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The method decomposing the molecular electron charge, which facili-
tates the evaluation of electrostatic potential, is presented. The decompo-
sition is based on the observation, that in a free atom the electron charge
distribution in the vicinity of its nucleus does not change, when the atom is
incorporated into the molecule. In the decomposed system, the cusp singu-
larity is integrated analytically by the application of the Green’s function
of Laplace operator for spherically symmetric systems. It is shown, that
the residual charge, which is not treated analytically, is a smooth function
and is close to zero in the vicinity of the nuclei. In the second part of the
paper, the adaptive numerical integration algorithm is applied to obtain the
Dirichlet boundary condition, required to any real space solver of Poisson
equation.

PACS numbers: 31.15.–p, 31.15.Ew, 71.15.–m, 71.15.Ap

1. Introduction

Density Functional Theory (DFT) [13, 16] is a prospective method very
popular in the computational quantum chemistry community. The wides-
pread use of the method is mainly due to the low computational cost com-
paring to the Hartree–Fock method [4]. The Density Functional Theory,
developed by Hohenberg, Kohn and Sham [10, 14] states that any property
of the ground state molecular system is fully described by its electron charge
density, ̺(r). In order to obtain the electron density, ̺(r), the Kohn–Sham
eigenvalue problem must be solved:

(1455)
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[

−1

2
∇2 + Veff(r)

]

ψµ(r) = εµψµ(r) , (1)

where Veff(r) is an effective potential and µ is a multi-index. One of the
constituent of the potential Veff(r) is an electrostatic potential generated by
the electron charge density ̺(r). Thus, in order to solve the Kohn–Sham
equation, the electrostatic potential, V (r), must be evaluated.

There are two common methods [1, 11] of obtaining the electrostatic
potential V (r) for a given charge distribution ̺(r). First method is based
on the direct evaluation of the Coulomb integral:

V (r) =

∫

R3

̺(u)

|u − r|du . (2)

In second method, the electrostatic potential is a solution of Poisson equa-
tion:

∇2V (r) = −4π̺(r) . (3)

For molecular systems (i.e. systems without periodic boundary conditions),
the Poisson equation (3) is defined on the whole space R

3 with Dirichlet
boundary condition lim|r|→∞ V (r) = 0.

There exist well developed methods to solve the Poisson equation on
the finite domain Ω ⊂ R

3. The finite difference method [1], the finite ele-
ment method [21], the wavelets [12] or the multigrid method [24], each of
them transforms the continuous problem to the linear system of algebraic
equations. Since the Poisson equation is a second order partial differential
equation, in order to obtain the solution, the boundary conditions must be
imposed [6] on the boundary of domain Ω. The value of potential V (r) on
the boundary of domain Ω (i.e. Dirichlet boundary condition) are usually
obtained by direct integration of Eq. (2).

The accurate solution of the Poisson equation is a difficult task, since the
molecular charge distribution has many cusp singularities [1]. Due to the
same reason, the evaluation of Dirichelet boundary condition on the border
of Ω by direct integration is difficult task, too. In the present paper we
describe the method of efficient evaluation of electrostatic potential gener-
ated by the molecular charge. The method is based on the decomposition
of molecular charge. The decomposition has two advantages:

• removes the cusp singularities,

• allows efficient evaluating of the electrostatic potential.
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The structure of the paper is as follows. In Sec. 2 the decomposition of
molecular charge is proposed. The equation for electrostatic potential gener-
ated by the spherically symmetric atom is derived in Sec. 3. The evaluation
of the potential generated by residual charge is described in Sec. 4. The
numerical results obtained by adaptive procedure is assessed in Sec. 5.

2. Molecular electrostatic potential

In this section the evaluation method of electrostatic potential V (r) for
molecular systems is described. Let us denote by ̺(r) the electron charge
distribution characterizing the considered finite, molecular system. Let us
assume, that the molecule is built from N atoms. Further, let us denote by
̺a,i(r) the electron charge distribution of i-th free atom, which is spherically
symmetric:

̺a,i(r) = ̺a,i(|r|) = ̺a,i(r) . (4)

Let us denote by Ri the center of i-th atom. Then, we define the residual
electron charge distribution, ̺r(r), as a difference between the molecular
charge distribution and the sum of atomic charge distributions:

̺r(r) = ̺(r) −
N

∑

i=1

̺a,i(r − Ri) . (5)

Let us assume, that the considered molecule is electrically neutral, and de-
note by P the total number of protons in the molecule. Then P =

∫

̺(r)dr.
If ̺a,i(r) represents the charge distribution of free, neutral atom, then

P =
∑N

i=1

∫

̺a,i(r)dr. Thus, based on Eq. (5) we have:

0 =

∫

R3

̺r(r)dr . (6)

Substituting transformed Eq. (5) into Eq. (2) we obtain:

V (r) =

∫

R3

̺r(u)

|u − r|du +

N
∑

i=1

∫

R3

̺a,i(u − Ri)

|u − r| du . (7)

Let us introduce the potential generated by residual charge:

Vr(r) =

∫

R3

̺r(u)

|u − r|du . (8)
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Further, let us introduce the potential generated by i-th free atom:

Va,i(r) =

∫

R3

̺a,i(u)

|u − r|du . (9)

Then, the electrostatic potential generated by the molecular electron charge
is a sum of potential generated by the residual electron distribution and free
atomic electron distribution:

V (r) = Vr(r) +

N
∑

i=1

Va,i(r − Ri) . (10)

The analytic algorithm evaluating the electrostatic potential, Va,i(r), gener-
ated by the spherical charge distribution, ̺a,i(r), is described in Sec. 3. The
adaptive, numerical algorithm evaluating the electrostatic potential Vr(r) is
described in Sec. 4.

3. Spherical charge distribution

In the previous section, the molecular electron charge, ̺(r), was decom-
posed into residual charge, ̺r(r), and free atom charges, ̺a,i(r). In order
to obtain ̺a,i(u) in the framework of Density Functional Theory, the Kohn–
Sham equation for free atom must be solved. If one assumes, that for free
atom the effective potential, Veff(r), in Eq. (1) is spherically symmetric,
then the three dimensional Kohn–Sham eigenproblem can be reduced to the
one dimensional eigenproblem [15]. One dimensional eigenproblem can be
solved efficiently applying the finite element method [21] in B-Spline ba-
sis [17] as was demonstrated in Ref. [20] or by the finite difference method
as was demonstrated in Ref. [19].

The solution of Kohn–Sham equation, for i-th free atom problem with
spherically symmetric potential, Veff(r), is the spherically symmetric electron
charge distribution, ̺a,i(r). It is known [11], that the electrostatic potential
generated by spherically symmetric charge distribution is given by Green’s
function of Laplace operator:

Va,i(r) = 4π





1

r

r
∫

0

t2̺a,i(t)dt +

∞
∫

r

t̺a,i(t)dt



 . (11)

Since the evaluation of electrostatic potential Va,i(r) is mutually indepen-
dent for free atoms, and in order to simplify the notation, in the following
discussion we use: ρ(r) ≡ ̺a,i(r) and U(r) ≡ Va,i(r).
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Let us assume, that ρ(r) has the finite support, i.e. vanishes outside
the finite interval [0, r∗]. Further, let us assume, that ρ(r) is represented as
a piecewise cubic spline polynomial [22] on the partition 0 = r0 < r1 < . . . <
rM = r∗, where M is a number of knots on the interval [0, r∗]. Then, the
integrand in Eq. (11) is a polynomial of fifth or fourth order, and the po-
tential can be obtained analytically. Let us introduce the set of polynomials
{hk(r)}M

k=1 with real coefficients ak, bk, ck, dk ∈ R determined based on the
cubic spline interpolation [18]:

hk(r) =

{

ak + bkr + ckr
2 + dkr

3 for r ∈ [rk−1, rk] ,
0 otherwise .

(12)

Then, the function ρ(r) is represented as a sum:

ρ(r) =

M
∑

k=1

hk(r) . (13)

Further, let us introduce two auxiliary integrals:

Ik(x) = 4π

∫

x2hk(x)dx =
akx

3

3
+
bkx

4

4
+
ckx

5

5
+
dkx

6

6
, (14a)

Jk(x) = 4π

∫

xhk(x)dx =
akx

2

2
+
bkx

3

3
+
ckx

4

4
+
dkx

5

5
. (14b)

Then, according to Eqs. (11) and (14a), the electrostatic potential generated
by hk(r) is:

Uk(r)=







Jk(rk)−Jk(rk−1) , r < rk−1 ,
(Ik(rk)−Ik(rk−1))/r , r > rk ,
(Ik(r)−Ik(rk−1))/r+Jk(rk−1)−Jk(r) , rk−1 < r < rk .

(15)

Finally, based on Eq. (13) the electrostatic potential generated by ρ(r) is
a sum:

U(r) =

M
∑

k=1

Uk(r) . (16)

The solution of the Kohn–Sham equation for free atom is independent on the
considered molecular system. Thus, the atomic electron charge distribution,
ρ(r), and hence its electrostatic potential, U(r), can be solved once and
stored in the database for future use. The evaluation cost of electrostatic
potential U(r) scales linearly with M , where M is the number of intervals
required to represent the atomic electron distribution, ρ(r).



1460 Z. Romanowski, A.F. Jalbout

4. Evaluation of residual potential

The molecular residual charge distribution, ̺r(r), defined by Eq. (5), is
a difference between the molecular charge distribution, ̺(r), and the sum
of free atom charge distributions, ̺a,i(r). In the present paper the real
molecular systems are considered. Therefore, based on the chemical/physical
reasons, we can assume that ̺r(r) is small in comparison to ̺(r), since
̺r(r) is a measure of created bonds in the molecule [4, 13, 15]. Moreover,
we assume that ̺r(r) is a smooth function, since bonds are created by the
valence electrons, which are diffuse.

It is known that the function ̺(r) has the slope discontinuities (cusps)
in the vicinity of nuclei, which are caused by the nuclei attraction. However,
it was proved, by the successes of the pseudopotential theory [3, 7, 23], that
the charge distribution of free atom in the vicinity of its nucleus does not
change, when the atom is incorporated into the molecule. Hence, the cusps
in ̺(r) are effectively represented by the cusps of ̺a,i(r). Therefore, ̺r(r)
does not have the cusps and its value in the neighborhood of the nuclei is
close to zero.

Since ̺r(r) is a smooth function with relatively small amplitude in values,
it is convenient to apply the adaptive real space method [1, 9] (like the
finite element method [21]) to solve the Poisson equation and obtain the
electrostatic potential generated by ̺r(r). However, each real space method
is defined on the finite domain. Hence, the boundary condition must be
provided.

4.1. Determination of boundary conditions

We are interested in the algorithm evaluating the electrostatic poten-
tial for finite, molecular system. The obtained electrostatic potential will
be applied to the Kohn–Sham equation, Eq. (1). The Kohn–Sham equa-
tion is a second order eigenproblem defined on the whole R

3 space with the
boundary conditions lim|r|→∞ ψµ(r) = 0. Let us assume that, the consid-
ered molecular charge distribution, ̺r(r), has the finite support, and denote
its support by Ω̺. It was proved [4, 15], that for these systems the eigen-
function, ψµ(r), decays as exp(−α||r||) with α > 0, where ||r|| is a distance
between Ω̺ and the point r. Because of exponential decay of eigenfunction,
the solution domain of the Kohn–Sham equation can be restricted to the
finite domain Ωks and obtain the eigenfunctions close to the one obtained
for R

3 space. Moreover, the eigenfunction ψµ(r) must fulfill zero Dirichlet
boundary condition on the border Ωks, see Fig. 1.

The electrostatic potential decreases slower than exponentially and can-
not be neglected on the border of Ωks. It means, that to solve the Poisson
equation over Ωks, the electrostatic potential must be determined on the
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Fig. 1. Mutual relation between Ω̺ ⊂ Ω ⊂ Ωks. Ωks denotes the domain of Kohn–

Sham equation. Ω̺, denoted by hatched region, is a molecule. Ω, enclosed by

dashed line, is a cuboid. It is assumed that the Kohn–Sham eigenfunction is equal

zero on the border of Ωks. In contrary, the electrostatic potential is usually non-zero

on the border of Ωks.

border of domain Ωks. The values of the potential on the border of Ωks

can be determined from Coulomb integral, Eq. (8). By construction, Ωks

encloses the charge domain: Ω̺ ⊂ Ωks, see Fig. 1. Hence, for any point q

laying on the border of Ωks, the Coulomb integral, does not possess the
singularity and is over the finite domain:

Vr(q) =

∫

Ω̺

̺r(u)

|u − q|du . (17)

Since ̺r(u) is a smooth function and term |u − q|−1 does not have the
singularity over the integration domain, the adaptive, numerical integration
algorithm can be applied to evaluate the above integral.

4.2. Adaptive integration algorithm

Let us introduce the Cartesian coordinate system C. Let us denote by
Ω the cuboid of the smallest volume with the faces parallel to the planes of
C, which encloses the molecule: Ω̺ ⊂ Ω, see Fig. 1. By construction, the
faces of Ω are parallel to planes of system C, hence Ω can be represented
as a Cartesian product Ω = [x0, x1] × [y0, y1] × [z0, z1], where x0 < x1, and
y0 < y1, and z0 < z1. Since for v ∈ Ω −Ω̺ it holds ̺r(v) = 0, we have:

Vr(r) =

∫

Ω̺

̺r(u)

|u − r|du =

∫

Ω

̺r(u)

|u − r|du . (18)

Let us denote the Cartesian coordinates of the point q laying on the border
of Ωks by q = (a, b, c) and the coordinate of the point u ∈ Ω by u = (x, y, z).
Then, from Eq. (18), we have:
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Vr(r) =

∫

Ω

̺r(u)

|u − r|du

=

x1
∫

x=x0

y1
∫

y=y0

z1
∫

z=z0

̺r(x, y, z)

[(x− a)2 + (y − b)2 + (z − c)2]1/2
dzdydx . (19)

In order to evaluate the above integral, the adaptive numerical algorithm
developed by Genz and Malik [2,5,8] can be applied. This algorithm is ded-
icated to integrate over an N -dimensional cube. It is based on the quadra-
tures, which evaluate exactly the polynomials of fifth and seventh order. In
three dimensions, the algorithm requires 33 integrand evaluation to obtain
the approximation of the integral and the approximation of the integration
error. If the approximated error is two large, the integration domain is di-
vided into two identical parts. The algorithm is adaptive, and stops if the
integration error is smaller than the predefined accuracy.

5. Exemplary results

In this section the accuracy and efficiency of the adaptive numerical
scheme applied to evaluate the electrostatic potential on the border of do-
main is assessed. In order to manage this, the analytically solvable problem
must be defined.

5.1. Analytically solvable problem

Let us denote the Gaussian function as g(r;α) = exp(−α|r|2), with co-
efficient α > 0. Since g(r;α) is spherically symmetric, then the electrostatic
potential generated by this charge distribution can by obtained analytically.
Substituting g(r;α) into Eq. (11) and integrating, we obtain:

Vg(r;α) =
(π

α

)3/2 Erf(r
√
α)

r
, (20)

where Erf(x) = 2/
√
π

∫ x
0 exp(−t2)dt is the error function.

We consider the residual charge distribution, ̺r(r), represented as a sum
of four Gaussian functions with equal coefficients α, centered at four points:

̺r(r) =
4

∑

k=1

g(r − Qk;α) ⇒ Vr(r) =
4

∑

k=1

Vg(|r − Qk|;α) , (21)

where Q1 = (q1,x, q1,y, q1,z) = (0, 0, 0), Q2 = (q2,x, q2,y, q2,z) = (1, 0, 0),
Q3 = (q3,x, q3,y, q3,z) = (0, 1, 0) and Q4 = (q4,x, q4,y, q4,z) = (−1,−1/2, 1).



Decomposition of Molecular Charge Speeds up the Evaluation of . . . 1463

The coefficient α = 2 is so chosen that the Gaussian functions overlap.
Since the present algorithm is defined for the system with the finite support,
the Gaussian function is truncated. The value of Gaussian function is set
to zero, if its value drops below ǫ = 10−13. Hence g(r;α) vanishes for

|r| > γ =
√

− ln(ǫ)/α. Based on this value, the cuboid Ω enclosing four
truncated Gaussian functions has the coordinates:

x0 = min
k

{qk,x} − γ ≈ −4.9 , x1 = max
k

{qk,x} + γ ≈ 4.9 ,

y0 = min
k

{qk,y} − γ ≈ −4.4 , y1 = max
k

{qk,y} + γ ≈ 4.9 ,

z0 = min
k

{qk,z} − γ ≈ −3.9 , z1 = max
k

{qk,z} + γ ≈ 4.9 .

The mutual relation Ω̺ ⊂ Ω ⊂ Ωks is depicted in Fig. 1.

5.2. Numerical results

In order to obtain the numerical values for the system defined in Sec. 5.1,
the cube of edge length 20 and centered at the origin of coordinate system
was chosen as Ωks. The values of the electrostatic potential evaluated for
the selected points located on the border of Ωks are listed in Table I.

In Table I the analytic values, V
(a)
r (r) obtained from Eq. (21) are listed

in the column Analytic. Let us denote by V
(n)
r the numeric value obtained

by the adaptive algorithm from Sec. 5.1. Then, in column titled Diff, the

difference |V (a)
r −V (n)

r | is listed. The measure of the efficiency of the adaptive
algorithm is the number of divisions required to achieve the accuracy set to
δ = 10−4. For the studied example, the number of divisions is presented in
column DivNo.

The values of the electrostatic potential were evaluated in 8 cube vertices
and 6 middle points of cube faces. For each studied case, the difference

|V (a)
r − V

(n)
r | is smaller than the set accuracy δ = 10−4. Moreover, the

number of divisions is small (less than 700), hence the algorithm is fast.

6. Summary

The key point in the solution of Kohn–Sham equation for the molecu-
lar system is the evaluation of electrostatic potential required to determine
the effective interaction potential. It is known that the molecular charge
distribution has the cusps in the vicinity of the nuclei. In the present
paper we show how to decompose the molecular charge distribution into
atomic charges and residual charge. The decomposition is based on the
physical/chemical reasons. It was shown how to analytically evaluate the
electrostatic potential generated by the atomic parts, which posses the cusp
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TABLE I

Analytic values of electrostatic potential generated by four Gaussian function, see
Eq. (21). In the column Diff the absolute difference between analytic and numeric
values is listed. The column DivNo contains the number of divisions generated by
Genz-Malik adaptive algorithm. The potential were calculated for a characteristic
point of cube. Numbers in square brackets represent powers of 10.

a b c Analytic Diff DivNo

Cube vertices

10 10 10 0.459960 1.7[−8] 454
−10 10 10 0.460303 2.0[−6] 442
−10 −10 10 0.457382 2.5[−6] 444

10 −10 10 0.456148 3.9[−7] 459
10 10 −10 0.453444 3.1[−6] 462

−10 10 −10 0.452399 2.2[−6] 452
−10 −10 −10 0.448588 2.6[−6] 448

10 −10 −10 0.448994 2.3[−6] 456

Middle of cube faces

0 0 10 0.805732 6.3[−6] 612
0 0 −10 0.766712 3.2[−6] 569
0 10 0 0.797325 2.0[−6] 596
0 −10 0 0.776709 1.4[−6] 613

10 0 0 0.789563 2.3[−6] 562
−10 0 0 0.788812 2.7[−6] 559

singularity. We also proved the smoothness of the residual charge, therefore
it is expected that the adaptive real space Poisson solvers will run efficiently
for the residual charge. Moreover, it was shown, that the adaptive numer-
ical integration scheme applied to the Coulomb integral with the residual
charge, is an efficient evaluation method of Dirichled boundary conditions,
which are required to start up any real space Poisson solver.

I would like to thank S. Krukowski for his support.
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