Nontrivial centrality de-
pendence of the multiplicity of produced particles can be explained within a
core-mantle model [21]. The interaction region is composed of a dense core,
where hydrodynamic evolution and entropy production takes place and an
outer mantle, where after initial particle production not much rescattering



Dissipation in the Very Early Stage of the Hydrodynamic Evolution . . . 1381

(entropy production) takes place. Depending on the centrality, the ratio of
the core and mantle volume changes, reproducing the centrality dependence
of the multiplicity scaled by the number of participating nucleons [21]. The
relative increase of the multiplicity in the core region is of 60%. This num-
ber represents an upper limit on allowed entropy production in the collective
stage of the evolution of the fireball. For the most central collisions 95% of
the particles are emitted from the dense core [21].

3. One-dimensional expansion and entropy production

For the one-dimensional Bjorken expansion and the relativistic gas equa-
tion of state p = ǫ/3, the solution of the dissipative hydrodynamic equation
(11) can be written in a scaling form

ǫ(τ) = f(τ/τ0, τπ/τ0)

= ǫ(τ0)
[

eξξ
(

u2/3E2/3(1/ξ) − uE2/3(u/ξ)
)

+(9 + 3ξ)u2/3 − 3e1/ξeu/ξ
]/

(9u2) (13)

with u = τ/τ0, ξ = τπ/τ0, and Ex(z) =
∫

∞

1
e−z/t

tx dt. Similar scaling forms
can be written for the pressure or the entropy. At the initial time we have
dp(τ)

dτ |τ0 = −p(τ0)
τ0

and dΠ (τ)
dτ |τ0 = −Π (τ0)

τπ
= −p(τ0)

τπ
. From the requirement

Π (τ) ≤ p(τ) we get τπ ≤ τ0. Within our phenomenological generalization
of hydrodynamics we obtain a bound on the relaxation time τπ.

For the scaling solution the relative entropy production is a function of
τπ/τ0 only

lim
τ→∞

s(τ)τ

s(τ0)τ0
= lim

τ→∞

τ

τ0

(

f

(

τ

τ0
,
τπ

τ0

))3/4

. (14)

In Fig. 1 the entropy increase is plotted for several values of the initial
starting times τ0 = 0.2, 0.5, 1 fm/c and for τπ/τ0 = 1. Independently of the
starting time of the hydrodynamic evolution the relative entropy production
is the same 28.4%. The entropy production is limited to the time of the order
of 4τπ after τ0, whereas in the case of nonzero shear viscosity the dissipative
processes are taking place through the whole evolution. (dashed and dotted
lines in Fig. 1). The entropy production in the dissipative expansion depends
on the ratio of the relaxation time τπ and the initial time τ0 (Fig. 2). In
the following we take τπ = τ0 exhibiting the largest effects of the dissipative
phase.
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Fig. 1. Relative increase of the entropy from dissipative processes in the early

stage of the collision for several initial times τ0 of the evolution. The dotted line

represents the entropy production from the Navier–Stokes shear viscosity tensor (7)

with η = 0.1 s, the dashed line represents the increase of the entropy obtained from

the second order viscous hydrodynamic equation (6) with η = 0.1 s, τπ = 6η/Ts,

and Π (τ0) = 4η

3τ0

, and the solid represents the relative entropy production due to

the stress tensor term of the form Π (τ) = p(τ0) exp(−(τ − τ0)/τ0) (12).
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Fig. 2. Relative increase of the entropy from dissipative processes in the early stage

of the collision as a function of the scaled relaxation time of the pressure anisotropy

τπ/τ0.

4. Radial expansion

We consider a system with azimuthal symmetry and boost-invariance in
the longitudinal direction. The initial conditions are given by no transverse
flow and a Bjorken flow in the longitudinal direction. The initial entropy
profile in the transverse plane (as a function of the transverse radius r) is
given by the wounded nucleon distribution from the Glauber model for cen-
tral collisions, with the nucleon–nucleon cross section of 42 mb [23]. In the
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local rest frame the energy-momentum tensor is given by (9). The correc-
tion to the pressure Π (τ, r) describing the pressure anisotropy in the local
frame is again given by Π (τ, r) = p(τ0, r) exp (−(τ − τ0)/τπ). The energy
momentum tensor is boosted by the transverse and longitudinal velocity of
the fluid element, and the equation [24]

uγ∂γǫ = −(ǫ + p)∇µuµ + 1
2Π

µν 〈∇µuν〉 (15)

and the radial component of

(ǫ + p)uγ∂γuµ = ∇µp − ∆
µ
ν∇αΠ

να + Π
µνuγ∂γuν (16)

are solved numerically for the transverse velocity and the energy density.
The equation of state used is a combination of the lattice results at large
temperatures and a massive hadron gas equation of state at lower tempera-
tures and was presented by Chojnacki and Florkowski (Fig. 3). The details
of the parameterization are given in Ref. [22], the equation of state exhibits
only a moderate softening around the critical temperature Tc = 170 MeV.
The dissipation happens early, in the plasma phase. We consider two dif-
ferent starting times τ0 = 0.5 and 1 fm/c and for each case both the ideal
and dissipative hydrodynamic evolutions. The initial temperature at the
center of the fireball is 300 MeV and 365 MeV for the initial time of 1 fm/c
and 0.5 fm/c respectively, for the ideal hydrodynamics. For the dissipative
evolution we scale the initial entropy, corresponding to the chosen equation
of state by a factor 1/1.3 to accommodate for the entropy production in the
hydrodynamics phase. Such a procedure leads to similar total multiplicities
after the freeze-out in all the simulations.
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Fig. 3. Square of the velocity of sound as a function of the temperature for an

equation of state interpolating between the hadron gas and the quark–gluon plasma

[22].
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The freeze-out hypersurfaces at the temperature Tf = 160 MeV in trans-
verse-direction-time plane are shown in Fig. 4. The effect of the slower
cooling in the longitudinal direction in the evolution with dissipation is com-
pensated by the reduction of the initial temperature. As a result, the time
to reach the freeze-out temperature is very similar for in the scenarios.
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Fig. 4. Freeze-out hypersurfaces in the radial direction for Tf = 165 MeV. Solid

and dashed-dotted line are for the ideal hydrodynamics starting at τ0 = 1 fm/c

and τ0 = 0.5 fm/c respectively.The dotted and dashed lines are for the dissipative

evolution corresponding to τ0 = 1 fm/c and τ0 = 0.5 fm/c.

We calculate the transverse momentum spectra assuming boost invari-
ance and Boltzmann distributions for both pions and protons. Corrections
to the local equilibrium are significant only in the very early stage of the
collision. For the dominant part of the freeze-out hypersurface dissipative
corrections to the statistical distribution function are negligible. From the
Cooper–Frye formula [25] one obtains in this case [26]

d3N

d2p⊥dy
=

1

2π2

rmax
∫

0

rdrτ(r)[m⊥K1(γ⊥m⊥/T )I0(v⊥γ⊥p⊥/T )

−dτ(r)

dr
p⊥K0(γ⊥m⊥/T )I1(v⊥γ⊥p⊥/T )] , (17)

where m⊥ =
√

p2
⊥

+ m2, v⊥ is the transverse velocity and γ⊥ = 1/
√

1 − v2
⊥
,

τ(r) parameterizes the freeze-out hypersurface in the range of transverse
radii [0, rmax], and Ki, Ii are the Bessel functions. At the temperature of
165 MeV most of the particles are resonances, which only latter decay into
pions and protons. The decays modify mainly the low momentum part of
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the spectra. We take this effect and the nonzero baryon chemical potential
µ ≃ 30 MeV into account by multiplying the obtained direct pion and proton
spectra (Eq. 17) by a factor 4 for pions and 5× expµ/T for protons [28]. The
slope of the high momentum part of the spectra is not modified considerably
by resonance decays.

The dissipative stage in the hydrodynamic evolution leads to an increased
transverse pressure, this drives a stronger transverse flow, and gives flatter
spectra (larger effective slopes) for the same freeze-out temperature. Such
a stronger build-up of the transverse flow for viscous hydrodynamics has
been observed [6]. Combining a small initial time for the hydrodynamic
evolution with a dissipative increase of the transverse pressure one can qual-
itatively reproduce the observed effective slopes in transverse momentum
spectra (dashed lines in Figs. 5 and 6). More detailed analysis should in-
clude resonance decays and effects of hadronic rescattering, combined with
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Fig. 5. π+ spectra from hydrodynamic calculations (same lines as in figure 4). Data

are from the PHENIX Collaboration [27] for most central events (0–5%).
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Fig. 6. Proton spectra from hydrodynamic calculations (same lines as in figure 4).

Data are from the PHENIX Collaboration [27] for most central events (0–5%).
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a study of the elliptic flow. The increase in the transverse flow from the
early dissipation is similar for both initial starting times of the evolution;
the integrated dissipative effects are comparable, as observed already for the
relative entropy increase (Sec. 3).
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Fig. 7. HBT radii from hydrodynamic calculations as a function of the average

particle momentum in the pair (same lines as in figure 4). Data are from the

STAR Collaboration [29] for most central events (0–5%).

The emission of indistinguishable particle pairs from the fireball causes
two-particle quantum correlations. In the Bertsch–Pratt formula for the
two-particle correlation function C(p1, p2), particle momenta p1 and p2 in
the longitudinally comoving frame of the pair are parameterized by: the
average momentum k⊥ and the three components of the relative momentum
of the pair, qlong along the longitudinal axis, qout along k⊥, and qside in
the third perpendicular direction [30, 31]. Using a Gaussian formula in the
three directions C(p1, p2) = 1 + exp(−R2

longq
2
long − R2

outq
2
out − R2

sideq
2
side),

the HBT radii Rlong, Rout, and Rside can be extracted from the width of
the correlation function at mid-height. For that purpose, the two-particle
correlation function on the freeze-out hypersurface is calculated for three
kinematic configurations p1,2 = k ± qlong/2, p1,2 = k ± qout/2, and p1,2 =
k ± qside/2. Explicit formulas are given in Ref. [26]. In Fig. 7 the HBT
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radii are plotted as a function of the average transverse momentum of the
particles in the pair. The effect of the early dissipation on the HBT radii is
negligible, all the calculations lead to essentially the same HBT radii. This
is in contrast to a strong sensitivity of the HBT radii on the viscous effects
at the freeze-out as noticed in Refs. [4, 5]. The HBT radii obtained in our
hydrodynamic evolution cannot reproduce the observed ratio Rout/Rside.
The agreement with the experiment could be improved following the recent
work [32], combing modified initial conditions, including a more complete
hadron spectrum at freeze-out and the decay of resonances. The effects of the
early dissipation could be included in such realistic calculations, and would
require a retuning of the initial temperature to accommodate the additional
entropy production in the early phase. A different question is related to
the effects of nonzero shear or bulk viscosities. Nonzero viscosities modify
the latter stages of the evolution and lead to significant modifications of the
final obseravbles [4–6, 33, 34]. This additional dissipation can be taken into
account besides the early dissipation discussed in the present work.

5. Discussion

We propose a dissipative relaxation mechanism to describe the relaxation
of the pressure tensor from a two-dimensional initial state to the isotropic
three-dimensional form. The final effect of this early dissipative stage de-
pends on the value of the relaxation time. Reduced work in the longitudinal
direction and increased transverse pressure lead to a faster build-up of the
transverse flow in the very early stage. A relative entropy increase of up
to 30% is possible. Also a hardening of the transverse momentum spectra
of particles at the freeze-out is noticeable. Since at the freeze-out the cor-
rections to the ideal energy-momentum tensor disappear, we find very little
effect on the HBT radii. After the system relaxes to the isotropic equilib-
rium state its evolution could be described by ideal fluid hydrodynamics
with an initial transverse flow [35]. We find that the effect of the asymmetry
of the pressure and its subsequent relaxation could be significant for relax-
ation times of the order of 1 fm/c. We analyze the isolated effect of the
initial dissipation only. The initial dissipation described in this paper could
be accompanied by a standard shear viscosity with a non-negligible viscosity
coefficient η an a different relaxation time τπ in the latter evolution.

The author is grateful to Mikołaj Chojnacki and Wojtek Florkowski for
valuable discussions and making available the parameterization of the equa-
tion of state. The work has been supported in part by the Polish Ministry
of Science and Higher Education under grant N202 034 32/0919.
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