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As an alternative to the Big Bang (the standard model), we present
a mathematical theory of cosmological redshift. We show that a funda-
mental formula of Lobachevskian (hyperbolic) geometry describes cosmo-
logical redshift and the Doppler effect as well. As presented here, the
cosmological redshift preserves wavelength ratios (it shifts uniformly the
whole electromagnetic spectrum), it is scale invariant, it is a monotonically
increasing function of distance, and it is source independent. It agrees
with all experimental data. The distortion introduced by imaging from
hyperbolic into Euclidean space and the limitations of Special Relativity
are discussed. Physical observations in Lobachevskian space are discussed
and the new formula relating redshift and/or Doppler shift to aberration is
given. An analysis is presented of an erroneous origin of Hubble’s so called
velocity distance law.

PACS numbers: 98.70.Vc, 04.80.Nn, 98.80.–k, 98.80.Es

1. Introduction

To read the paper no special skills are required, however a rudimentary
knowledge of Lobachevskian geometry will surely help.

We start with a simple example. Consider a mapping of the sphere S2

into the Euclidean plane E2 given by:

ϕ→ x , (1)

θ → a tan θ = y , (2)

where ϕ, θ are intrinsic coordinates on S2 and x, y are rectangular coordi-
nates on E2. The radius of the sphere is a.

(1501)
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In cartography, Eq. (1) and (2) are used to project the surface of the
Earth onto a piece of the Euclidean plane. This way of imaging is known as
a Mercator projection due to the Flemish cartographer Gerhard Mercator
(1512–1594). Looking at this type of map we notice that a strip along the
equator (small θ) is depicted quite correctly while the northern territories
of Canada, Alaska, and Greenland are significantly deformed — see Fig. 2.
We notice that the distortion of the mapping of S2 into E2 is introduced by
the tangent function, tan(.), in Eq. (2).

Fig. 1. The mapping from non Euclidean space S2 to Euclidean space E2.

Distortion of the intrinsic cosmological redshift (hyperbolic space in-
duced shift in wavelength) and the distortion of the intrinsic Doppler effect
(relative velocity induced shift in wavelength) arise when images (functions)
in three-dimensional real Lobachevskian (hyperbolic) space L3 are mapped
onto images in three-dimensional Euclidean space E3. The distortion in this
case is due to the hyperbolic tangent function, tanh(.).

Fig. 2. Mercator image. Deformation of the Northern territories is clearly visible.

Deformation is due to the tan(.) function which realizes a projection from non-

Euclidean space S2 into Euclidean space E2. In this paper we will be concern

ourselves with the projection of a non-Euclidean (Lobachevskian) space L3 into

Euclidean space E3.
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The cosmological redshift presented here, given by Eq. (5), has the fol-
lowing features:

• It is a physical realization of a geometrical theorem of an abstract
Lobachevskian geometry.

• It uniformly shifts the whole electromagnetic spectrum, thus:

• It preserves wavelength ratios.

• It is scale invariant (it is expressed in dimensionless numbers).

• It is a monotonically increasing function of distance.

• For “small” distances, it is a linear function of distance (word “small”
is given a precise meaning in Sec. 4).

• It is source independent.

• It is easily computable.

We would like to turn the reader’s attention to an extremely important
point regarding relations between mathematics and physics. It should be
clearly realized that the same abstract mathematical system, Lobachevskian
geometry in our case, may have several different physical representations.
Physical objects themselves are totally irrelevant. What is important is the
preservation of relations between the objects.

In this paper we show that an abstract Lobachevskian geometry when
represented by a large scale vacuum (coordinate space) results in cosmolog-
ical redshift. Another representation of an abstract Lobachevskian geome-
try, by Lobachevskian velocities space, is a mathematical expression of the
Doppler effect. Yet in another representation on Lobachevskian plane, it
results in the impedance match formulas, i.e. a Smith impedance chart.

For the above reasons we call the wavelength shift induced by Lobachev-
skian space:

• Lobachevsky–Hubble (LH) shift, since it was first given by Loba-
chevskian geometry and then experimentally discovered by Hubble.

The shift induced by Lobachevskian velocity space we call:

• Lobachevsky–Doppler (LD) shift, since it was first given by Loba-
chevskian geometry and then experimentally discovered by Doppler.
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(Nikolay Ivanovich Lobachevsky (1793–1856), a Russian mathematician of
Polish ancestry who made profound contribution in development of non-
Euclidean geometry [2]. Edwin Hubble (1889–1953), an American astrono-
mer, who in 1929 experimentally found the linearized version (Eq. (9)) of
Lobachevsky’s formula (Eq. (3)). Doppler, an Austrian physicist (1803–
1853), who in 1842 experimentally observed the linearized version (Eq. (11))
of Lobachevski’s formula (Eq. (3)) in velocity space. Both Hubble and
Doppler were unaware of Lobachevsky’s work.)

The Lobachevsky–Hubble cosmological redshift and the Lobachevsky–
Doppler shift follow from different physical representations of an abstract
Lobachevskian geometry. In our paper, we also briefly discuss aberration,
which is shown to be information-wise equivalent to a wavelength shift, and
we derive a new equation which relates redshift (LD shift) to aberration.

A word on notation: δ is Lobachevskian (normalized) distance, υL is
Lobachevskian (normalized) velocity, d and β denote normalized distance
and velocity, respectively, in the Euclidean model of Lobachevskian geome-
try.

Distances in Lobachevskian spaces and their Euclidean images are [6]:
d = tanh δ, β = tanh υL.

2. Geodesics and horospheres in Poincaré model of
Lobachevskian geometry

By Lobachevskian (hyperbolic) space L3, we always mean a 3-dimen-
sional, real, non-compact space of constant negative curvature, equipped
with a standard hyperbolic metric [1, 2, 6, 9, 10].

In the present paper we use a geometric and more intuitive approach
which should be accessible to a wide audience. We represent (due to Poincaré)
Lobachevskian space L3 as an interior of a ball of radius R in Euclidean
space E3 [6]. This representation is also called a Euclidean model (one of sev-
eral) of hyperbolic geometry. In the representation of Lobachevskian space
in a Poincaré ball, geodesics γ are represented as arcs of Euclidean circles
and straight lines orthogonal to the sphere S2 which bounds L3, and as Eu-
clidean straight lines orthogonal to S2. Each geodesic γ in Lobachevskian
space is defined by its ends, i.e. by points where it meets the bounding
sphere S2. Two distinct geodesics γ1, γ2 are called parallel (or belonging to
the same equivalence class [γ]) if they converge to the same point p ∈ S2.
Points on S2 are in a one to one correspondence with the classes of equivalent
geodesics, and they are at an infinite (hyperbolic) distance from any point
in L3 [9, 10]. In the Poincaré ball model of Lobachevskian space, one can
imagine equivalence classes of geodesics as fountain shaped rays emerging
from a point on the boundary S2.
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Surfaces orthogonal to the equivalence class(es) of geodesic [γ], and tan-
gent to the sphere at infinity S2 are called horospheres [8, 10]. Any two
horospheres Ω1 and Ω2 orthogonal to the same class of geodesic [γ] are called
parallel. The distance between two parallel horospheres is the length of
a segment of a geodesic having endpoints on two parallel horospheres Ω1

and Ω2. The distance between two parallel horospheres is constant. Horo-
spheres of Lobachevskian real three-dimensional space carry the geometry
of the Euclidean plane [9].

The last thing we would like to mention is the choice of a reference
point. Since Lobachevskian space is a homogeneous space, the choice of
a reference from the mathematical point of view is irrelevant [9]. Never-
theless, since measurements are performed, the indication of reference point
or “origin” is required. In the Poincaré ball model, the origin o is taken
conveniently as o(1,0,0,0) in homogeneous coordinates, or as o(0,0,0) in
non-homogeneous coordinates [6, 9].

The geodesic γ passing through the reference point o is called the refer-
ence geodesic γo. The horosphere Ω passing through the reference point o
is called the reference horosphere Ωo, see Fig. 3.

Fig. 3. Poincaré model of Lobachevskian geometry. The reference geodesic is the

geodesic passing through point O. The reference horosphere is the horosphere pass-

ing through point O. Point O is arbitrary. Geodesics through O and A are parallel.

Horospheres through O and D are parallel. Coordinates associated with the or-

thogonal grid of geodesic and horospheres are called horospherical coordinates.

In physics the origin o is interpreted as a point at which the source is
located (source is “at rest” ). Observers (detectors) are distributed arbitrarily
over the entire Lobachevskian space L3.
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We parametrize the equivalence class of geodesic [γ] by the real number z,
−∞ ≤ z ≤ +∞. So γ = γ(z) ∈ [γ]. We choose parameter z on a geodesic γ,
at a reference point o, as zo = 0. Thus γ(o) = γ(zo) = 0. It is clear that the
same parameter z parametrizes (indexes) the family of parallel horospheres
orthogonal to [γ], Ω = Ω(z) and Ω(zo) = Ω(o) = Ωo, see Fig. 3.

3. Fundamental formula of Lobachevskian geometry
as a formula of cosmological red-shift

The fundamental formula of Lobachevskian geometry [6] gives an explicit
measure of geodesic deviation vs distance traveled ∆ and the curvature of
the space K (Eq. (3)), see Fig. 3.

Theorem 1 If lo and l are two segments cut on two parallel horospheres Ωo

and Ω, by corresponding parallel geodesics γo, γ, then the ratio l

lo
is given by:

l

lo
= exp(±δ) , (3)

where δ = K∆ = ∆

R
is the normalized distance between parallel horospheres

Ωo and Ω, and K is the curvature constant. In terms of a geodesic param-
eter z, the distance δ is given by: δ = |γ(z) − γ(zo)| = |γ(z)| due to our
convention on parametrization.

Looking at Eq. (3), it is not immediately apparent that it describes the
Lobachevsky–Hubble cosmological shift and the Lobachevsky–Doppler shift
as well. A few simple steps are needed to convert it to a more familiar form.
First, we rewrite Eq. (3) in a different form, working with the + case in
the exponent (the − case is handled similarly). Note that if z > zo, then
a positive exponent implies l > lo. We have the following definition:

Definition 1: The fractional increase in length l−lo
lo

is called the red-shift

z. (For a negative exponent, we get lo−l

l
, which is blue-shift). Thus:

δ = |γ(z)| = ln
l

lo
= ln

lo + l − lo

lo
= ln(1 + z) . (4)

Definition 2: We say that the horosphere Ωz = Ω(z) is red-shifted
with respect to horosphere Ωo = Ω(zo) if for real numbers z, zo the inequal-
ity z > zo holds, and we say that horosphere Ωz = Ω(z) is blue-shifted
with respect to horosphere Ωo = Ω(zo) if the opposite inequality holds, i.e.

z < zo.
In accordance with Definition 1, it is easy to see that by fixing the

reference horosphere Ωo, we divide the entire Lobachevskian space into
two regions: red-shifted z > zo, and blue-shifted z < zo. At any point
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p ∈ Ωo ⊂ L3, on the reference horosphere Ωo(z = 0), no wavelength shift
will be detected in Lobachevskian space. Thus we can give another definition
of a horosphere in Lobachevskian space:

Definition 3: A horosphere in Lobachevskian space is the locus of all
observers (detectors) which will detect the same, z = const, red-shift (blue-
shift) of a fixed monochromatic source. In particular, all detectors scattered
across the reference horosphere will detect z = 0.

Some caution is needed in order to distinguish between hyperbolic and
Euclidean measures. Horospheres of Lobachevskian space carry a Euclidean
metric [1,6], and thus the intrinsic measure of segments lo and l is Euclidean.
On the other hand, the distance δ in Eq. (3) is the hyperbolic distance.
Since we use a Euclidean model of hyperbolic space (analogues of S2 imaged
in E2), one needs to convert hyperbolic distance to Euclidean distance d,
given by the hyperbolic tangent: d = tanh δ [6].

d = tanh δ = tanh(ln(1 + z)) . (5)

Here d is the normalized radial distance in the Poincaré ball: d = D

R
,

0 ≤ d < 1, R is the radius of the Poincaré ball, and D is un-normalized dis-
tance. The deformation introduced by hyperbolic tangent function, tanh( ),
when mapping from L3 to E3 is quite analogous to the distortion introduced
by the tangent function, tan( ), when mapping from S2 into E2. Intuitively,
hyperbolic space is “roomier” than Euclidean space, while spherical space is
“smaller” than Euclidean space. This is reflected by the character of the de-
formation. The Northern territories in a Mercator projection are enlarged,
while unlimited functions in hyperbolic space are “clamped” by tanh(.) not
to exceed unity. Fig. 4 shows pretty well the character of the distortion
when Lobachevskian (hyperbolic) space and spherical space are projected
into Euclidean space.

So far we have not specified a reference length. From an operational
point of view it must be specified in a way which makes comparisons possi-
ble with the use of our instruments. A natural (and the only possibility to
author’s knowledge) choice, is to take the length lo = λo (reference wave-

length ), and l = λ (detected wavelength). Recalling that tanhx = ex
−e−x

ex+e−x
,

we immediately obtain:

d = tanh(ln(1 + z)) equivalent to:
λ

λo
= 1 + z =

√

1 + d

1 − d
. (6)

d = tanh(ln(1+ z)) gives the normalized distance d in Lobachevskian space,
viewed as an interior of a unit ball, vs the redshift z. In [3], we derived
the same Eq. (5) in a different way starting from the basic definition of
a horosphere in Lobachevskian space.
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Fig. 4. Fig. 4 shows the nature of the deformation. Poincaré ball lies in the x+y = a

plane. It is clearly shown that the hyperbolic distance δ > d, while the spherical

distance s < d, where d is the Euclidean distance.

Eq. (5) agrees with Hubble’s observations in that red-shift increases with
the distance to a source. It fits experimental data for all z, 0 ≤ z < ∞.
A plot of d vs z is given in our work [3]. A linearized version of Eq. (6),
experimentally discovered by Hubble, is discussed in the next section.

We now discuss the Lobachevsky–Doppler shift. We recall that velocity
space is a 3 dimensional real Lobachevskian space [3,9,10]. The fact that the
space of velocities is a Lobachevskian space was first recognized by Feliks
Klein [10] (1849–1925), a German geometer who first proposed to study
geometries in unified way via group theory.

The signed distance function between two points A and B in Lobachev-
skian space is called the relative velocity υL of a point B with respect to
a point A. The signed distance corresponds to two directions on a geodesic,
and it accommodates the change in the direction of relative velocity. In
the Poincaré ball model of Lobachevskian velocity space, the normalized
distance d = tanh δ is given by β = tanh υL, where the constant c is the
velocity of light in a vacuum (the radius of the Poincaré ball is c), and υL and
β are relative velocities, intrinsic to Lobachevskian space L3, and velocity β
is the velocity in the Euclidean model of Lobachevskian geometry. Locally,
Euclidean space mimics Lobachevskian space very closely.

Note that in the Poincaré ball model, velocities of photons are at an
infinite hyperbolic distance, υL = ∞, from any point in Lobachevskian
velocity space. One can say that photons populate the boundary at infin-
ity, also called an absolute for Lobachevskian space. This is a mathematical
expression of the outcome of the Michelson–Morley experiment which says
that velocity of light in vacuum does not depend on the state of motion of
a source (or detector).
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The Lobachevsky–Doppler shift now follows trivially as just another rep-
resentation of abstract Lobachevskian geometry. One needs only to substi-
tute β for d in Eq. (6).

β = tanh(ln(1 + z)) equivalent to:
λ

λo
= z + 1 =

√

1 + β

1 − β
. (7)

The linearized Lobachevsky–Doppler shift follows from the expansion
exp υL in power series.

z ≈ β =
1

c
υ = kυ . (8)

Here c is the radius of Lobachevskian velocity space, the slope k = 1
c

is the curvature constant of velocity space, υ non normalized Euclidean
velocity, and ≈ means that higher then first order terms in expansion of
exp υL are dropped, which is equivalent to the assumption that β ≪ 1.

The reader can easily see that the Eq. (6) as well as Eq. (7) appears
in two different form. A geometric form, which is on the left side, and on
the right side as commonly seen in papers on physics. Geometric form of
the Eq. (6) and (7) clearly shows that an origin of the redshift phenomenon
is Lobachevskian (hyperbolic) geometry. On the other hand the source of
physics due to Eq. (6) and (7) in the form on right, is entirely obscured.

4. Hubble’s distance vs red-shift discovery as an experimental
confirmation of the fundamental formula of Lobachevskian

geometry. Calculation of the radius of the universe

The linearized Lobachevsky–Hubble shift distance formula for d≪ 1 fol-
lows directly from expanding the RHS of the fundamental formula (Eq. (4))
of Lobachevskian geometry: 1+ z = exp δ into power series around zero and
by taking only the linear term. For small x, tanhx ≈ x, and d ≈ δ. Thus,
1 + z ≈ 1 + δ ≈ 1 + d = 1 + D

R
= 1 +KD, or:

z ≈ KD . (9)

The same follows from a Euclidean image. Recall that for x ≪ 1,
ln(1 + x) ≈ x, tanhx ≈ x, d = tanh(ln(1 + z)) ≈ tanh z ≈ z.

The linearized Eq. (9) precisely describes what Hubble discovered ex-
perimentally and has failed to recognize correctly why the red-shift is
a linear function of distance. The slope of the graph in Eq. (9) is the
curvature K of space. Its inverse R = 1

K
is the radius of the hyperbolic

universe in the Poincaré ball model.
By the end of 1840, non-Euclidean geometry was put in its final form

by Lobachevsky as a logically coherent closed geometrical system [2], but
it seems that Hubble was unaware of the work of Lobachevsky (and others
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geometers), and particularly he was not aware of Eq. (3), which appears in
Lobachevski’s works around 1830, and its linearized form (Eq. (9)), which
he rediscovered experimentally a hundred years later.

4.0.1. Hubble’s mistake as a fatal blow to cosmology

The Hubble velocity distance rule is an interesting example how two in-
dependently correct facts, i.e. the common Doppler shift and Hubble’s
experimental distance vs red-shift law (Lobachevskian linearized Eq. (9)),
when “married” together resulted in an unfortunate conclusion. This hap-
pened because the only cause of red-shift that Hubble was aware of was
due to Lobachevskian velocity space, i.e. the common Doppler shift.
Thus looking at his experimental distance-redshift data d = d(z), and by
looking at the redshift-velocity plot z = z(υ) depicting a Doppler shift,
Hubble converted a measured red-shift to an equivalent velocity
via the Doppler formula, and thus he obtained a distance–velocity plot
d = d(z(υ) = d(υ) [8].

Contrary to his followers, Hubble himself was not entirely happy with his
distance–velocity formula, which decisively contributed to the inflationary
model of the universe. In the paper [Astrophys. J. 84, 517H (1936)], jointly
with Tolman, he wrote “The possibility that the redshift may be due to some
other cause connected with the long time or distance involved in the passage
of light from nebulae to observer, should not be prematurely neglected.”

In a general setting and from a logical point of view, the existence
of relative velocity is a necessary but not sufficient condition to record
a wavelength shift. In Euclidean geometry e.g. wavelength shift uniquely
implies existence of a relative velocity while in hyperbolic geometry it does
not have a unique implication. Thus while the existence of relative velocity
always results in a wavelength shift, the presence of a shift may or may
not imply the existence of a relative velocity. Examples of this kind of
situation are numerous. The mistake made by Hubble and his followers for
almost one hundred years has paralyzed and still paralyses cosmology and
related astronomical sciences as well.

The big bang came to life and acquired its legitimacy due to Hubble’s
erroneous reasoning. His genuine experimental data d = d(z) were manip-
ulated and the conclusion was “tailored” in the way shown above to get
the velocity vs distance plot, in order to fit speculations following the FWR
solution (dR

dt

1
R

term) of Einstein field equations. We say speculations since
it is well recognized that the RW metric and Einstein equations are con-
ceptually and logically two independent entities and the result from melting
them together may or may be not be taken for granted. The “cosmological
constant” introduced by Einstein in order to get a static solution is actually
the negative curvature of a Lobachevskian vacuum.
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4.0.2. Euclidean geometry vs Lobachevskian geometry

From Eq. (5) and its linearized form Eq. (9), it follows that when the
curvature constant K = 0 (in the case of Euclidean space), the space in-
duced wavelength shift vanishes. K = 0 implies z = 0. In other words,
Euclidean geometry cannot induce changes in wavelength of electromag-
netic radiation. Horospheres in Euclidean space are Euclidean planes (plane
waves) and geodesics are Euclidean straight lines orthogonal to planes, see
Figs. 5 and 6.

Fig. 5. The case of K = 0. In Euclidean space geodesics do not deviate. Segments

cut by two geodesics on two parallel horospheres have the same length on the

entire space E3. Horospheres are simple Euclidean planes E2. In mathematics this

picture is called the foliation of E3 by plane waves.

Fig. 6. This is the case of Lobachevskian (hyperbolic) space. Geodesics γ deviate

at an exponential rate. This causes the illusion of space expansion since the

separation between geodesics, which is λ at the source become λeδ at the detector.
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Many people, including Lobachevsky himself, suspected that the geom-
etry of physical space may differ from Euclidean geometry. Lobachevsky
himself tried to detect a curvature constant from the data on astronomical
parallaxes, taking as a triangle the star Sirius and the Earth in it two op-
posite positions in orbit [2]. In [3], we calculated the distance at which the
(negative) curvature of space will be directly recorded, assuming a resolving
power of modern diffraction gratings at 106. Calculations done in [3] show
why Lobachevski’s attempt to detect curvature of space was unsuccessful.

From the above it follows that in a hyperbolic universe a measurement
of a wavelength shift is not sufficient to distinguish between space in-
duced and velocity induced contributions to the overall recorded shift.
While a space induced shift increases monotonically with distance, it will be
“smeared” by random blue/red shifts due to the random velocities of distant
objects. This situation resembles a quantum mechanical rather than classi-
cal scenario. In quantum mechanics, a mixed state cannot be uniquely
decomposed into pure state components, and the information of how the
mixed state was produced is not recoverable. We illustrate the above with
an example:

We model Lobachevskian spaces as an interior of the unit ball (R=c=1).
Let us take the famous QSO PC 1247+3406 quasar with z = 4.982. We hope
to gain some information from the distance data. What are our options?
Since we know that a red-shift may result from distance in hyperbolic space
and/or from the existence of a relative velocity we proceed as follows: Take
a real parameter p ∈ [0, 1] and split the observed red-shift z into two parts
— a space induced pz = x and a velocity induced (1 − p)z = y. Here we
consider the case of outward bound velocity. The reader may repeat the
calculation for inward bound velocity

z = pz + (1 − p)z . (10)

Thus the generalized distance will be: dg = tanh(ln(pz + (1 − p)z).
At p = 0, dg = tanh(ln y). This means that the entire redshift is due to

velocity, and the generalized distance means β. From Eq. (7), we conclude
that QSO has relative receding velocity υ = 0.9225. The distance to this
object in this case is 0, which is unrealistic.

At p = 1, dg = tanh(ln x). This means that entire redshift is due to
distance only. Generalized distance is the distance d. From Eq. (5), we
conclude that QSO is at a distance d = 0.9225, and it has no relative velocity
with respect to us.

At p ∈ (0, 1), (verteces excluded), we have a continuum of states para-
metrized by parameter p ∈ (0, 1). No criteria exists how to select the “true” p,
to split z by Eq. (10), or in other words we do not have any criteria how
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to uniquely decompose the mixture, a common situation in quantum me-
chanics. If due to some “miracle”, we know for example that the “true”
p = 0.75, then we may uniquely decompose the QSO recorded red-shift z
as 0.75z + 0.25z = 4.982. In this case we compute that the red-shift due to
space is 3.7365 and redshift due to velocity is 1.2455. This in turn means
that the object at a distance d = 0.8663 from us, and is moving away from
us with a velocity β = 0.2161.

This example shows that in general, the distance to an object cannot
be recovered from a red-shift measurement itself. Other techniques may be
employed to evaluate the selection of p, if they are applicable. At very
high distances, where other techniques fail, the determination of
distances from red-shift data itself is severely limited if not entirely
impossible.

Having genuine data on red-shift z, the radius of the universe in the
Poincaré ball model, R−1 = k can be easily computed if distance D is known
from independent data

R =
D

tanh(ln(1 + z))
. (11)

Unfortunately, long range distance data are not reliable. The situation
is even more complicated since light behaves differently in hyperbolic space
than in Euclidean space. For example, the amplitude of an electromagnetic
wave in Lobachevskian space varies exponentially with distance. This is seen
directly from the solution of the Laplace Beltrami operator in Lobachevskian
space [7], or more simply by considering the Lobachevskian polarization
space of an EM wave, which is done on our work [4].

The intensity (amplitude squared) of recorded light may also decrease if
there is an outward relative velocity, or increase if there is an inward relative
velocity [4] (non-Euclidean fading/enhancement of light). Thus at very high
distances D ≈ R and in the presence of random kinematical components,
the evaluation of photometric distances may be quite complicated.

4.0.3. The new approach to detect gravitational waves

We would like to mention an interesting possibility which follows from
the Lobachevsky–Hubble red-shift formula we discussed in [3]. We see that
a shift in wavelength z is a function of distance and curvature, z = z(k,D),
Eq. (5). So far we have been preoccupied with z = z(D, k = const) i.e.

with the dependence of the wavelength shift on distance while the negative
curvature of space was assumed to be constant. Now, let us assume that due
to some reason (e.g. passage of gravitational wave) the local curvature of
some region in space varies as k = k(x, t). This will cause a variable wave-
length shift, or in other words frequency modulation (FM). This is a classical
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picture how a modulator works, however a modulator on the cosmic scale.
The modulator is the hyperbolic space itself with variable curvature. The
same effect will be true for AM modulation [4]. Thus by looking into space,
a potential generator of gravitational waves may be located by recording
AM and FM modulated light coming from that region. In that way we may
find the presence of gravitational waves in the universe.

5. Lobachevskian reality and Euclidean perception. RPR ratio

In Figs. 7, 8, and 9, we plot the ratio of Lobachevskian distance δ to
Euclidean distance d, for a fixed redshift z. We call this ratio the reality
to perception ratio (RPR), and it measures the distortion of images from
hyperbolic space as they are projected into Euclidean space.

RPR =
δ

d
=

ln(1 + z)

tanh(ln(1 + z))
. (12)

Fig. 7. For z ≪ 1, the RPR ratio stays very close to 1. For example, for the

nebulae NGC 4235 with the redshift around z = 0.008, we see an undeformed

image. Deformation is less than 30 parts per million. In this case we may believe

that the information is genuine assuming that there are no cancellations of space

and velocity contributions to the overall z, as discussed in Sec. 4. In general z is

a physical measure of departure of actual geometry from Euclidean one. For more

on the relation between redshift z and the type of geometry see von Brzeski [5].
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Fig. 8. For very high red-shifts, e.g. quasar PC 1247+3406, z = 4.897, the RPR

ratio will be around 2. Assuming there is no kinematical contribution to the wave-

length shift, quasar PC 1247+3406 is twice as far away as it seems to be. For even

bigger red-shifts, the RPR ratio will grow like ln(.) since tanh(.) approaches 1.

Fig. 9. Fig. 9 clearly shows the limited applicability of so called “relativistic” for-

mulas. Lower curve tanh(ln(1+z)) presents the Euclidean image of Lobachevskian

geometry. Upper curve ln(1 + z) is intrinstic to negatively curved Lobchevskian

space. Images from Lobachevskian spaces are so much compressed at the “ceiling”

y = 1, that resolution on distance y = d and/or velocity y = β is de facto impos-

sible for high z, e.g. z > 6. To get genuine information from the hyperbolic world

at high redshifts we need a better tool (better way of mapping) than Einstein’s

Special Relativity. In fact, Special Relativity is just a kind of Mercator imaging

from a 3D hyperboloid into Euclidean 3D space.
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6. Aberration of light in hyperbolic spaces and aberration —
redshift formula

The phenomenon of aberration, see Fig. 10, similarly to the phenomenon
of red-shift, is also related to the exponential divergence of geodesics
in Lobachevskian space. Before we proceed further we list some features of
Lobachevskian geometry different from our Euclidean experience.

• First, since the length of the sides of a triangle in Lobachevskian ge-
ometry depends on angles (and vice versa), there are no similar tri-
angles in Lobachevskian geometry [1, 2, 6].

• Second, two Lobachevskian spaces (of the same dimension) are not
isometric unless they have the same curvature constant [6].

The aberration of light (change in angle) is not an independent phe-
nomenon from the wavelength shift (change in length). This should be
expected from the properties of a Lobachevskian triangle. Since the length
of the sides of a triangle depends on its angles, it follows that the change in
length will cause a change in angles and vice versa. Since a change in the
red-shift z in Eq. (5) causes a change in distance d, and a change in distance
d causes change in angles, a change in z will cause change in angles. Such
a chain of conclusions is not true in Euclidean geometry as it allows for
existence of similar triangles. In Euclidean geometry the notion of length is
decoupled from the notion of an angle. We see that the information gained
from a wavelength shift, in Lobachevskian space, is equivalent (the same
number of bits) as the information gained from an angle change. The aber-
ration of light is simply a geometrical statement about two triangles having
one common vertex at infinity.

For simplicity we set R = c = 1 which makes Lobachevskian space and
Lobachevskian velocity space isometric (indistinguishable in physics).

Consider a triangle in hyperbolic space with one vertex at infinity, Fig. 10.
Recall that Lobachevskian (hyperbolic) distance δ is related to Euclidean
distance d as tanh δ = d, and that the hyperbolic angle is also a Euclidean
angle [2,7]. After applying elementary hyperbolic trigonometry to a triangle
with one vertex at infinity (sides AC and OC are parallel) [2,3,6] we obtain:

cosϕ = tanh OA = dAO, (angle OAC = ϕ) ,

cosψ = tanh OB = dBO, (angle OBC = ψ) .

Thus the distance from A to B is:

dBA = tanh(OB − OA) =
tanh OB − tanh OA

1 − tanh OB tanh OA
=

cosψ − cosϕ

1 − cosψ cosϕ
.
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Fig. 10. Aberration of light in Lobachevskian space, either in a Lobachevskian

universe or in a Lobachevskian velocity space.

We obtain the most general equation for the aberration of light in a Loba-
chevskian universe:

dBA =
cosψ − cosϕ

1 − cosψ cosϕ
. (13)

It follows that an object immersed in a hyperbolic space will appear to
us rotated by an angle which depends on the distance to the object and the
space curvature constant.

We have already mentioned that in the Euclidean model of Lobachev-
skian velocity space, a distance d means relative velocity β = βBA (velocity
of B with respect to A). Thus, substituting d→ β and solving Eq. (13) with
respect to cosϕ (or cosψ, depending on where the reference is located),
one obtains the equation for aberration as commonly seen in textbooks on
physics:

cosψ =
β + cosϕ

1 + β cosϕ
. (14)

The clarity and simplicity of Lobachevskian physics cannot be underes-
timated. The power of geometric formulas is that they are representation
independent and result in the same physics.

It is interesting to note that hyperbolic space induced rotation and ve-
locity induced rotation may cancel or may add together. Thus an object
close to the limiting sphere S2, and moving with a velocity close to c will be
seen from its “rear”, i.e. it will be rotated by almost 180 degrees.

We now obtain the relationship between the red-shift and the object
rotation angle. For simplicity, as before, we adopt R = c = 1. In a unit ball
model, the normalized distance d will result in a red-shift of tanh ln(1 + z).
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On the other hand, it will also produce an aberration accordingly to Eq. (13).
Thus:

d = tanh (ln(1 + z)) =
cosψ − cosϕ

1 − cosψ cosϕ
. (15)

In particular if ϕ = 90◦, then:

tanh (ln(1 + z)) = cosψ . (16)

Eq. (16) gives the relation between the observed red-shift z and an angle
ψ in abstract Lobachevskian geometry. The recorded wavelength shift z as
well as the angle ψ may follow from the Lobachevskian universe and/or from
the Lobachevskian velocities space.

7. Conclusions and remarks

On the basis of a three-dimensional real Lobachevskian geometry, we
presented a geometrical analysis from which cosmological red-shift and re-
lated phenomena follow in natural way. The presented equations give correct
numerical values for their respective physical quantities. The new Eqs. (15)
and (16) which relate red-shift to aberration might be useful in astronomical
observations.

Our presentation of Lobachevsky–Hubble cosmological redshift (5), the
Lobachevskian–Doppler effect (7), and aberration was done in rigorous way
on a purely geometrical basis of Lobachevskian three-dimensional real ge-
ometry with all entities clearly defined. At present, the widely adopted view
explains cosmological red-shift using the vague concept of physical space in-
flation. For example, observations tell us that space within galaxies, which
are rather diffuse objects, do not expand. Thus, where is the “border line”
in space which divides expanding space from non expanding space?

Next, we are told that inflation itself is due to some rather mysterious
event, which was sarcastically named by Fred Hoyle (to ridicule the whole
concept), as the big bang.

Instead, we offer an alternative solution based on simple Lobachevskian
geometry. We believe that looking at experimental data and Eq. (5), a much
simpler solution (minimum complexity solution) is to admit that the
space between distant sources and our spectrographs is negatively curved,
i.e. it is a Lobachevskian three-dimensional space causing the recorded
shifts. In other words what we see through our telescopes is the fundamen-
tal formula of Lobachevskian geometry: Eq. (3). Experiments confirm our
model.

From the analysis performed, the importance of the range of applica-
bility of some mathematical notions follows. For example, someone who
only saw a map of the Earth as in Fig. 2, and had no prior knowledge where
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this map came from, and what mechanism was used in mapping process, will
in good faith believe that Greenland is as big as the USA. His or her con-
clusions about geography made from the distorted image will be necessarily
false.

Similarly, making conclusions about the geography of the universe based
on the so called “relativistic” formulas in the form of RHS expression in
Eq. (7) (and Eq. (6) as well), is misleading since we did not know that we
were looking at distorted formulas of a precise Eq. (3) of non-Euclidean
geometry projected into Euclidean space–space in our vicinity! Conclu-
sions based on a distorted formula will inevitably lead to the inconsistencies
and/or paradoxes for projections from regions of high distances d ≃ 1 in
space or high distances β ≃ 1 in velocities space. Of course, as long as we
stay “close to equator”, (which means going local, i.e. d≪ 1, β ≪ 1) distor-
tion will be negligible within the required range of precision. Nevertheless
we have to be aware that we are still dealing with the distorted images.
This rises the serious question of applicability of the Special Relativity in
the range d ≃ 1, β ≃ 1.

One may ask a legitimate question of how the experimentally detected
cosmic microwave background radiation (CMBR) is related to Lobachev-
break skian geometry (Lobachevskian universe)?

The answer is that in Lobachevskian space, CMBR is identified with
the homogeneous space of horospheres which is dual [7,9] to Lobachevskian
space. In our work [3] we showed that a horosphere in Lobachevskian space,
as far as physics is concerned, is a surface of constant phase of an electro-
magnetic horospherical wave. In other words, it is a horospherical wave-
front. Radiation represented by horospherical wavefronts homogeneously
fills the entire Lobachevskian universe. Therefore, assuming a hyperbolic
universe, we have to have CMBR with its properties of homogeneity and
isotropy! It follows “automatically” from Lobachevskian geometry.

Horospherical waves are solutions of the Laplace–Beltrami operator (wave
operator) in Lobachevskian space. Their properties are well known and well
understood. Thus, there is entirely no need to associate CMBR with the
big bang — an event which itself cannot be understood and deliberated in
scientific terms.

In Lobachevskian space filled only with radiation CMBR would be per-
fectly isotropic. In the presence of matter however, which on local scales is
distributed rather randomly, a small anisotropy in the properties of CMBR
might be present due to local conditions. This was already recorded by
COBE. More about the space of horospheres can be found in [7, 9].

The author wishes to acknowledge Vadim von Brzeski for his invaluable
comments.



1520 J.G. von Brzeski

REFERENCES

[1] A. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathemat-
ics, Springer 1995, p. 91.

[2] R. Bonola, Non-Euclidean Geometry, Dover, NY 1955 (in appendix there is
an original paper by N.I. Lobachevsky).

[3] J.G. von Brzeski, V. von Brzeski, Topological Frequency Shifts, Electromag-
netic Field in Lobachevskian Geometry, Progress in Electromagnetic Research,
PIER 39, p. 281, 2003, also available in electronic version from MIT CETA
web site.

[4] J.G von Brzeski, V. von Brzeski, Topological Intensity Shifts, Electromag-
netic Field in Lobachevskian Geometry, Progress in Electromagnetic Research,
PIER 43, p. 161, 2003, also available in electronic version from the MIT CETA
web site.

[5] J.G. von Brzeski, Russ. J. Math. Phys. 14, 366 (2007).

[6] H. Buseman, P.J. Kelly, Projective Geometry and Projective Metrics, Aca-
demic Press, NY 1953.

[7] S. Helgason, Geometric Analysis on Symmetric Spaces, American Mathemat-
ical Society, 1994.

[8] E. Hubble, A Relation Between Distance and Radial Velocity Among Extra
Galactic Nebulae, Proceedings of National Academy of Sciences, vol. 15. No. 3,
March 15, 1929.

[9] I.M. Gelfand, M.I. Grayev, N.Ya. Vilenkin, Integral Geometry and Represen-
tation Theory, Academic Press, NY 1966.

[10] F. Klein, Forlesungen uber Nicht Euklidische Geometries, American Mathe-
matical Society, 2000.

[11] Ya.A. Smorodinsky, Kinematika i Geomietriya Lobachevskogo (Kinematics
and Lobachevskian Geometry), Atomnaya Energia, 1956, available from Joint
Institute for Nuclear Research Library, Dubna, Russian Federation.


