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Superdeformed (SD) bands have been identified in both the A ≈ 150
and A ≈ 60 regions using the statistical thoery and the configuration de-
pendent cranked Nilsson–Strutinsky (CNS) calculations. A good under-
standing of SD bands in different mass regions have been obtained using
these models and the general features of SD bands in these mass regions
are studied. Total energy surfaces (TES) have also been generated for these
nuclei with in the CNS formalism to study the shape transition and oblate
— prolate coexistence in detail.

PACS numbers: 21.10.Ma, 24.60.–k, 27.70.+q, 25.75.Gz

1. Introduction

To date many regions of SD nuclei have been established throughout the
nuclear chart. By studying several properties of SD nuclei, the underlying
shell structure of observed mass region, the high neutron scheme, some hints
about specific orbital around the Fermi surface could be well understood.
The existence of nuclei with such extreme deformations are explained by the
occurence of pronounced quantal level benchings ‘shells’ and consequently
large shell gaps which compensate for the increased deformation energy.

The most interesting nuclear region is the one with A≈150 and A≈60
regions where a large variety of rotational structures such as smooth ter-
minating bands, highly deformed and SD rotational bands are expected to
be observed upto very high rotational frequencies on the same nucleus [1].
Particular interests are in shape transition and oblate — prolate coexistence
of N = Z nuclei. The limited number of particles in this nuclear region
and their proximity to the N = Z line make superdeformation in this mass
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region of greater interest. In the present article, SD bands in 154Er and 60Zn
are presented. In addition, the general features of SD bands in these mass
regions are outlined.

Our theoretical tools are the statistical theory for hot rotating nuclei
(STHRN) and the configuration dependent cranked Nilsson–Strutinsky
(CNS) approach. We tried to have a better understanding of the under-
lying mechanism of shape evolution using these two models. In this present
work, we have calculated the kinematical and dynamical moment of inertia
((1) and (2)) of SD bands in the entire mass region using the STHRN. It
provides a simple but still realistic frame to calculate moment of inertia.
We emphasize particularly on (2) which reflects the changes in the rotating
self consistent mean field due to an internucleon interaction. We have also
generated TES using the CNS formalism for all these nuclei to explore the
shape transition and oblate-prolate coexistence in detail.

2. Superdeformation in the A ≈ 150 and A ≈ 60 regions

Superdeformed atomic nuclei with very elongated shapes are in addi-
tion to the fission isomers in actinide nuclei, now known to exist in several
regions of nuclear chart. Nuclei with masses between 150 and 60 are well
known to change rapidly their collective properties with proton and neutron
numbers. Since the discovery of superdeformation in 152Dy [2], an extensive
effort has been taken in understanding nuclear structure of the states in the
second minimum of potential energy in the A ≈ 150 region. 154Er is the
first observation of a SD band in the A ≈ 150 region with Z > 66. With the
exception of nucleus 154Er addressed here, there has been reasonable agree-
ment between the experimentally determined properties of SD states and
the theoretical predictions. Theoretically, Dudek et al. [3] have predicted
that a SD band exists in 154Er for relatively high spin M ≈ 44–45~ with
β = 0.63 at shape parameter γ = 0◦ using the CNS method. On the other
hand, Lagergren et al. [4] have observed the coexistence of SD structures
at prolate and triaxial shapes. Their observation on 154Er resolves the long
standing difficulties in theoretical interpretation of SD shapes.

The nuclei in the A ≈ 60 region show a remarkable diversity of shapes.
Rapid changes in structure with particle number, angular momentum and
excitation energy are observed. Previous studies of SD bands in A ≈ 60
region have allowed systematic analysis of strongly deformed shapes and
configurations in nuclei with N ≈ Z [5]. Recent works [6] predicted either
an oblate to prolate or a prolate to oblate transition at low spins as well as
the coexistence and strongly varying mixing of oblate and prolate deformed
configurations at intermediate and high spins.
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3. Formalism

3.1. Statistical theory for hot rotating nuclei

In heavy-ion collision, the foremost motivation behind the investigation
on high spin states is to evaluate the probability for phenomena such as
fusion, fission and quasi-fission. Statistical approach is the most prominent
one to describe the average behaviour of the compound nucleus. Bethe and
Ericson [7] utilized statistical models to understand the nuclear properties.
Further Moretto [8] extended the model by means of the single particle levels
of deformed nuclei in which a Lagrangian multiplier projects out different
angular momentum states of the system from the grand partition function.
The development of STHRN by us has resulted in successful application of
this theory to high spin nuclei [9].

It can be easily shown as in Refs. [10] and [11] that the n-th derivate of
ln Z(α, β, ω) where Z(α, β, ω) is the grand partition function,

ln Z(α, β, ω) =
∑

k

ln [1 + exp[−β(ǫk(ω) + α)]] , (1)

with respect to the Lagrangian multipliers (α, β, ω) which conserve the par-
ticle number and energy yields the corresponding n-th moments of the ob-
servable energy E and particle number N . The relevant equations [12] in
terms of single particle energies ǫk(ω) and spins mk (projection along the
symmetry axis) are,

〈N〉 =
∑

k

[

1 + exp
(

βǫN
k (ω) − αN

)]−1
=

∑

k

nN
k , (2)

〈Z〉 =
∑

k

[1 + exp
(

βǫZ
k (ω) − αZ

)

]−1 =
∑

k

nZ
k , (3)

〈E(ω, T )〉 =
∑

k

nN
k ǫN

k (ω) +
∑

k

nZ
k ǫZ

k (ω) , (4)

〈M〉 =
∑

k

nN
k mN

k (ω) +
∑

k

nZ
k mZ

k (ω) . (5)

In the above equations, the superfix N and Z refer to the single particle
values corresponding to neutrons and protons. The Lagrangian multipliers
αN and αZ are fixed by equations (2–5). The simultaneous non-linear equa-
tions (2), (3) and (5) are solved to determine αN and αZ for each value of the
rotational frequency ω and β(= 1/T ), the reciprocal of the temperature T .
The excitation energy of the system is given by

E∗(ω, T ) = E(ω, T ) −
{

N
∑

k=1

ǫN
k (0) +

Z
∑

k=1

ǫZ
k (0)

}

, (6)
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where the sum of the second and third terms yield the ground state energies
of neutrons and protons. The free energy expression is given by

F (ω, T ) = E(ω, T ) − TS , (7)

where S is the entropy of the system.

S =
∑

k

[

nN
i ln nN

i +
(

1 − nN
i

)

ln
(

1 − nN
i

)]

+
∑

k

[

nZ
i ln nZ

i +
(

1 − nZ
i

)

ln
(

1 − nZ
i

)]

. (8)

In this method only the z component M of the total angular momentum I
is considered. As mentioned by Moretto [8] the laboratory fixed z axis can
be made to coincide with the body fixed z’ axis and it is possible to identify
and substitute M for the total angular momentum I. Within the limit of
quantum mechanics, the z component of the total angular momentum is
M →

√

I(I + 1) = I + 1/2 where I is the total angular momentum of the
system.

The nuclear level density at an excitation energy E∗(ω, T ) is given by [13]

ρ(E∗) =
(~2/2θ)3/2(2I + 1)

√
a exp(2

√

aE∗(ω, T )

12(E∗(ω, T ) + T )2
, (9)

where θ is the rigid body moment of inertia and a is the single particle level
density parameter. The kinematical and dynamical moment of inertia (2)

are given by [14]

(1) = ~
2I

(

∂Erot

∂I

)

−1

, (10)

(2) = ~
2

(

∂2Erot

∂2I

)−1

, (11)

where the rotational energy Erot for given ω and T is

Erot = E(ω, T ) − E(0, T ) . (12)

The single particle energies ǫk(ω) and spin projections mk are generated
by diagonalizing the Hamiltonian in the oscillator basis.

Hω = HO − ωj , (13)

where ω is the rotational frequency and HO is the triaxial Nilsson–Hamilto-
nian for a single particle in the non-rotating system and is given by

HO =
p2

2m
+

m

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+ C l.s + D
(

l2 − 2
〈

l2
〉)

. (14)
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The oscillator frequencies are

ωx = ω0

[

1 +
1

3
ε cos γ +

1√
3
ε sin γ

]

, (15)

ωy = ω0

[

1 +
1

3
ε cos γ − 1√

3
ε sin γ

]

, (16)

ωz = ω0

[

1 − 2

3
ε cos γ

]

, (17)

where the parameter ε corresponds to the elongation or flattening of the
potential while γ describes its non-axiality.

The Lagrangian multiplier γ and the collective frequency of rotation ω of
the system should be equal to one another as long as the single particle spin
projections along the symmetry axis are good quantum numbers [12]. For
axially symmetric shapes of the nuclei, the single particle spin projections
mz are good quantum numbers while for triaxial deformations the single
particle spin projections mz are not good quantum numbers as the matrix
elements for triaxially deformed system connects states of different mz. To
overcome this problem one can use cranked Nilsson–Strutinsky model which
has important achievements like the prediction of SD high spin states and
terminating bands [15].

Calculations are carried out for the deformation parameter ε = 0.0–0.7
insteps of 0.1 and for shape parameter γ = −180◦ (non-collective oblate
shape rotating about the symmetry axis) to γ = −120◦ (collective prolate
shape rotating about an axis perpendicular to the symmetry axis).

3.2. The cranked Nilsson–Strutinsky model

The main idea of the Nilsson–Strutinsky approach [16] is to split the
total energy of the nucleus into two parts, an usual part parameterized by
a macroscopic expression, and a fluctuating part obtained from the vari-
ation of the level density around the Fermi surface. The microscopic part
comprises the Strutinsky shell correction and the pairing energy. Rotation is
introduced in the cranking approximation, corresponding to rotation around
one principal axis. The Hamiltonian can be expressed as

Hω = HO − ωjx = HHO(ε, γ) + 2~ωoρ
2

√

4π

9
ε4V4(γ) + V ′ − ωjx , (18)

where HHO(ε, γ) is the anisotropic harmonic oscillator potential.

HHO(ε, γ) =
p2

2m
+

1

2
m

{

ω2
xx2 + ω2

yy
2 + ω2

zz
2
}

. (19)
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Here ωx, ωy and ωz are the oscillator frequencies expressed in terms of the
quadrupole deformation parameters with signs chosen according to the Lund
convention [17]

ωj = ω0(ε, γ)

[

1 − 2

3
ε cos

(

γ +
2πνj

3

)

]

, jǫ{x, y, z} , (20)

with νx = 1, νy = −1 and νz = 0. The calculations are carried out in the
stretched coordinate system. The hexadecapole potential is chosen to attain
a smooth variation in the γ plane so that axial symmetry is not broken
for γ = −120◦,−60◦, 0◦ and 60◦. The parameters κ and µ might be given
the same values for each shell instead they could be made dependent on
the main oscillator quantum number N = Nt. The eigenvalues eω

i and the
eigenvectors χω

i are obtained by diagonalizing the Hamiltonian.
Now, the single particle energies and the single particle spin contributions

mi are obtained in the laboratory system as

ei =
〈

χω
i

∣

∣HO
∣

∣ χω
i

〉

, (21)

mi = 〈χω
i |jx|χω

i 〉 , (22)

where HO is the static single-particle Hamiltonian.
The total quantities can be expressed as

Esp =
∑

Occ

ei =
∑

Occ

eω
i + ~ω

∑

Occ

mi , (23)

I =
∑

Occ

mi , (24)

with the summation over the occupied orbitals in a specific configuration of
the nucleus. The shell energy is now evaluated from

Eshell(I) = Esp(I) − 〈Esp(I)〉 , (25)

where 〈Esp(I)〉 is the smoothed single particle sum.
An important correction is the pairing energy which should decrease

with increasing spin and becomes insignificant at very high spins. To obtain

an (I = 0) average pairing gap ∆, which varies as A−
1

2 , the pairing strength
G is chosen as,

GZ,N =
1

A

[

g0 ± g1
N − Z

A

]

, (26)

with g1/g0 ≈ 1/3. Also, the number of orbitals incorporated in the pairing

calculation should differ as
√

Z and
√

N for protons and neutrons. The total
nuclear energy is now obtained by substituting the smoothed single particle
sum with the rotating liquid drop energy including the pairing correction.
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Etot(ε̄, I) = Eshell(ε̄, I) + ERLD(ε̄, I) + Epair(ε̄, I) , (27)

where ε̄ = (ε, γ, ε4). The shell and pairing energies are calculated separately
for protons and neutrons at I = 0, while the renormalization of the moment
of inertia introduces a coupling when evaluating Eshell for I > 0. In the
present work, Epair is included only for I = 0.

4. Results and discussions

The results of the nuclear level density (NLD) for 154Er as a function of
deformation and excitation energy for selected spins is depicted in Fig. 1. It
is very important to remember that the NLD not only determines the de-
formation probability distribution but also the population probability. The

Fig. 1. Nuclear level density versus temperature for different angular momentum

for 154Er. The numbers on the curve refer to the excitation energy in MeV.
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domination of level density at the normal deformed (ND) range over the SD
range is observed to be very strong in the case of spin M = 30~, the popula-
tion of the ND states dominate while at M = 40~ none of the configurations
would be strongly discriminated against the other. In fact M = 40~ is the
cutoff spin at which the side feeding of the SD band decreases or practically
disappears. At higher spin values M = 46~ the population of the SD states
is significantly favored. Similar effects are shown in Fig. 2 for 60Zn. Here
the cutoff spin is M = 8~ at which the population of the SD states are
significantly favored. At cutoff spin M = 8~, the side feeding of the SD
band decreases for the nucleus and for M > 8~ the population of SD states
is dominant.

Fig. 2. Same as Fig. 1 for 60Zn.
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Figs. 3 and 4 show the dynamical moment of inertia obtained using
equation (11) compared with the experimental data of Bernstein et al. [18].
In the more axially deformed SD nuclei in the A ≈ 150 mass region, the (2)

have been reproduced well with some small variances. The observed (2) does
not involve any humps which indicate that single particle configuration of SD
bands involves band crossing. The most pronounced feature in Fig. 3 is that
the (2) of this sort corresponds to a rapid gain in alignment (spin) which may
occur following the rotation-induced alignment of a pair of particles (paired
band crossing). The observed rise in (2) corresponds to the alignment of two
N = 7 quasi neutrons. It is also observed from Fig. 3 that the rapid rise of
(2) occurs for a small range of ~ω. This property indicates a relatively weak
interaction between the crossing orbital. A similarity of the low frequency
rise in (2) between the theoretical values and the experimental data is also
observed from the close inspection of the Fig. 3.

Fig. 3. Dynamical moment of inertia (2) versus rotational frequency ~ω for 154Er.

In Fig. 4 the occurence of peak of (2) at low spin is observed for 60Zn.
The simultaneous alignments of the g9/2 protons and neutrons are the reason

for the peak in 60Zn. This interpretation is very difficult to understand in
view of the absence of any alignment gain in 61Zn [19]. In Ref. [19] they have
offered a tentative explanation to this anomaly in terms of a change in the
pairing correlation and they have concluded that the peak in the (2) of 60Zn
is due to the crossing of the T = 1 and T = 0 bands. To support or disprove
such a hypothesis, more experimental especially theoretical investigations of
properties of odd and odd–odd nuclei around 60Zn are needed. The present
paper supports and confirms the peak of (2) at low angular frequency using
STHRN. It is found that much lower values of (1) and (2) at high spin is
rather a general feature of SD bands in this mass region [20].
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Fig. 4. Same as Fig. 3 for 60Zn.

Several features of these bands are similar to those of smooth terminating
bands observed in the A ≈ 110 mass region. Such features are the smooth
drop of (2) with increasing rotational frequency to values much lower than
(1). Indeed in the A ≈ 60 mass region, one can see the gradual transition
from the smooth terminating bands in 62,64Zn over the highly deformed
band in 58Cu to the SD bands in 60,62Zn. Thus a rigid rotor assumption
((1) ≈ (2)) sometimes used in the analysis of SD bands is not valid in this
mass region. The rotational sequences in the mass 60 region serve also as
a contrast to those in the “traditional” regions of superdeformation at mass
80 because of the occurence of a so called smooth band termination. Such
an effect is expected in these relatively light nuclei, which have a smaller
number of valence particles than the heavier nuclei and this exhaust the
angular momentum content of their single particle configurations faster than
the heavier nuclei.

Figs. 5 and 6 represent the rotational frequencies generated at different
angular momentum and different temperatures for 154Er and 60Zn, respec-
tively. It is obvious from the figures that higher cranking frequency values
are required to generate particular angular momentum. However this kind
of behavior is observed upto angular momentum M = 46~ for 154Er and
M = 8~ for 60Zn where the shape transition occurs. The fluctuations in
Fig. 5 for 154Er and Fig. 6 for 60Zn indicate the shape transition with re-
spect to angular momentum for ε = 0.0–0.7, respectively.

The hodograph with the deepest energy minimum of 154Er and 60Zn
as a function of angular momentum and deformation parameters ε and γ
calculated for temperatures T = 0.2 MeV and T = 0.3 MeV are depicted
in Figs. 7 and 8. Fig. 7 shows that the nucleus is oblate with ε = 0.1
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Fig. 5. Rotational frequency ~ω as a function of angular momentum M for dif-

ferent temperatures in the case of 154Er. The numbers on the curve refer to the

temperature T in units of MeV.

Fig. 6. Same as Fig. 5 for 60Zn.

and γ = −180◦ for angular momentum 0–45~ and prolate for 46–60~ with
ε = 0.5 and γ = −120◦. From Fig. 8 it is observed that the nucleus is prolate
with ε = 0.1 and γ = −120◦ for angular momentum 0–7~ and it retains the
prolate shape with ε = 0.5 from M = 8–30~.
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Fig. 7. Shape evolution of 154Er as a function of angular momentum M using total

energy surfaces at temperature T = 0.2 MeV.

Fig. 8. Same as Fig. 7 for 60Zn at T = 0.3 MeV.

In our calculations with shape fluctuations the key factor is the free en-
ergy F (ε, γ) because its exponential part provides the weight of each point
(ε, γ) in the evaluation of expectation energy values. The total energy sur-
faces are also computed at temperature T = 0.2 MeV for angular momen-
tum 0–60~. The results clearly show the shape evolution of the nucleus
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leading to a shape transition from oblate to prolate. From angular momen-
tum M = 0–45~ the absolute minima correspond to an oblate (ε = 0.1 and
γ = −180◦). Beyond M = 45~ the shape is shifted to prolate superde-
formed (ε = 0.6 and γ = −120◦). In addition to the minima of prolate
shape a triaxial minimum is associated with the earlier minima from the
angular momentum M = 46~. This is in agreement with the triaxial and
prolate SD configurations obtained for 154Er [4] with rotational frequencies
~ω = 0.53 MeV and ~ω = 0.62 MeV, respectively. Thus from TES it is
inferred that the nucleus has two minima one corresponds to a prolate SD
shape and the other relates to triaxial SD shape. The configuration of the
triaxial SD shape is due to the presence of intruder orbitals.

The doubly magic even nucleus 60Zn is at prolate shape from spin
M = 0–30~ and the deformation parameter varies from ε = 0.1 to 0.5
at M = 8~. It seems that a prolate superdeformed structure exists from
M = 8~ (γ = −120◦) and remains superdeformed till M = 30~. This result
is in consistent with the doubly magic SD band obtained in the N = Z nu-
cleus 60Zn in Ref. [6]. These bands are understood to be multiple excitations
of πf7/2 and νf7/2 particles in to πg9/2 and νg9/2 intruder orbitals near the
N = Z = 30 SD shell gaps [21].

5. Conclusion

It is observed from the results that at finite temperature the nuclei un-
dergo shape fluctuations around most probable configuration. The most
relevant fluctuations are those related to collective degrees of freedom, i.e.

shape parameters ε and γ and pairing gap ∆. A microscopic calculation tak-
ing into account all these degrees of freedom is not considered in this study
and only the role played by shape fluctuations for the nuclei 154Er and 60Zn
are concentrated. Further experimental study of SD bands in these mass
regions as well as theoretical studies of the decay out process tailored specif-
ically to these regions, will undoubtedly lead to a strong understanding of
both superdeformation in these regions and the decay out of SD bands in
general.

This work is supported by the project (No. 2003/37/27/BRNS/1988)
sanctioned under the Department of Atomic Energy — the Board of Re-
search in Nuclear Science, India.
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