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We calculate the equation of state of nuclear matter in the self-consist-
ent T -matrix scheme including three-body nuclear interactions. We study
the effect of the three-body force on the self-energies and spectral functions
of nucleons in medium.
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The extrapolation of the energy per particle in dense nuclear systems
from finite nuclei to infinite nuclear matter and to neutron matter in neu-
tron stars involves theoretical estimates. Most of the approaches are using
free nucleon–nucleon potentials when treating systems with many particles.
Obviously a number of approximations must be done to obtain a result.
Properties of dense nuclear matter have been estimated with a variety of
different schemes: Brueckner–Hartree–Fock (BHF) calculations [1–4], vari-
ational calculations [5–9] and self-consistent T -matrix calculations [10–14].
The central issue of these studies is the calculation of the binding energy of
cold symmetric and neutron rich nuclear matter. It has been realized that a
realistic description of the nuclear matter at saturation density and beyond
cannot neglect the presence of three-body forces between nucleons. Varia-
tional and BHF calculations that take the three-body forces into account
reproduce the empirical saturation point density and the binding energy in
symmetric nuclear matter [5,6,15–18]. The spectral T -matrix method using
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in medium dressed nucleon propagators and the self-consistent T -matrix is
well suited for the calculation of single-particle properties of nucleons in the
medium [10], the effective scattering [19] and pairing correlations [20, 21].
One important feature of the scheme is the automatic fulfillment of ther-
modynamic consistency relations [22]. The equation of state of symmet-
ric and neutron matter in the T -matrix approach have been evaluated as
well [11–13, 23], however only two-body interactions have been included up
to now. The resulting equation of state is similar to the one obtained by
other methods with the same interactions. In this letter we present first re-
sults for the self-consistent T -matrix approximation with phenomenological
three-body interactions taken into account. After reproducing the properties
of the symmetric nuclear matter around the empirical saturation point we
calculate the modified in-medium properties of dressed nucleons at several
densities.

The in-medium self-consistent T -matrix [24–26] is defined by the two-
body potential V as

T = V + V GT (1)

which denotes the resummation of the two-nucleon ladder diagrams. The
in-medium nucleon propagator

G =
1

ω − p2/2m − Σ
(2)

is dressed by the self-consistently calculated self-energy

iΣ = Tr [TG] . (3)

The numerical calculations are performed in the real-time formalism for the
finite-temperature Green’s functions [10]. The spectral function for dressed
nucleons is obtained from the retarded self-energy (with energy and momen-
tum arguments explicitly written)

A(p, ω) =
−2ImΣ (p, ω)

(ω − p2/2m − ReΣ (p, ω))2 + ImΣ (p, ω)2
. (4)

At each density ρ the above set of equations is iterated until convergence
and the Fermi energy µ is adjusted to fulfill the constraint

ρ =

µ
∫

−∞

dω

2π

∫

d3p

(2π)3
A(p, ω) . (5)

The binding energy can be calculated from the Galitskii–Koltun’s sum rule

E

N
=

1

2ρ

∫

dω

2π

∫

d3p

(2π)3
(ω + p2/2m)A(p, ω) , (6)
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a formula that works for Hamiltonians with two-body interactions. In the
general case one should calculate the diagrams corresponding to the expec-
tation value of the Hamiltonian 〈H〉 [27].

Several parameterizations of the nuclear two and three-body interactions
are used in nuclear matter and finite nuclei calculations. Since the short
range behavior of the nuclear force is not precisely known, differences in
parameterization of the nucleon–nucleon interaction at high momenta can
be compensated by differences in the associated three-body term [28, 29].
Explicit calculations using relativistic BHF formalism require a different
(if any) three-body force. Still other three-body interactions are needed
when using renormalized effective two-body potentials [30]. In the following
we use a simple phenomenological way of taking the three-body interaction
into account [31] and for the two-body potential we take the CD–Bonn
interaction [32]. The three body term motivated by the two-pion exchange
process has the form of an additional density dependent two-body interaction

V (r) = IcT 2(r)
(

e−γ1ρ − 1
)

, (7)

where

T (r) =

(

1 +
3

ηr
+

3

η2r2

)

e−ηr

ηr

(

1 − e−cr
2
)2

, (8)

η = 0.7 fm−1, c = 2 fm−2, Ic = −5.7 MeV, γ1 = 0.15 fm3. The density
dependent part is short range and repulsive and leads to a stiffening of the
equation of state. We perform iterative self-consistent calculation of the
dressed propagators and the in-medium T matrix with such density depen-
dent interactions at several densities between ρ = 0.6ρ0 and ρ = 3ρ0, where
the saturation density is ρ0 = 0.17 fm−3. Additionally a phenomenological
attractive mean field energy is taken in the form [31]

ETNA(ρ)

N
= 3γ2ρ

2e−γ3ρ , (9)

where γ2 = −260 MeV fm6 and γ3 = 11 fm3. With the density dependent
two-body interaction (7) the Galitskii–Koltun’s sum rule gives the same
binding energy as the expectation value of the Hamiltonian. For the chosen
interaction the difference shows up only in the term ETNA, that should
be added to the energy but the corresponding shift in the Fermi energy is
δ(ρETNA(ρ)/N)/δρ.

The binding energy in symmetric nuclear matter is shown in Fig. 1 and
compared to results of variational and BHF calculations with two-body and
three-body forces [6, 17]. We observe that the inclusion of density depen-
dent forces suffices to reproduce the empirical saturation point of nuclear
matter, although our equation of state is slightly stiffer with the parameters
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of the short range density dependent interaction taken directly from [31].
As expected, in order to get realistic binding energies at higher densities
three-body forces must be included in the calculation. The equation of state
fixes the strength of the additional three body terms.
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Fig. 1. The equation of state for symmetric nuclear matter. The solid line represents

the result of the T -matrix calculation, the dashed line the BHF result [17] and the

dashed–dotted line the variational result [6]. The lines with symbols denote the

results of calculations including only the two-body force.

Within the T -matrix scheme we explore the consequences of the addi-
tional interaction terms on the single-particle properties. In Fig. 2 is shown
the spectral function A(p, ω) at ρ0. We see that the modification of the
force changes the spectral function. This indicates that besides the equation
of state the spectral function is sensitive to the chosen nuclear interaction.
The binding energy is not sensitive enough to constraint the short range part
of the nuclear interaction. The nuclear spectral function when compared to
experimental results [33] gives insight into the nuclear two and three-body in-
teractions in nuclei. In a future publication we shall present the results of an
investigation of the sensitivity of the proton spectral functions on the density
and isospin dependence of the three-body force. Within the parametrization
of the three-body terms taken in this letter, the spectral functions shows a
stronger quasi-particle peak, which is a consequence of a reduced scattering
at the Fermi surface. It is interesting to analyze the real-part of the self-
energy ReΣ (p, ωp) at the quasi-particle pole (ωp = p2/2m + ReΣ (p, ωp)). It
is the in medium potential felt by the nucleon. The self-energy is given by
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Fig. 2. The spectral function for dressed nucleons at saturation density. The dashed

line is the result with the three-body force, the solid line represents the result of

the calculation the with two-body interactions only.

dispersion relation

ReΣ (p, ω) = ΣHF(p) +

∫

dω
′

π

ImΣ (p, ω
′

)

ω′ − ω

= ΣHF(p) + Σdisp(p, ω) . (10)

It is a sum of a dispersive self-energy Σdisp and the mean-field self-energy
ΣHF(p). Different parameterizations of the nuclear interactions yield dif-
ferent Hartree–Fock and dispersive self-energies, hard-core potentials give
less attractive mean-field. However the total self-energy ReΣ (p, ω) is sim-
ilar [11]1. At saturation density the dispersive part is not modified much
by the three-body forces, only the Hartree–Fock energy is lowered (Fig. 3).
On the other hand at ρ = 3ρ0, where the scattering is more important, the
dispersive part of the potential is lowered when including three-body forces,
but the mean-field is similar. Depending on the density, the shift of the
single-particle energy caused by the three-body forces manifests itself in a
different way. In all cases the total self-energy ReΣ (p, ωp) is more attractive
when three-body forces are taken into account.

1 Interactions yielding similar binding energies must give similar single-particle energies
by thermodynamic consistency.
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Fig. 3. The real part of the self-energy at the quasiparticle pole ReΣ(p, ωp), at the

saturation density ρ0 (upper panel) and at 3ρ0 (lower panel). We show the Hartree–

Fock contribution, the dispersive part, and the sum (Eq. (10)). The dashed lines

are the results including three-body forces and the solid lines represent the energies

obtained with two-body forces only.

We calculate for the first time the properties of nuclear matter in the
self-consistent T -matrix approximation with a phenomenological density de-
pendent three-body term in the nucleon–nucleon interaction. The additional
terms in the interaction and in the mean-field energy allow to reproduce the
empirical saturation point of symmetric nuclear matter. We find a slightly
stiffer equation of state at densities above 2ρ0 than other approaches (BHF
and variational). We calculate also the spectral function and the in-medium
nuclear self-energy. The spectral function shows a stronger quasi-particle
peak and the potential for the nucleons is more attractive when three-body
forces are included. The equation of state and the nucleon potential are
not directly sensitive to the details of the short range part of the nuclear
interaction. On the other hand the proton spectral function at high energies
could be a probe of short range nuclear correlations. For the interaction
studied in this paper we find less scattering when density dependent three
body terms are included.
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