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peratures is investigated in an extended RPA approach by including colli-
sional damping mechanism and coherent damping due to particle–phonon
coupling. Calculations are carried out for nuclear dipole vibrations by
employing the Steinwedel–Jensen model and compared with experimental
results for 120Sn and 208Pb.
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Studies of giant resonance excitations in atomic nuclei, in particular
isovector giant dipole resonance (GDR), have been the subject of many
experimental and theoretical studies [1]. A large amount of experimen-
tal information is now available about the properties of GDR built on the
ground states and the excited states of nuclei revealing important properties
of collective motion of nuclear many-body systems at zero and finite temper-
ature [2, 3]. Understanding the structure of the nuclear collective response,
its fragmentation and damping mechanism constitute a challenge for theo-
retical models [4–6]. To achieve this goal, one possible avenue is development
of quantum transport models for nuclear collective dynamics [7, 8].
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The theoretical investigations of nuclear collective response employing
the random-phase approximation (RPA) based on the mean-field theory have
been quite successful in describing mean resonance energies [9]. However, the
RPA theory is not suitable for describing damping of collective excitations.
There are different mechanisms involved in damping of nuclear collective
states. A part of damping is due to particle emission giving rise to the
escape width. The collective mode also acquires a spreading width as a con-
sequence of the coupling with the internal degrees of freedom. In general,
the spreading width is made up by three different contributions: (i) the Lan-
dau Damping due to spreading of the collective modes over non-collective
particle–hole excitations, (ii) the coherent mechanism due to coupling with
low-lying surface modes [4, 10], and (iii) the damping due to coupling with
incoherent 2p–2h states usually referred to as the collisional damping [11,12].

Most investigations of the nuclear response carried out thus far are based
on either the coherent damping mechanism or the collisional damping. The
coherent mechanism is particularly important at low temperature and ac-
counts for the main features of the collective response [10,13]. On the other
hand, the collisional damping is relatively weak at low temperature but its
magnitude becomes larger with increasing temperature [11, 12]. In a recent
work, nuclear collective response in different atomic nuclei was investigated
on the basis of a stochastic transport theory, which incorporates both the co-
herent mechanism and the collisional damping in a consistent manner [14,15].
Such an extended quantum RPA calculations require a large amount of nu-
merical effort and also may not provide a clear understanding of relative
importance of different dissipation mechanisms. In this work, employing
the same transport theory, we calculate the isovector response in nuclear
matter at finite temperature and investigate the relative importance of the
coherent damping mechanism and the collisional damping as a function of
temperature.

Temporal evolution of the average value of the single-particle density
matrix ρ(t) in the stochastic transport theory is determined by a transport
equation [16–18]

i~
∂

∂t
ρ − [h(ρ), ρ] = KI(ρ) + KC(ρ) , (1)

where h(ρ) is an effective mean-field Hamiltonian. KI(ρ) represents the inco-
herent binary collision term, and KC(ρ) is referred to as the coherent collision
term. The coherent collision term describes the coupling between mean-field
fluctuations and the single-particle motion. In the stochastic transport the-
ory, this collision term has been analyzed by employing a time-dependent
RPA approach, and shown that, it has the structure of particle–phonon
collision term [17–19]. The linear response of the system to an external
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perturbation can be described by considering the small amplitude limit of
the transport equation given in Eq. (1). The small deviations of the density
matrix δρ(t) = ρ(t) − ρ0 around a finite temperature equilibrium state ρ0

are determined by the linearized form of Eq. (1),

i~
∂

∂t
δρ − [h0, δρ] − [δU + F, ρ0] = δKI(ρ) + δKC(ρ) . (2)

In this expression, δU = (∂U/∂ρ)0 δρ represents small deviations in the ef-
fective mean-field potential and δKI(ρ) and δKC(ρ) represents the linearized
form of the non-Markovian incoherent and coherent collision terms, respec-
tively. In order to study isovector collective response of the system, we
include an external harmonic perturbation in the form τ3F [e−iωt + e+iωt],
where τ3 is the third component of the isospin operator.

In the isovector channel, small density fluctuations can be expressed as
a difference in fluctuations of proton and neutron density matrices, δρ(t) =
δρp(t)− δρn(t). In a similar manner, mean-field fluctuations in the isovector
channel can be written as δU = δUp(~r, t) − δUn(~r, t) = 2V0δn(~r, t), where
δn(~r, t) = δnp(~r, t)−δnn(~r, t) denotes the local density fluctuations. We look
for a solution of Eq. (1) of the form δρ(t) = δρ(ω)e−iwt + h.c. In the small
amplitude limit, collision terms are also harmonic, δKI = δKI(ω)e−iwt + h.c.
and δKC = δKC(ω)e−iwt+h.c. In the homogeneous nuclear matter, the plane
waves are the eigenmodes of the mean-field Hamiltonian h0, and therefore
provide a suitable representation to investigate the response of nuclear mat-
ter. In the momentum representation we then obtain [20, 21],
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, (3)

where f(~q) = 1/
{

1 + eβ[ǫ(~q)−µ]
}

is the Fermi–Dirac occupation factor. The
isovector response function can be deduced from Eq. (3) by integrating over
the momentum ~p and using the fact that the Fourier transform of the local
isovector density fluctuations is related to the fluctuations of the density
matrix according to,
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∫

2
d3p

(2π~)3

〈
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〉

= δn(~k,w) . (4)

The integration over the momentum, then, yields

δn(~k,w) −
[

V0δn(~k,w) + F (~k)
]

Π0(~k,w)

=
[

V0δn(~k,w) + F (~k)
]

ΠI(~k,w) +
[

V0δn(~k,w) + F (~k)
]

ΠC(~k,w) , (5)

where F (~k) denotes the Fourier transform of the external perturbation. In

this expression the quantity Π0(~k,w) is the unperturbed Lindhard function,
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The other quantities, ΠI(~k,w) and ΠC(~k,w) are the collisional and coherent
response functions, respectively, and they are related to the incoherent and
coherent collision terms according to,

[
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and
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The retarded response function, which is defined by

δn(~k,w) = ΠR(~k,w)F (~k) (9)

is then obtained as

ΠR(~k,w) =
Π(~k,w)

1 − V0Π(~k,w)
, (10)
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where Π(~k,w) = Π0(~k,w)+ΠI(~k,w)+ΠC(~k,w). The strength distribution
function is given by the imaginary part of the retarded response function as,

S(~k,w) = − 1

π
ImΠR(~k,w) . (11)

In a previous work, we derived an explicit expression for the collisional

response function ΠI(~k,w) [11,12,21] and investigated the collisional damp-
ing on the giant dipole excitations. The collisional response function is given
by,

ΠI(~k,w) =
2

(2π~)3
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where ∆Q = Q1+Q2−Q3−Q4 with Qi = 1/
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,

f i = 1−fi and W (12; 34) denotes the basic two-body transition rate, which
can be expressed in terms of the spin averaged proton–neutron scattering
cross section as

W (12; 34) =
1

(2π~)3
4~

m2
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)
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As stated above, the stochastic transport theory involves, in addition
to the collisional damping, a coherent dissipation mechanism due to cou-
pling mean-field fluctuations. In the special case of small amplitude density
fluctuations, the coherent dissipation mechanism takes the form of particle–
phonon collision term. In references [17, 18], in terms of a time-dependent
RPA formalism an explicit expression of the coherent collision term was pre-
sented. In Appendix A, we present a brief description of the linearized form
of the coherent collision term. Following from the Eq. (26), the coherent
response function in nuclear matter is given by
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 ,(14)

where ~q = ~p2−~p1 and NW = 1/[e~W/T −1] is the phonon occupation number.
In this expression U = (Up + Un)/2 represents the mean-field potential as
a function of the total nucleon density n = np + nn, and its derivative is
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evaluated at the equilibrium density n0. The quantity σ̃(~q,W ) denotes the
isoscalar density correlation function. It is possible to calculate the density
correlation function in the framework of the stochastic transport model.
Here, we give the result obtained in the mean-field approximation, and for
details we refer [19],

σ̃(~q,W ) = − 2Im[Π0(~q,W )]
[

1 −
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∂U
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)

0
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]2
+
[(
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0
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]2 . (15)

In the calculations, we employ a simplified Skyrme interaction [4, 22],

v = t0(1 + x0Pσ)δ(~r) +
1

6
t3(1 + x3Pσ)ρα(~R)δ(~r) , (16)

with ~r = ~r1−~r2 and ~R = (~r1 +~r2)/2. The local potential for protons is then
given by
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with a similar expression for neutrons. Then the derivative of the mean-field
potential quantity for symmetric nuclear matter in equilibrium is given by,

(
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)
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=
3t0
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α
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In the linear response approximation, the coupling constant for isovector
dipole vibrations becomes,

V0 = −1

2
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(

1

2
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1

2
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In our analysis, we consider two different effective Skyrme interactions: SLy4
and SV forces. The parameters for SLy4 are t0 = −2488.91 MeV fm3,
t3 = 13777 MeV fm7/2, x0 = 0.834, x3 = 1.354 and α = 1/6 which results in
the value V0 = 85 MeV [20], and the corresponding parameters for SV are
t0 = −1248.29 MeV fm3, t3 = 0.0 MeV fm7/2, x0 = −0.17, x3 = 1.0 and
α = 1 which results in the value V0 = 205.97 MeV [9].
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As a result of the approximate treatment, the response functions ΠI(~k, ω)

and ΠC(~k, ω) have singular behavior arising from the pole of the distortion
functions,

Qi = 1

/

[

~w − ǫ

(

~pi +
~k

2

)

+ ǫ

(

~pi −
~k

2

)]

.

In the previous work [12, 21], this singular behavior was avoided by incor-
porating a pole approximation. Here consider a similar approximation. In
the distortion functions, we make the replacement ω → ωD − iΓ/2 where
ωD and Γ are the mean frequency and the width of the resonance, respec-
tively. In the previous work these quantities are determined by solving the

dispersion relation 1 − V0Π1(~k, ω) = 0 at each temperature that is con-
sidered. In this work, rather than solving the dispersion relation, we take
the mean frequency ωD and the width Γ directly from the RPA strength
functions. Furthermore, we neglect the real parts of response functions
ΠI(~q,W ) and ΠC(~q,W ) in our calculations. In the calculations of the col-
lisional response function ΠI(~q,W ), using conservation laws and symme-
try properties, it is possible to reduce the twelve dimensional integrals to
five fold integrals by incorporating the transformations into the total mo-

menta ~P = ~p1 + ~p2, ~P ′ = ~p3 + ~p4, and relative momenta ~q = (~p1 − ~p2)/2,

~q ′ = (~p3 − ~p4)/2 before and after the collisions. The integral over ~P ′ can

be performed immediately. The delta function δ(~ω − ǫ′ + ǫ) in ImΠI(~k,w)
where ǫ = ~q 2/m and ǫ′ = ~q ′ 2/m are the energies of two particle system
in the center of mass frame before and after the collision makes it possible
the reduce the integrals further using familiar methods from the Fermi liq-
uid theory [22]. Then, we evaluate the remaining five dimensional integrals
numerically by employing a fast algorithm. In the evaluation of momentum
integrals, we neglect the angular anisotropy of the cross sections and make
the replacement (dσ/dΩ)pn → σpn/4π with σpn = 40 mb. In the calcula-

tions of the imaginary part of the coherent response function ImΠC(~q,W ),

it is convenient to choose the z-axis along direction of the wave vector ~k
and carry out the momentum integrals in spherical representation, where
d3p1 =

√
2mǫ1mǫ1 sin θ1dθ1dφ1 and d3p2 =

√
2mǫ2mǫ2 sin θ2dθ2dφ2. Sim-

ilar to the collisional response, in the coherent response function at low
temperatures, particle–hole excitations are concentrated around the Fermi
surface. Also, for the magnitude of the wave vector that is much smaller
than the Fermi momentum, k ≪ pF, except in distortion functions Q, we

can ignore the ~k dependence in Eq. (14), and carry out the energy integrals
over ǫ1 and ǫ2, analytically. Remaining four integrals over the angles θ1, θ2

and φ2 − φ1, and over the frequency W are done numerically.
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In order to apply our results to finite nuclei, we work within the frame-
work of Steinwedel and Jensen model for nuclear dipole oscillations [9, 23].
In this model neutrons and protons oscillate inside a sphere of radius R given
by the expression

ρp(~r, t) − ρn(~r, t) = F sin(~k · ~r)eiwt , (20)

the total density remaining equal to the saturation density ρ0 of nuclear
matter and the wavenumber k is given by k = π/2R. We apply Steinwedel
and Jensen model to GDR in 120Sn and 208Pb, and we take R = 5.6 fm
k = 0.28 fm−1 for 120Sn and R = 6.7 fm k = 0.23 fm−1 for 208Pb according
to R = 1.13A1/3. We show our results for the strength function with and
without the collision terms in Figs. 1 and 3 for 120Sn, and in Figs. 2 and 4 for
208Pb as a function of experimental temperature T ∗ where we also present
the comparison with the normalized experimental data [3]. The experimental
temperature T ∗ is related to the temperature parameter in the Fermi–Dirac
function f(ǫ, T ) as T = T ∗

√

aE/aF, where aE denotes the energy dependent
empirical level density parameter and aF = Aπ2/4ǫF denotes Fermi gas
level density parameter [3, 24]. In our calculations, we use the temperature
values T in the Fermi–Dirac function that are related to the experimental
temperatures in this manner.

We observe that the result of calculations are rather sensitive to the
effective interactions, even in the RPA level. At the RPA level, without
the contribution of the collision terms, the calculated peak position of the
strength functions do not change with temperature. As a matter of fact,
as seen from Figs. 1 and 2, calculations with SLy4 force we find for 208Pb
the peak is at ω = 12.3 MeV for T ∗ = 1.34, 1.62, 1.85, 2.05 MeV while
for 120Sn it occurs at ω = 14.3 MeV for T ∗ = 1.36, 2.13 MeV and at
ω = 14.2 MeV for T ∗ = 2.67, 3.1 MeV. These results are consistent with the
calculations reported in our previous work [21]. As seen in Figs. 3 and 4,
we find a similar behavior in calculations with SV force, however we observe
that peak values are shifted to somewhat higher values, ω = 13.0 MeV
for 208Pb and ω = 15.0 MeV for 120Sn. This behavior of the peak energy
with temperature is in accordance with the experimental results, where it
is observed that the mean-energy of the dipole response is almost constant
for 208Pb when T ∗ changes between 1.3 to 2.0 MeV while a decrease of
1.5 MeV is observed in 120Sn when T ∗ changes from 1.2 to 3.1 MeV [3].
Position of the peak value is rather sensitive to the effective force employed.
In particular with SLy4 force, the average positions of the peak values of
the strength functions are slightly below the experimental values, which are
ω = 15.4 MeV for 120Sn and ω = 13.4 MeV for 208Pb. Moreover, the value
for k = π/2R that is used in Steinwedel and Jensen model depends on the
value of R0 used in R = R0A

1/3, and changing k somewhat also produces
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a change in the position of the peak but in general the above conclusions are
not affected. Furthermore, these results for the peak position of the strength
functions are in accordance with the earlier RPA calculations [9].
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Fig. 1. The GDR strength function of 120Sn obtained using Steinwedel–Jensen

model at different temperatures. Solid-, dashed- and dotted-lines show the results

of the calculations with the effective SLy4 Skyrme interaction in the mean-field

approximation, including the collisional damping and including both collisional

and coherent damping, respectively.

Dashed-lines in figures show the strength functions including collisional
damping mechanism. Since, we neglect the real part of the collisional re-
sponse the peak values of the strength do not change, but the collisional
mechanism introduces a small spread in the strength distributions at low
frequencies. At high frequency tail of the strength functions, the collisional
damping appears to be stronger, however its magnitude is weaker than the
results reported in the previous work [21]. This difference arises from a dif-
ferent manner of the implementation of the pole approximation, as explained
above. Dotted-lines in Figs. 1 and 3, and Figs. 3 and 4, show the strength
functions including both the collisional and coherent damping mechanisms
for 120Sn and 208Pb, respectively. As expected, calculations indicate that
the coherent mechanism due to coupling with isoscalar sound modes have
a stronger influence on the damping of the isovector vibrations.
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Fig. 2. The GDR strength function of 208Pb obtained using Steinwedel–Jensen

model at different temperatures. Solid-, dashed- and dotted-lines show the results

of the calculations with the effective SLy4 Skyrme interaction in the mean-field

approximation, including the collisional damping and including both collisional

and coherent damping, respectively.

Rather simple description presented in this paper, including collisional
and coherent dissipation mechanism in nuclear matter, is able to explain cer-
tain qualitative properties of giant dipole excitations in 120Sn and 208Pb at
finite temperature. The result of calculations are rather sensitive the effec-
tive force employed, and it appears that SLy4 force seems to provide a better
description of the giant dipole strength functions. However, calculations do
not produce a quantitative description of the experimental strength func-
tions as a function of temperature, which are indicated by bars in figures.
We also note that the visible effect of the total strength non-conservation
in Figs. 1–4, when compared the results in the mean-field approximation,
then including the collisional damping and then in addition the coherent
damping. This sum rule non-conservation is partly due to omission of the
real part in the propagator, since this leads to modification of underlying
dispersion relation. Including the real part of the propagator and using
Skyrme interaction within the present formalism, one would have to refit
the interaction parameters to reproduce the experimental centroid energies,
which is not done in the present work. This sum rule non-conservation is
partly due to pole approximation, which is introduced to avoid the singular
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Fig. 3. The GDR strength function of 120Sn obtained using Steinwedel–Jensen

model at different temperatures. Solid-, dashed- and dotted-lines show the results

of the calculations with the effective SV Skyrme interaction in the mean-field ap-

proximation, including the collisional damping and including both collisional and

coherent damping, respectively.

behavior of the distortion functions in the collisional and as well as coher-
ent response functions. In particular, rapid rise of the strength functions at
high frequencies is originating from this approximation. Another important
element is missing in the calculations is the surface effect in the coherent
damping mechanism. It will be interesting to improve the description by
incorporating the real part in the propagator in the response functions, and
also by including coupling of dipole vibrations with low frequency surface
modes which maybe carried out in the Thomas–Fermi framework [4,10,15].

One of us (S.A.) gratefully acknowledges TUBITAK for support and the
Physics Department of the Middle East Technological University for warm
hospitality extended to him during his visit. This work is supported in part
by the US DOE grant No. DE-FG05-89ER40530.
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Fig. 4. The GDR strength function of 208Pb obtained using Steinwedel–Jensen

model at different temperatures. Solid-, dashed- and dotted-lines show the results

of the calculations with the effective SV Skyrme interaction in the mean-field ap-

proximation, including the collisional damping and including both collisional and

coherent damping, respectively.

Appendix A

In the stochastic transport theory, the coupling between the mean fluc-
tuations and the single-particle motion gives rise to a dissipation mechanism
and the associated collision terms takes the form of a particle–phonon col-
lision term. This coherent collision term has been investigated before in
quantal and semi-classical framework. In the linear response regime, it is
sufficient to consider the linearized form of the coherent collision term around
equilibrium, which can be expressed as

δKC =

∞
∫

0

dt′
[

δÛ (t), [G0(t, t′)[δΦ(t′), δÛ (t′)]G0(t, t′), ρ0]
]

. (21)

In this expression, the bar indicates an ensemble averaging, δÛ (t)
= (∂U/∂n)0δn̂(t) denotes small amplitude isoscalar fluctuations of the mean-
field around its equilibrium value and G0 = exp[−ih0(t − t′)] represents the
mean-field propagator. The quantity δΦ(t) is the RPA amplitude associ-
ated with the harmonic density vibrations, and it is related to the harmonic
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vibrations of the density matrix according to δρ(t) = [δΦ(t), ρ0]. Here we
consider harmonic isovector vibrations in a homogenous nuclear matter. In
the momentum representation, with the help of Eq. (3), we can determine
the matrix elements of the isovector RPA amplitudes to give,
〈

~p+
~k

2
| δΦ(t) | ~p −

~k

2

〉

= 2e−iωt





V0δn(~k, ω) + F (~k)

~ω − ǫ
(

~p +
~k
2

)

+ ǫ
(

~p − ~k
2

)

+ iη



. (22)

In obtaining this result we neglect the damping terms on the right hand side
of Eq. (3).

In order to calculate the variance of small amplitude density fluctua-
tions, it is convenient to introduce time Fourier transform of the mean-field
fluctuations,

〈

~p +
~k

2
| δÛ (t) | ~p −

~k

2

〉

=

∞
∫

−∞

dω

2π

(

∂U

∂n

)

0

δn̂(~k, ω) e−iωt . (23)

In the framework of the stochastic transport theory, it is possible to calculate
the variance of the density fluctuations to give

δn̂(~k1, ω1)δn̂(~k2, ω2)=(2π~)4δ(~k1+~k2)δ(ω1+ω2)σ̃(~p1, ω1)

(

Nω1
+

1

2

)

, (24)

where the density correlation function σ(~p1, ω1) is given by Eq. (15) and
Nω1

denotes the phonon occupation number with the frequency ω1. Using
this result for the density correlation function and inserting appropriate
intermediate momentum states into Eq. (22), the matrix elements of the
coherent collision term is expressed as

〈

~p2 +
~k

2
| δKC(w) | ~p2 −

~k

2

〉

= 2

∫

d3p1

(2π~)4
dW

∣

∣

∣

∣

∂U

∂n

∣

∣

∣

∣

2

[σ̃(~p2 − ~p1,W )]

×





(

NW + 1
2

)

[

f
(

~p2 − ~k
2

)

− f
(

~p1 +
~k
2

)]

~W − ~ω + ǫ
(

~p1 +
~k
2

)

− ǫ
(

~p2 − ~k
2

)

+ iη





× (Q1 − Q2)(V0δn(~k, ω) + F (~k, ω))

+ 2

∫

d3p1

(2π~)4
dW

∣

∣

∣

∣

∂U

∂n

∣

∣

∣

∣

2

σ̃(~p1 − ~p2,W )

×





(

NW + 1
2

)

[

f
(

~p2 +
~k
2

)

− f
(

~p1 − ~k
2

)]

~W − ~ω + ǫ
(

~p2 +
~k
2

)

− ǫ
(

~p1 − ~k
2

)

+ iη





× (Q1 − Q2)(V0δn(~k, ω) + F (~k, ω)) , (25)
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where Qi = 1/~ω − ǫ
(

~pi +
~k
2

)

+ ǫ
(

~pi − ~k
2

)

+ iγ. Using this expression the

coherent response function ΠC(~k,w) can be expressed as,

ΠC(~k,w) =
4

2π~

1

(2π~)6

∫

d3p2 d3p1 dW

∣

∣

∣

∣

∂U

∂n

∣

∣

∣

∣

2

σ̃(~q,W ) |Q2 − Q1|2

×





(

NW + 1
2

)

{

f
(

~p2− ~k
2

)[

1−f(~p1+
~k
2)
]}

−
(

NW+1
2

)

{

f
(

~p1+
~k
2

)[

1−f
(

~p2− ~k
2

)]}

~W−~ω+ǫ
(

~p1+
~k
2

)

−ǫ
(

~p2− ~k
2

)

+iη



 ,

(26)

where ~q = ~q2−~q1, and the Fermi–Dirac factors are written in a symmetrical
form. By inspection, it can be seen that in this expression, the first and sec-
ond terms correspond to excitation and absorption of sound phonons. These
rates should be proportional to NW + 1 and NW , respectively, but the aver-
age value NW + 1/2 appears in both rates. There are other contributions in
the coherent collision term KC(ρ) in Eq. (1) arising from the cross correla-
tions between the collective and non collective modes. In schematic models,
it is possible to show that these cross correlations give rise to additional con-
tributions to the collision term, so that the excitation and absorption rates
become proportional to NW + 1 and NW , as it should be [17,18]. However,
in the RPA analysis , it is difficult to extract such contributions. For the
time being, we replace the excitation and absorbtion factors by NW + 1 and
NW , and express the coherent respond function as given by Eq. (15).
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