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HIGHER ORDER CORRECTIONS
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In the asymptotic limit Q2 ≫ m2, the non-power corrections to the
heavy flavour Wilson coefficients in deep-inelastic scattering are given in
terms of massless Wilson coefficients and massive operator matrix elements.
We start extending the existing NLO calculation for these operator matrix
elements by calculating the O(ε) terms of the two-loop expressions and
performing first investigations of the three-loop diagrams.

PACS numbers: 11.10.Gh, 12.38.Bx, 12.38.Cy

1. Introduction

In deep-inelastic scattering, the differential cross-section with respect to
the Bjørken-variable x and the virtuality of the photon Q2, can be expressed
in terms of the unpolarised structure functions F2(x,Q

2) and FL(x,Q2), and
the polarised structure functions g1(x,Q

2), g2(x,Q
2). For small values of x,

the contributions of charm to F2(x,Q
2), F cc̄

2 (x,Q2), are of the order of
20–40%, and therefore deserve and need a more detailed investigation. So

far, there exist NLO — 2-loop — heavy flavour corrections to F p,d
2 (x,Q2) in

the whole kinematic range, calculated in a semi-analytic way in x-space [1].
A fast implementation for complex Mellin N -space was given in [2]. One
observes that F cc̄

2 (x,Q2) is very well described by an asymptotic result for
F cc̄

2 (x,Q2)|Q2≫m2 for Q2 >
∼ 10 m2

c . For these higher values of Q2, one can
calculate the heavy flavour Wilson coefficients, the perturbative part of the
structure functions F2(x,Q

2) and FL(x,Q2), analytically, which has been

∗ Presented at the Cracow Epiphany Conference on LHC Physics, Cracow, Poland,

4–6 January 2008.
∗∗ This paper was supported in part by SFB-TR-9: Computergestütze Theoretische

Teilchenphysik and Studienstiftung des Deutschen Volkes.

(1531)



1532 I. Bierenbaum, J. Blümlein, S. Klein

done for F2(x,Q
2) to 2-loop order in [3,4] and for FL(x,Q2) to 3-loop order

in [5]. First steps towards an asymptotic 3-loop calculation for F cc̄
2 (x,Q2)

have been done by the present authors by calculating the first O(ε) terms
of the 2-loop diagrams [6], contributing to 3-loop heavy flavour Wilson coef-
ficients via renormalisation. We report here on further steps towards a full
3-loop calculation for the moments of the heavy flavour Wilson coefficients.

2. Heavy flavour Wilson coefficients in the limit Q2 ≫ m2

On the twist-2 level, the structure functions can be expressed as a con-
volution of perturbatively calculable Wilson coefficients and the non-per-
turbative parton densities. We consider here the heavy flavour contributions
to these Wilson coefficients, the heavy flavour Wilson coefficients. In the re-
gion Q2 ≫ m2, one can use the massive renormalisation group equation to
obtain all non-power corrections to these heavy flavour Wilson coefficients
as convolutions of massless Wilson coefficients Ck(Q

2/µ2) and massive oper-
ator matrix elements (OMEs) Aij(µ

2/m2) [1]. The light Wilson coefficients
are known by now up to three loops [7] and carry all the process depen-
dence. The operator matrix elements, on the other hand, are universal,
process-independent objects, which are calculated as flavour decomposed
operators in the light-cone expansion between partonic states. Both objects
have an expansion in αs.

3. Massive operator matrix elements

In order to perform the 3-loop calculation of the OMEs, one has to
first calculate the bare quantities and then to renormalise them, where they
need to be mass- and charge-renormalised and contain ultraviolet (UV)
and collinear divergences. The mass renormalisation is done in the on-
shell scheme [8,9], whereas the charge renormalisation is done using the MS
scheme. After mass- and charge-renormalisation, the remaining UV-diver-
gences are accounted for by operator renormalisation via Z-factors, Zij, and
the collinear divergences via mass factorisation, multiplying by Γij. The
Z-factors are given by the generic formula:

Zij(N, as, ε)=δij +asSε

γij,0

ε
+ a2

sS
2
ε

{

1

ε2

[

1

2
γim,0γmj,0+β0γij,0

]

+
1

2ε
γij,1

}

+a3
sS

3
ε

{

1

ε3

[

1

6
γin,0γnm,0γmj,0 + β0γim,0γmj,0 +

4

3
β2

0γij,0

]

+
1

ε2

[

1

6
(γim,1γmj,0 + 2γim,0γmj,1) +

2

3
(β0γij,1 + β1γij,0)

]

+
γij,2

3ε

}

,
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which has to be adapted for the various flavour decomposed combinations.
The indices i, j here either run over i, j ∈ {q, g} or denote the non-singlet
combinations. The pure-singlet Z-factor is given by: ZPS

qq = Zqq −ZNS. γij,k

are the (k+1)-loop anomalous dimensions and βi denote the expansion coef-
ficients of the β-function. The transition functions Γij remove the collinear
singularities.

Let us consider, e.g., the renormalised matrix element AQg, where ÂQg

denotes the mass- and charge-renormalised expression. One finds then:

AQg = Z−1
qq Â

PS
QqΓ

−1
qg + Z−1

qq ÂQgΓ
−1
gg + Z−1

qg Âgq,QΓ
−1
qg + Z−1

qg Âgg,QΓ
−1
gg ,

A
(2)
Qg = Â

(2)
Qg+Z−1,(1)

qq Â
(1)
Qg+Z−1,(1)

qg Â
(1)
gg,Q+Z−1,(2)

qg +
(

Â
(1)
Qg+Z−1,(1)

qg

)

Γ−1,(1)
gg .

As the general expression in the first line already indicates, there is a mixing
with ÂPS

Qq and Âgg,Q from O(α3
s ), while Âgq,Q starts contributing from O(α2

s )

and therefore at O(α4
s ) to ÂQg. For A

(2)
Qg given in the second line, one

finds the O(ε) term of the gluonic one-loop OME, a
(1)
Qg, entering the two-

loop expression via renormalisation, as described for example in [3, 4, 6]. In

the same way, for the renormalisation of A
(3)
Qg, the O(ε)-term of the two-

loop expression a
(2)
Qg is needed — as are the terms a

(2)
gg , a

(2),PS
Qq due to the

above mentioned operator mixing, and the O(ε2) of the one-loop A
(1)
Qg. The

calculation of these O(ε) terms is a first step towards a 3-loop calculation,
cf. Sec. 3.1., while first calculations of 3-loop diagrams for fixed Mellin N
are described in Sec. 3.2.

As a last remark, note that we consider charm quark contributions here,
while for heavier quarks decoupling [10] has to be applied.

3.1. Two-loop diagrams to O(ε) for general Mellin N

Our calculation is performed in Mellin space, where the convolution of
functions becomes a simple product. The O(ε) terms for the unpolarised
gluonic OMEs, as for the pure-singlet and non-singlet cases, have been given
in [6] for general Mellin N . The corresponding polarised contributions are
to be published soon. The calculation is performed in two ways: on the
one hand, we rewrote the OMEs in terms of Mellin–Barnes integrals and
used the package MB [11] to obtain numeric results, serving as a check
for the analytic results, which have been obtained expressing the OMEs
as generalised hypergeometric functions. Expanding these functions in ε,
one has to sum the expression for the desired order, which we did using
integral techniques and SIGMA [12]. The results are then given in terms of
nested harmonic sums [13, 14], to which we applied algebraic and analytic
relations [15, 16] to find the most compact representation possible.
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The term Â
(2)
gg,Q has been newly calculated and is given up to order

O(ε) by:

Â
(2)
gg,Q = TFCA

8

<

:

1

ε2

0

@

−

32

3
S1 +

64(N2 + N + 1)

3(N − 1)N(N + 1)(N + 2)

1

A

+
1

ε

0

@

−

80

9
S1 +

16P1

9(N − 1)N2(N + 1)2(N + 2)

1

A

+

0

@

−

8

3
ζ2S1 +

16(N2 + N + 1)ζ2

3(N − 1)N(N + 1)(N + 2)

−4
56N + 47

27(N + 1)
S1 +

2P3

27(N − 1)N3(N + 1)3(N + 2)

1

A

+ε

0

@

−

8

9
ζ3S1 −

20

9
ζ2S1 −

S2
1

3(N + 1)
+

16(N2 + N + 1)ζ3

9(N − 1)N(N + 1)(N + 2)

+
P5

81(N − 1)N4(N + 1)4(N + 2)
+

4P1ζ2

9(N − 1)N2(N + 1)2(N + 2)

−2
328N4 + 256N3

− 247N2
− 175N + 54

81(N − 1)N(N + 1)2
S1 +

2N + 1

3(N + 1)
S2

1

A

9

=

;

+TFCF

8

<

:

1

ε2

0

@

16(N2 + N + 2)2

(N − 1)N2(N + 1)2(N + 2)

1

A +
1

ε

0

@

4P2

(N − 1)N3(N + 1)3(N + 2)

1

A

+

0

@

4(N2 + N + 2)2ζ2

(N − 1)N2(N + 1)2(N + 2)
−

P4

(N − 1)N4(N + 1)4(N + 2)

1

A

+ε

0

@

4(N2 + N + 2)2ζ3

3(N − 1)N2(N + 1)2(N + 2)
+

P2ζ2

(N − 1)N3(N + 1)3(N + 2)

+
P6

4(N − 1)N5(N + 1)5(N + 2)

1

A

9

=

;

P1 = 3N
6 + 9N

5 + 22N
4 + 29N

3 + 41N
2 + 28N + 6,

P2 = N
8 + 4N

7 + 8N
6 + 6N

5
− 3N

4
− 22N

3
− 10N

2
− 8N − 8,

P3 = 15N
8 + 60N

7 + 572N
6 + 1470N

5 + 2135N
4 + 1794N

3 + 722N
2
− 24N − 72,

P4 = 15N
10+75N

9+112N
8+14N

7
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4+36N
3
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2
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3
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2 + 288N + 216,
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12 + 186N
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10 + 438N

9
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8
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7
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6
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5

+88N
4
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2
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We agree to constant order with the result of [17]. Even the all order ε
result, which is solely given in terms of Euler Γ and ψ, could be derived.
This expression is also needed in the context of the variable flavour number
scheme.

In the unpolarised case, all 2-loop O(ε) terms are now known. In the
polarised case, the calculation proceeds in the same way and we calculated so
far the gluonic, pure-singlet and non-singlet terms, which will be published
soon [6].

3.2. Fixed values of N at three loops

As a next step towards a full O(α3
s ) calculation, we started calculat-

ing unpolarised three-loop OMEs A
(3)
ij,Q for fixed values of Mellin N . The

contributing OMEs are: singlet: {AQg, Agg,Q, Agq,Q}, pure-singlet: APS
Qq,

non-singlet: {ANS,+
qq,Q , ANS,−

qq,Q , ANS,v
qq,Q}, where we have operator mixing be-

tween the singlet and pure-singlet terms. The first object of investigation

is the gluonic A
(3)
Qg: The necessary three-loop diagrams are generated using

QGRAF [18], where the operator product expansion has been implemented
up to insertions of operators with three and four gluonic lines. The number

of diagrams contributing to A
(3)
Qg, e.g., is 1478 diagrams with one and 489

diagrams with two quark loops, where at least one of the loops is heavy.
The steps for the calculation of these self-energy type diagrams with

one additional scale set by the Mellin variable N , are the following: The
diagrams are genuinely given as tensor integrals due to the operators con-
tracted with the light-cone vector ∆, ∆2 = 0. The idea is, to first undo
this contraction and to develop a projector, which, applied to the tensor
integrals, provides the results for the diagrams for a specific (even) Mellin
N under consideration. So far, we implemented the projector for the first 4
contributing Mellin moments N , N = 2, . . . , 8, where the color factors are
calculated using [19]. The diagrams are then translated into a form, which is
suitable for the program MATAD [20], which does the expansion in ε for the
remaining massless and massive three-loop tadpole-type diagrams. We have
implemented these steps into a FORM [21] program and tested it against

two-loop results and the all-order ε result of A
(2)
gg,Q and found agreement.

We then turned to a subset of the 3-loop diagrams, the diagrams ∝ T 2
F.

The contributions ∝ dabcd
abc are found to vanish. Currently we investigate

T 2
FCF, T 2

FCA.
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4. Conclusions and outlook

We calculated the O(ε) contributions to heavy flavour Wilson coefficients
for general Mellin variable N at O(α2

s ), as a first step towards a O(α3
s )

calculation. Furthermore, we installed a program chain to calculate the
corresponding 3-loop diagrams to O(α3

s ), with the help of MATAD. This
chain is now existing and we expect first results in the near future.
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