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A new luminosity function for galaxies can be built starting from the
product of two random variables X and Y represented by a gamma variate
with argument 2. The mean, the standard deviation and the distribu-
tion function of this new distribution are computed. This new probability
density function is assumed to describe the mass distribution of galaxies.
Through a non linear rule of conversion from mass to luminosity a second
new luminosity function for galaxies is derived. The test of reliability of
these two luminosity functions was made on the Sloan Digital Sky Survey
(SDSS) in five different bands. The Schechter function gives a better fit
with respect to the two new luminosity functions for galaxies here derived.

PACS numbers: 98.62.Ve, 02.50.Cw

1. Introduction

Given two independent non-negative random variables X and Y , their
product XY represents an active field of research. When X and Y are
Student’s t random variables the product XY is applied in the field of fi-
nance [1]. When X and Y are n-Rayleigh distribution, the application can
be the wireless propagation research [2]. In Section 2 this paper explores
the product XY when X and Y are gamma variate with argument 2. Sec-
tion 3 explores the connection between the Voronoi Diagrams and galaxies.
Section 4 reports two new luminosity functions for galaxies as deduced from
the product XY .

(1467)
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2. The new distribution of probability

The starting point is the probability density function (in the following
PDF) in length, s, of a segment in a random fragmentation

p(s) = λ exp (−λs)ds , (1)

where λ is the hazard rate of the exponential distribution. Given the fact
that the sum, u, of two exponential distributions has PDF

p(u) = λ2u exp (−λu)du . (2)

The PDF of the 1D Voronoi segments, l, (the midpoint of the sum of two
segments) can be found from the previous formula inserting u = 2l

p(l) = 2λl exp (−2λl)d(2λl) . (3)

On transforming in normalized units x = l/λ we obtain the following PDF

p(x) = 2x exp (−2x)d(2x) . (4)

When this result is expressed as a gamma variate we obtain the PDF (for-
mula (5) of [3])

H(x; c) =
c

Γ (c)
(cx)c−1 exp(−cx) , (5)

where 0≤x <∞, c > 0 and Γ (c) is the gamma function with argument c; in
the case of 1D Voronoi Diagrams c = 2. It was conjectured that the area in
2D and the volumes in 3D of the Voronoi Diagrams may be approximated as
the sum of two and three gamma variate with argument 2. Due to the fact
that the sum of n independent gamma variates with shape parameter ci is
a gamma variate with shape parameter c =

∑n
i ci the area and the volumes

are supposed to follow a gamma variate with argument 4 and 6 [4, 5]. This
hypothesis was later named “Kiang’s conjecture” and equation (5) was used
as a fitting function, see [6, 7], or as an hypothesis to accept or to reject
using the standard procedures of the data analysis, see [8, 9]. PDF (5)
can be generalized by introducing the dimension of the considered space,
d(d = 1, 2, 3),

H(x; d) =
2d

Γ (2d)
(2dx)2d−1 exp(−2dx) . (6)

Two other PDF are suggested for the Voronoi Diagrams:

• The generalized gamma function with three parameters (a, b, c)

f(x; b, c, d) = c
ba/c

Γ (a/c)
xa−1 exp (−bxc) , (7)

see [9, 10].
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• A new analytical PDF of the type

FN(x; d) = const × x
3d−1

2 exp

(

−(3d + 1)x

2

)

, (8)

where

const =

√
2
√

3 d + 1

223/2 d (3 d + 1)−3/2 d Γ (3/2 d + 1/2)
, (9)

and d (d = 1, 2, 3) represents the dimension of the considered space,
see [11].

Experimentally determined physical quantities are usually derived from
combinations of measurements, each of which may be considered a ran-
dom variable subject to a known distribution law. The distribution law of
the sought-for physical quantity, however, is generally not known or deter-
minable analytically, except for a linear superposition of random variables,
i.e. the sum of n independent gamma variates, [12]. Physical quantities rep-
resented as products of random variables are of especial interest. Computer
simulations of products of normally distributed random variables, as an ex-
ample, lead to distributions that are not normal, in some cases markedly so
with pronounced skewness, depending upon the parameters of the compo-
nent distributions, [12]. Consider, for example, the product of two random
variables X ≈ N(0, 1) and the random variable Y ≈ N(0, 1), the PDF of
V = XY is, see [13],

h(v) =

{

K0(v ∗ sign(v))/π −∞ < v < 0 ,

K0(v ∗ sign(v))/π 0 < v < ∞ .
(10)

This PDF has a pole at v = 0.
We now explore the product of two gamma variate with argument 2. We

recall that if X is a random variable of the continuous type with PDF, f(x),
which is defined and positive on the interval 0 ≤ x < ∞ and similarly if Y
is a random variable of the continuous type with PDF g(y) which is defined
and positive 0 ≤ y < ∞, the PDF of V = XY is

h(v) =

∞
∫

0

g
(v

x

)

f(x)
1

x
dx . (11)

Here the case of equal limits of integration will be explored, when this is not
true difficulties arise [13,14]. When f(x) and g(y) are gamma variates with
argument 2 the PDF is

h(v) =

∞
∫

0

16 e−2 xve−2 v
x

x
dx = 32 vK0

(

4
√

v
)

, (12)
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where Kν(z) is the modified Bessel function of the second kind [15,16] with
ν representing the order, in our case 0. The distribution function (in the
following DF) is

16 v2K0

(

4
√

v
)

2F1 (1, 2; 3; 4 v) + 16 v5/2K1

(

4
√

v
)

2F1 (1, 3; 3; 4 v) , (13)

where 2F1(a, b; c; v) is a regularized hypergeometric function, see [15,17,18].
The mean of the new PDF, h(v), as represented by formula (12) is

〈v〉 =

∞
∫

0

v × 32 vK0

(

4
√

v
)

dv = 1 , (14)

and the variance

σ2 =

∞
∫

0

(v − 1)2 × 32 vK0

(

4
√

v
)

dv =
5

4
. (15)

The mode, m, is at v = 0.15067. Fig. 1 reports our function h(x) as well
the Kiang function H(x; c) for three values of c. Asymptotic series are

h(v) ∼ −16 (2 ln (2) + ln (v) + 2 γ) v , v ≪ 1 , (16)

h(v) ∼ −
√

2
√

πe
− 4√

1
v

(

−32 +
√

1
v

)

4
(

1
v

)3/4
, v ≫ 1 , (17)

where γ is the Euler–Mascheroni constant.

Fig. 1. Plot of h(x) as function of x (full line), H(x; c) when c = 2 (dashed), H(x; c)

when c = 4 (dot-dash-dot-dash) and H(x; c) when c = 6 (dotted).
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3. Voronoi Diagrams and galaxies

The applications of the Voronoi Diagrams, see [19] and [20], in astro-
physics started with [3] where through a Monte Carlo experiment, the area
distribution in 2D and volume distribution in 3D were deduced. The applica-
tion of the Voronoi Diagrams to the distribution of galaxies started with [21],
where a sequential clustering process was adopted in order to insert the ini-
tial seeds. Later a general algorithm for simulating one-dimensional lines of
sight through a cellular universe was introduced [22]. The large microwave
background temperature anisotropies over angular scales up to one degree
were calculated using a Voronoi model for large-scale structure formation
in [23] and [24]. The intersections between lines that represent the “pencil
beam” surveys and the faces of a three-dimensional Voronoi tessellation has
been investigated by [25] where an exact expression is derived for the dis-
tribution of spacings of these intersections. Two algorithms (among others)
that allow to detect structures from galaxy positions and magnitudes are
briefly reviewed:

• A Voronoi Galaxy Cluster Finder (VGCF) that uses galaxy positions
and magnitudes to find clusters and determine their main features:
size, richness and contrast above the background, see [26, 27].

• An automated procedure for structure finding, involving the Voronoi
tessellation allows to build a catalogue (called PF) of galaxy structures
(groups and clusters) in an area of 5 000 square degrees in the southern
hemisphere, see [28, 29].

This section first explores how the fragmentation of a 2D layer as due
to the 2D Voronoi Diagrams can be useful or not in describing the mass
distribution of galaxies. The large scale structures of our universe are then
explained by the 3D Voronoi Diagrams in the second section.

3.1. Mass distribution

Here we analyse the fragmentation of a 2D layer of thickness which is neg-
ligible with respect to the main dimension. A typical dimension of the layer
can be found as follows. The averaged observed diameter of the galaxies is:

Dobs ≈ 0.6Dobs
max = 2700

Km

sec
= 27 Mpc , (18)

where Dobs
max = 4500Km/sec corresponds to the extension of the maximum

void visible on the CFA2 slices. In the framework of the theory of the
primordial explosions, see [30] and [31], this means that the mean observed

area of a bubble, Aobs, is
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Aobs ≈ 4π

(

Dobs
max

2

)2

= 2290Mpc2 . (19)

The averaged area of a face of a Voronoi polyhedron, AV, is

AV =
Aobs

NF

, (20)

where NF is the averaged number of irregular faces of the Voronoi polyhe-
dron, i.e. NF = 16, see [7, 32]. The averaged side of a face of a irregular
polyhedron, LV, is

LV ≈
√

Aobs ≈ 12Mpc . (21)

The thickness of the layer, δ, can be derived from the shock theory, see [33],
and is 1/12 of the radius of the advancing shock,

δ =
Dobs

max

2 × 12
≈ 1.12Mpc . (22)

The number of galaxies in this typical layer, NG, can be found by multiplying
n∗ ≈ 0.1, the density of galaxies, by the volume of the cube of side 12Mpc:
i.e. NG ≈ 172.

A first application of the new PDF, h(v), as represented by formula (12),
can be a test on the area distribution of the Voronoi polygons, see Fig. 2.
Does the area distribution of the irregular polygons follow the sum or the
product of two gamma variates with argument 2? In order to answer this
question we fitted the sample of the area with h(v), the new PDF, with
a gamma variate with argument 4 and with a gamma variate with the ar-
gument as deduced from the sample. The results are reported in Table I.
From a careful inspection of Table I it is possible to conclude that the area
distribution of the irregular Voronoi polygons is better described by the sum
of two gamma variates with argument 2 rather than by the product.

TABLE I

The χ2 of data fit when the number of classes is 10 for three PDF.

PDF χ2

h(x) 62.8
H(x; c) when c = 4 28.3
H(x; c) when c = 3.7 23.55
FN(x; d) Ferenc & Neda formula (8) when d = 2 20.2
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Fig. 2. The Voronoi Diagram in 2D when random seeds are used. The selected

region comprises 102 seeds.

3.2. Spatial dependence

Our method considers a 3D lattice made of pixels3 points: present in this
lattice are Ns seeds generated according to a random process. All the com-
putations are usually performed on this mathematical lattice; the conversion
to the physical lattice is obtained by multiplying the unit by δ = side

pixels−1 ,

where side is the length of the square/cube expressed in the physical unit
adopted. The tessellation in ℜ3 is firstly analyzed through a planar section.
Given a section of the cube (characterized, for example, by k = pixel

2 ) the
various Vi (the volume belonging to the seed i) may or may not cross the
little cubes belonging to the two dimensional lattice. Following the nomen-
clature introduced by [32] we call the intersection between a plane and the
cube previously described as Vp(2, 3); a typical example is shown in Fig. 3.

For astronomical purposes is also interesting to plot the little cubes be-
longing to a slice of 6◦ wide and about 130◦ long, see Fig. 4.

4. A new luminosity function for galaxies

The new PDF as given by formula (12) can represent a PDF in mass for
the galaxies. The luminosity function, in the following LF, for galaxies is
then deduced by introducing a linear and a non linear relationship between
mass and luminosity. A special section is devoted to the parameters deter-
mination of the two new FL for galaxies. The dependence of the number of
galaxies with the redshift is then analyzed by adopting the first new LF.
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Fig. 3. Portion of the Voronoi Diagram Vp(2, 3) when random seeds are used; cut

on the x–y plane. For astronomical purposes we only report a slice 130◦ long. The

parameters are pixels = 800, N = 1 900 and side = 2 × 16 000 Km/sec.

Fig. 4. Polar plot of the little cubes belonging to a slice 130◦ long and 6◦ wide.

Parameters as in Fig. 3.

4.1. Schechter luminosity function

A model for the LF of galaxies is the Schechter function

Φ(L)dL =

(

Φ∗

L∗

)(

L

L∗

)α

exp

(

− L

L∗

)

dL , (23)

where α sets the slope for low values of L, L∗ is the characteristic luminosity
and Φ∗ is the normalization. This function was suggested by [34] in order to
substitute other analytical expressions, see for example, formula (3) in [35].
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Other interesting quantities are the mean luminosity per unit volume, j,

j =

∞
∫

0

LΦ(L)dl = L
∗ Φ∗ Γ (α + 2) , (24)

and the averaged luminosity, 〈L〉,

〈L〉 =
j

Φ∗
= L∗ Γ (α + 2) , (25)

where Γ is the gamma function and its appearance is explained in [36].
An astronomical form of equation (23) can be deduced by introducing the
distribution in absolute magnitude

Φ(M)dM = (0.4ln10)Φ∗100.4(α+1)(M∗−M) exp
(

−100.4(M∗−M)
)

dM , (26)

where M∗ is the characteristic magnitude as derived from the data. At pre-
sent this function is widely used and Table II reports the parameters from
the following catalogs

• The 2dF Galaxy Redshift Survey (2dFGRS) based on a preliminary
subsample of 45 000 galaxies, see [37].

• The r∗-band LF for a sample of 11 275 galaxies from the Sloan Digital
Sky Survey (SDSS), see [38].

• The galaxy LF for a sample of 10 095 galaxies from the Millennium
Galaxy Catalogue (MGC), see [39].

• The CFA Redshift Survey [40] that covered 9 063 galaxies with Zwicky
m magnitude < 15.5 to calculate the galaxy LF over the range 13 <
M < 22.

TABLE II

The parameters of the Schechter function from 2dFGRS, SDSS, MGC and CFA.

Parameter 2dFGRS SDSS (r∗) band MGC CFA

M∗ [mags] −19.75± 0.05 −20.83± 0.03 −19.60± 0.04 −18.79± 0.1

α −1.09± 0.03 −1.2 ± 0.03 −1.13± 0.02 −1. ± 0.1

Φ∗ [h Mpc−3×10−2] (2.02 ± 0.02) (1.46 ± 0.12) (1.77 ± 0.15) (4.0 ± 0.1)
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Over the years many modifications have been made to the standard Schechter
function in order to improve its fit: we report three of them. When the fit
of the rich clusters LF is not satisfactory a two-component Schechter-like
function is introduced, see [41]

Lmax > L > LDwarf : Φ(L)dL =

(

Φ∗

L∗

)(

L

L∗

)α

exp

(

− L

L∗

)

dL ,

LDwarf > L > Lmin : Φ(L)dL =

(

ΦDwarf

L∗

)(

L

LDwarf

)αDwarf

dL , (27)

where

ΦDwarf = Φ∗

(

LDwarf

L∗

)α

exp

(

−LDwarf

L∗

)

.

This two-component function defined between Lmax and Lmin has two ad-
ditional parameters: LDwarf which represents the magnitude where dwarfs
first dominate over giants and αDwarf the faint slope parameter for the dwarf
population.

Another function introduced in order to fit the case of extremely low
luminosity galaxies is the double Schechter function, see [42]:

Φ(L)dL =
dL

L∗
exp

(−L

L∗

)[

φ∗,1

(

L

L∗

)α1

+ φ∗,2

(

L

L∗

)α2
]

, (28)

where the parameters Φ∗ and α which characterize the Schechter function
have been doubled in φ∗,1 and φ∗,2.

4.2. A linear mass-luminosity relationship

We start by assuming that the mass of the galaxies, M, is distributed
as h(M). We then assume a linear relationship between mass of galaxy and
luminosity, L,

L = RM , (29)

where R represents the mass luminosity ratio ≈ (10–15), see [43]. When L∗

represents the scale of the luminosity. Equation (12) changes to

Ψ(L)dL = Ψ∗ ×
32LK0

(

4
√

L√
L∗

)

L∗
d

L

L∗
, (30)

where Ψ∗ is a normalization factor which defines the overall density of
galaxies, a number per cubic Mpc. The mathematical range of existence
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is 0 ≤ L < ∞. The mean luminosity per unit volume, j,

j =

∞
∫

0

LΨ(L)dl = L∗Ψ∗ . (31)

The relationship connecting the absolute magnitude, M , of a galaxy with
its luminosity is

L

L⊙
= 10

0.4(M
bol,⊙−M)

, (32)

where Mbol,⊙ is the bolometric luminosity of the sun, which according to [44]
is Mbol,⊙ = 4.74.

A more convenient form in terms of the absolute magnitude M is

Ψ(M)dM = 12.8Ψ∗ 100.8 M∗−0.8MK0

(

4.0 100.2 M∗−0.2M
)

ln (10) dM . (33)

This data oriented function contains the parameters M∗ and Ψ∗ which can
be derived from the operation of fitting the observational data.

In order to make a comparison between our LF and the Schechter LF we
first down-loaded the data of the LF for galaxies in the five bands of SDSS
available at http://cosmo.nyu.edu/blanton/lf.html. The LF for galaxies
as obtained from the astronomical observations ranges in magnitude from
a minimum value, Mmin, to a maximum value, Mmax; details can be found
in [45] and [46]. For our purposes we then introduced an upper limit, Mlim,

TABLE III

The full range in magnitudes, the selected range in magnitudes, the parameters of
our function (33), χ2, AIC and BIC of our function and the Schechter function (for
k = 3) for the SDSS catalog.

Parameter u∗ g∗ r∗ i z

full range −22,−15.8 −23.4,−16.3 −24.48,−16.3 −24.5,−17.2 −23.7,−17.4

selec. range −20.65,−15.8−22.09,−18.2−22.94,−18.5−23.42,−18.5 −23.7,−19

M∗ −17.23 −18.74 −19.63 −20.05 −20.37

Ψ∗ 0.052 0.033 0.028 0.027 0.026

χ2 563 1151 2758 4202 4588

AIC, k = 2 567 1155 2762 4206 4592

BIC, k = 2 575 1163 2770 4215 4601

χ2
Schechter 330 456 1497 1916 2694

AICSchechter 336 462 1503 1922 2700

BICSchechter 349 474 1515 1935 2713
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for the absolute magnitude in order to check the range of reliability of our LF
as represented by equation (33). It is interesting to stress that Mlim is used
only for internal reasons and is connected to how the LF, as a function of
the absolute magnitude reaches the maximum. Table III reports the original
range in magnitude of the astronomical data, the selected range adopted for
testing purposes, the three parameters of our function, the χ2 of the fit and
the χ2 of the Schechter function for the five bands of SDSS. The Schechter
function, the new function and the data are reported in Fig. 5, Fig. 6, Fig. 7,
Fig. 8 and Fig. 9 when the u∗,g∗,r∗, i∗ and z∗ bands of SDSS are considered.

Fig. 5. The LF data of SDSS(u∗) are represented through the error bar. The fitting

continuous line represents our LF (33) and the dotted line represents the Schechter

function.

Fig. 6. The LF data of SDSS(g∗) are represented through the error bar. The fitting

continuous line represents our LF (33) and the dotted line represents the Schechter

function.
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Fig. 7. The LF data of SDSS(r∗) are represented through the error bar. The fitting

continuous line represents our LF (33), the dotted line represents the Schechter LF.

Fig. 8. The LF data of SDSS(i∗) are represented through the error bar. The fitting

continuous line represents our LF (33), the dotted line represents the Schechter LF.

Fig. 9. The LF data of SDSS(z∗) are represented through the error bar. The

fitting continuous line represents our luminosity function (33) and the dotted line

represents the Schechter LF.
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4.3. A non linear mass-luminosity relationship

Also here we assume that the mass of the galaxies, M, is distributed as
h(M). The first transformation is

M =

(

L

L∗

)
1

a

, (34)

where L is the luminosity, 1/a is an exponent that connects the mass to
the luminosity and L∗ represents the scale of the luminosity. Equation (12)
changes to

ΨNL(L)dL =
Ψ∗

a
32L−−2+a

a L∗−
2

a K0

(

4L
1

2a L∗−
1

2a

)

d
L

L∗
, (35)

where Ψ∗ is a normalization factor and the apex NL stands for nonlinear.
The mean luminosity per unit volume, j,

j =

∞
∫

0

LΨNL(L)dl = 4−aL∗Ψ∗ (Γ (2 + a))2 . (36)

The second transformation connects the luminosity with the absolute mag-
nitude

ΨNL(M)dM = 12.8Ψ∗ 10−0.8 −M∗
+M

a

×K0

(

4.0 10−0.2 −M
∗
+M

a

) ln (10)

a
dM . (37)

The parameters that should be deduced from the data are M∗, a and Ψ∗.
Table IV reports the original range in magnitude of the astronomical data,
the selected range adopted for testing purposes, the three parameter of our
function, the χ2 of the fit and the χ2 of the of the Schechter function for the
five bands of SDSS. Also here the u∗ case the astronomical range and the
selected range are coincident. In the absence of observational data which
represent the LF, we can generate them through Schechter’s parameters, see
Table II; this is done, for example, for the CFA Redshift Survey, see [40]. The
parameters of the first LF (equation (33)) are reported in Table V where the
requested errors on the values of luminosity are the same as the considered
value.
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TABLE IV

The full range in magnitudes, the selected range in magnitudes, the parameters of
our mass — LF (37), χ2, AIC and BIC of our mass-luminosity function and the
Schechter (k = 3) LF for the SDSS catalog.

Parameter u∗ g∗ r∗ i z

full range −22,−15.8 −23.4,−16.3−24.48,−16.3−24.48,−17.2−23.7,−17.48

select. range−20,−15.78 −22,−18.2 −22.94,−18.5−23.42,−19.3 −23.7,−20

a 0.98 0.95 1.07 1.04 1.05

M∗ [mags] −17.27 −18.85 −19.47 −19.98 −20.28

Ψ∗ 0.05 0.03 0.033 0.027 0.027

χ2 552 803 1180 306 475

AIC, k = 3 558 809 1186 312 481

BIC, k = 3 570 821 1199 325 493

χ2
Schechter 330 456 1497 1863 2292

AI Schechter 336 462 1503 1869 2298

BIC Schechter 349 474 1515 1882 2310

TABLE V

The parameters of the first LF based on data from CFA Redshift Survey (triplets
generated by the author).

CFA

M∗ [mags] −19 ± 0.1

Ψ∗ [h Mpc−3] 0.4 ± 0.01

4.4. Parameters determination

The theoretical LF for galaxies can be represented by an analytical func-
tion of the type Φ(M∗, φ∗, p3) where M∗, φ∗ and p3 represent the scaling
magnitude, the number of galaxies per unit Mpc and a generic third pa-
rameter. Once the observational data are provided in n triplets made by
absolute magnitude, φastr (in units of number per h−3Mpc−3 per mag) and
σφ (the error on φ) we can deduce these three parameters in the following
ways.

• A scanning on the presumed values of the parameters that are un-
known. The three parameters are those that minimize the merit func-
tion χ2 computed as
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χ2 =

n
∑

j=1

(

φ − φastr

σφ

)2

. (38)

• A nonlinear fit through the Levenberg–Marquardt method (subroutine
MRQMIN in [16]). In this case the first derivative of the LF with
respect to the unknown parameters should be provided.

Particular attention should be paid to the number of parameters that are
unknown: two for the new LF as represented by formula (33), three for
the Schechter function (formula (26)) and the new mass-LF relationship
(formula (37)). The Akaike information criterion (AIC), see [47], is defined as

AIC = 2k − 2ln(L) , (39)

where L is the likelihood function and k the number of free parameters of the
model. We assume a Gaussian distribution for the errors and the likelihood
function can be derived from the χ2 statistic L ∝ exp(−χ2/2) where χ2 has
been computed trough equation (38), see [48, 49]. Now AIC becomes

AIC = 2k + χ2 . (40)

The Bayesian information criterion (BIC), see [50], is

BIC = k ln(n) − 2 ln(L) , (41)

where L is the likelihood function, k the number of free parameters of the
model and n the number of observations.

4.5. Dependence from the redshift

The joint distribution in z (redshift) and f (flux) for galaxies, see formula
(1.104) in [51] or formula (1.117) in [43], is

dN

dΩdzdf
= 4π

(

c

H0

)5

z4Ψ

(

z2

z2
crit

)

, (42)

where dΩ, dz and df represent the differential of the solid angle, the redshift
and the flux, respectively. The critical value of z, zcrit, is

z2
crit =

H2
0L∗

4πfc2
L

. (43)
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The number of galaxies, Ns(z, fmin, fmax) comprised between a minimum
value of flux, fmin, and maximum value of flux fmax, can be computed
through the following integral

NS(z) =

fmax
∫

fmin

4π

(

c

H0

)5

z4Ψ

(

z2

z2
crit

)

df . (44)

This integral does not have an analytical solution and we performed a numer-
ical integration. The number of galaxies in z and f as given by formula (42)
has a maximum at z = zpos−max, where

zpos−max = 1.3798 zcrit , (45)

that can be re-expressed as

zpos−max =
0.3892

√

10
0.4 M⊙−0.4 M∗

H0√
fcL

, (46)

where M⊙ is the reference magnitude of the sun at the considered bandpass,
H0 is the Hubble constant and cL is the velocity of the light.

From the point of view of the astronomical observations the second CFA2
redshift Survey, started in 1984, produced slices showing that the spatial
distribution of galaxies is not random but distributed on filaments that rep-
resent the 2D projection of 3D bubbles. We recall that a slice comprises all
the galaxies with magnitude mb ≤ 16.5 in a strip of 6◦ wide and about 130◦

long. One such slice (the so called first CFA strip) is visible at the following
address http://cfa-www.harvard.edu/ huchra/zcat/ and is reported in
Fig. 10; more details can be found in [52].

Fig. 10. Polar plot of the real galaxies (green points) belonging to the second CFA2

redshift catalogue.
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Fig. 11 reports the number of observed galaxies of the second CFA2 red-
shift catalogue for a given magnitude and the theoretical curve as represented
by formula (42).

Fig. 11. The galaxies of the second CFA2 redshift catalogue with 15.08 ≤ mag ≤
15.27 or 48776

L⊙
Mpc2

≤ f ≤ 58016
L⊙
Mpc2

(with “mag” representing the relative mag-

nitude used in object selection), are isolated in order to represent a chosen value of

m and then organized in frequencies versus heliocentric redshift, (empty circles);

the error bar is given by the square root of the frequency. The maximum in the

frequencies of observed galaxies is at z = 0.02. The theoretical curve generated

by the z-dependence in the number of galaxies (formula (42) and parameters as in

column CFA of Table V) is drawn (full line).

Fig. 12. The galaxies of the second CFA2 redshift catalogue with 10.56 ≤ mag ≤
15.5 or 39517

L⊙
Mpc2

≤ f ≤ 3739299
L⊙
Mpc2

, are organized in frequencies versus redshift,

(empty stars). The theoretical curves generated by the integral in flux (formula (44)

with parameters as in Table V) (full line) is drawn.
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The total number of galaxies of the second CFA2 redshift catalogue is
reported in Fig. 12 as well as the theoretical curve as represented by the
numerical integration of formula (44).

A typical polar plot is reported in Fig. 13 once the number of galaxies
as a function of z is computed through the numerical integration of for-
mula (44); it should be compared with the observations, see Fig. 10.

Fig. 13. Polar plot of the little cubes (red points) belonging to the simulation.

Parameters as in Fig. 3.

5. Summary

The PDF of the product of two independent random variables X and Y
as represented by two gamma variates with argument 2 has been analytically
derived.

The mean, the variance and the DF of this new PDF are computed.
As an application we assumed that the mass of the galaxies behaves in the
same way as this new PDF. The LF for galaxies can therefore, be derived
assuming a linear or nonlinear relationship between mass and luminosity: in
the first case we have a two parameter LF and in the second case a three
parameter LF; recall that the Schechter LF for galaxies has three parameters.
The parameter a that characterizes the non-linear relationship between mass
and luminosity of the second LF, see equation (37), is found to be around 1.

The comparison between the two LF for galaxies here derived is per-
formed on the SDSS data and can be done only by introducing an upper
limit in magnitude, Mlim, in the five bands analyzed. The three tests of relia-
bility here adopted show that the Schechter function always has a smaller χ2,
AIC and AIC with respect to the two new LF for galaxies here derived, see
Table III and Table IV.
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The theoretical number of galaxies as a function of the red-shift presents
a maximum that is a function of α and f for the Schechter function; con-
versely, when the first new LF here derived is considered, the maximum is
a function only of f , see equation (45). The first new LF for galaxies, once
implemented on a 3D Voronoi slice, allow us to reproduce the large scale
structures of our universe.
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