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We consider the longitudinal hydrodynamic evolution of the fireball cre-
ated in a relativistic heavy-ion collision. Nonzero shear viscosity reduces
the cooling rate of the system and hinders the acceleration of the longitudi-
nal flow. As a consequence, the initial energy density needed to reproduce
the experimental data at RHIC energies is significantly reduced. At LHC
energies, we expect that shear viscosity helps to conserve a Bjorken plateau
in the rapidity distributions during the expansion.

PACS numbers: 25.75.–q, 25.75.Dw, 25.75.Ld

1. Introduction

In heavy-ion collisions at relativistic energies a fireball of dense and
hot matter is created. In later stages, the fireball expands and eventually
hadronizes. In order to deduce the properties of that medium, including a
possible phase transition to the quark–gluon plasma, a careful modeling of
the evolution of the system is needed. With the assumption of local thermal
equilibrium, the description of the dynamics of the system can be under-
taken within the relativistic hydrodynamics [1]. Hydrodynamic calculations
reproduce the spectra of particles in the transverse momentum, the collective
flow, and the Hanbury–Brown–Twiss radii measured at Relativistic Heavy
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Ion Collider (RHIC) [2]. Such calculations are essential in determining the
correct equation of state of the matter under such extreme conditions, the
initial conditions of the system and the freeze-out time.

Until recently, hydrodynamic calculations were performed assuming the
applicability of the ideal fluid limit. It means that local equilibration pro-
cesses are instantaneous, and no entropy is produced in the hydrodynamic
stage. Relaxing the ideal fluid assumption amounts to the introduction of
viscous effects in the evolution. For the fireball created at RHIC and Large
Hadron Collider (LHC) energies, the most important dissipative effect in
the hydrodynamic evolution is due to the shear viscosity [3–8]. A nonzero
shear viscosity coefficient causes the saturation of the elliptic flow, a stronger
transverse flow and can lead to a significant entropy production. Most of the
calculations of the hydrodynamic evolution of the fireball with viscosity are
done in the transverse directions only, with boost-invariance assumed in the
beam (longitudinal) direction. However, shear viscosity is also important for
the longitudinal expansion of the fireball [9]. In the following, we present re-
sults of calculations in a 1+1 dimensional geometry of a non-boost-invariant
expanding fluid with viscosity. The cooling rate and the acceleration of the
longitudinal flow are reduced, and the entropy is produced in the expansion.

2. Longitudinal expansion with viscosity

Relativistic hydrodynamics with viscosity can be formulated consistently,
without violating the causality [10]. The hydrodynamic equations

∂µT µν = 0 (1)

are modified; the energy-momentum tensor T µν = T µν
ideal

+ πµν is composed
of the energy-momentum tensor of an ideal fluid and a stress tensor πµν de-
scribing deviations from local equilibrium. Assuming the dependence of the
densities only on the time t and the longitudinal coordinate z and restricting
the flow velocity uµ = (γ, 0, 0, γv) only to the beam direction, one can write
the hydrodynamic equations for a fluid with shear viscosity as [9]

(ǫ + p)DY = −Kp + ΠDY + KΠ ,

Dǫ = (ǫ + p)KY − ΠKY ,

DΠ =

(

4
3
ηKY − Π

)

τπ
, (2)

where

D = uµ∂µ = cosh(Y − θ)∂τ +
sinh(Y − θ)

τ
∂θ ,

K = sinh(Y − θ)∂τ +
cosh(Y − θ)

τ
∂θ .



Viscosity and Boost Invariance at RHIC and LHC 1541

θ = 1
2
ln

(

t+z
t−z

)

is the space-time rapidity and Y = 1
2
ln

(

E+zpz

E−pz

)

is the

kinematic rapidity of a fluid element. Eqs. (2) involve four unknown function

of θ and of the proper time τ =
√

t2 − z2: the energy density ǫ, the pressure
p, the rapidity Y of the fluid element, and the shear correction Π (in the
1+1 dimensional geometry the stress tensor πµν reduces to one independent
scalar function Π ). One additional relation is given by the equation of state
connecting ǫ and p. We use a realistic equation of state by Chojnacki and
Florkowski combining lattice QCD results and a hadron gas model [11].
The ratio of the shear viscosity coefficient η to the entropy of the fluid s
is not known. We perform calculation for several values η/s = 0.1–0.3 of
this parameter. For the relaxation time of dissipative corrections we take
τπ = 6η/Ts [12]. The hydrodynamic equations (2) are solved in the τ–θ
plane starting from initial conditions at τ0 = 1 fm/c

ǫ(τ0, θ) = ǫ0 exp

(

− θ2

2σ2

)

,

Y (τ0, θ) = θ , (3)

i.e. a Gaussian initial energy density profile and the Bjorken collective lon-
gitudinal flow of the fluid.

3. RHIC results

Eqs. (2) are solved numerically and the freeze-out hypersurface of con-
stant temperature Tf = 165 MeV is extracted. At the freeze-out hypersur-
face, hadrons are emitted according to the Cooper–Frye formula [4, 14]

dNvisc

dy
=

dN

dy
+

dδN

dy
. (4)

with the usual thermal emission contribution of the form

dN

dy
=

S

4π2

θmax
∫

−θmax

(

τ(θ) cosh(y − θ) − τ
′

(θ) sinh(y − θ)
)

×(2mξ + 2ξ2 + m2)ξ exp

(

−m cosh(y − Yf(θ))

Tf

)

dθ , (5)

where m is the meson mass, Yf(θ) = Y (τ(θ), θ) is the fluid rapidity at the
freeze-out hypersurface, and

ξ =
Tf

cosh(y − Yf(θ))
; (6)
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Fig. 1. Rapidity distributions for pions and kaons calculated with the ideal fluid

hydrodynamics (dashed line) and using the viscous hydrodynamics with η/s = 0.2

(solid line) [9]. The dotted line denotes the results of the viscous hydrodynamic

evolution, but neglecting the viscous corrections to the particle emission at freeze-

out (Eq. (7)). Data are from the BRAHMS Collaboration [13].

and an additional term due to the viscous corrections [4]

dδN

dy
=

S

4π2

θmax
∫

−θmax

(

τ(θ) cosh(y − θ)− τ
′

(θ) sinh(y − θ)
)

×
[

12ξ5 + 5ξ3m2 + 12ξ4m + ξ2m3 − sinh(y − Yf(θ))

×(24ξ5 + 12ξ3m2 + 24ξ4m + 4ξ2m3 + ξm4)
]

× Π

2T 2(ǫ + p)
exp

(

−m cosh(y − Yf(θ))

Tf

)

dθ . (7)

At the freeze-out temperature, most of the pions and kaons come from
secondary decays of heavier resonances. This effect is taken into account by
a factor, equal to the ratio of all mesons to primary mesons [15], multiplying
the calculated distributions. The parameters of the initial distribution σ
and ǫ0 are adjusted to reproduce the pion and kaon rapidity distributions
measured by the BRAHMS Collaboration [13]. With the increase of the
shear viscosity of the fluid, two effects can be observed (Fig. 2) in the retuned
initial state of the fireball:
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• a reduced initial energy density of the fireball

• and a small increase of the width of the initial distribution σ with
increasing viscosity.

Fig. 2. Initial energy density distributions for the ideal fluid hydrodynamic evolu-

tion with a realistic equation of state (dashed line), for several viscous hydrody-

namic evolutions (solid lines), and for the ideal fluid with a relativistic gas equation

of state (dashed-dotted line) [9]. All distributions after the hydrodynamic evolution

and freeze-out give pions distributions close to the BRAHMS measurements [13].

The two above mentioned effects are related to the change of the dy-
namics induced by the shear viscosity. The reduction of the initial energy
density at central rapidities is related to the reduced cooling rate in the
viscous evolution. It originates from the smaller work of the fluid in the
longitudinal viscous expansion, due to the change of the effective pressure
from p to p − Π (first equation in (2)). The second effect is related to the
acceleration of the longitudinal flow, as given by the second equation in (2).
Gradients of the pressure in the longitudinal direction cause the acceleration
of the flow, which becomes faster than the Bjorken one [16]. In the viscous
evolution, the gradients of the pressure p are reduced by the gradients of the
shear correction Π . As a result, the flow at the freeze-out is still Bjorken-
like for the viscosity η/s = 0.2 (Fig. 3), and is significantly slower than for
the ideal fluid. Fast moving fluid elements emit hadrons far in the forward
and background rapidities, to counteract this effect a narrower initial energy
density distribution in rapidity must be assumed for the ideal fluid.
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Fig. 3. Difference between the flow rapidity of the fluid and the Bjorken flow taken

at the freeze-out hypersurface, calculated for the evolution with the shear viscosity

coefficient η/s = 0.2 (solid line), for the ideal fluid with a realistic equation of

state (dashed line) and for the ideal fluid with a relativistic gas equation of state

(dashed-dotted line) [9].

4. Predictions for LHC

For the forthcoming LHC Pb–Pb heavy-ion experiments, we assume ar-
bitrarily that the particle multiplicities at central rapidities would increase
twice compared to Au–Au at the highest RHIC energies. This constraint
serves to fix the initial energy density ǫ0 for the hydrodynamic evolution.
At RHIC energies, experimental results show that a Bjorken scaling plateau
at central rapidities, if existing at all, is very narrow [9,16,17]. At LHC en-
ergies, we consider two different scenarios: a Gaussian initial energy density
distribution in the space-time rapidity (similar as for RHIC), or a distribu-
tion with a plateau of width 2σp at central rapidities

ǫ(τ0, θ) = ǫ0 exp
(

−(θ − σp)
2
Θ(|θ| − σp)/2σ

2
)

. (8)

The initial energy density distributions for the two scenarios are shown in
Fig. 4, both for the ideal fluid and for the viscous hydrodynamics with
η/s = 0.2. The initial energy density is smaller for nonzero viscosity. The
reduction of the initial density accounts for the slower cooling and the en-
tropy production in the later viscous evolution.
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Fig. 4. Initial energy density distributions for ideal fluid hydrodynamic evolutions

(dashed and dashed-dotted lines) and for viscous hydrodynamic evolutions (solid

and dotted lines). All distributions after the hydrodynamic evolution and freeze-

out give the same pion density at central rapidity.
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Fig. 5. Difference between the flow rapidity of the fluid and the Bjorken flow taken

at τ = 10 fm/c, calculated for evolutions with shear viscosity coefficient η/s = 0.2

(solid and dotted lines) and for ideal fluid evolutions (dashed and dashed-dotted

lines) for LHC initial conditions (Fig. 4).

The scenario with a Bjorken scaling plateau in the range of 8 units of
central rapidities leads to different results than the one with the Gaussian
initial density profile. Within the plateau region, the Bjorken scaling flow
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is stable, the pressure gradient in space-time rapidity is zero. During the
evolution, the plateau region is becoming narrower, as the gradient of the
pressure at the edges of the plateau starts to destroy the scaling form of the
density and of the flow. If the shear viscosity is large, the rate at which the
Bjorken scaling region is reduced is smaller than in the ideal fluid evolution.
As a consequence, at the freeze-out, a substantial region with Bjorken scaling
of the density and flow survives, if it is present in the initial state and if the
shear viscosity is large (Fig. 5). For the final meson distribution a plateau
at central rapidities is possible only for the viscous evolution from an initial
condition with a plateau in the initial energy density distribution (solid line
in Fig. 4).

5. Summary

We calculate the evolution of the matter created in relativistic heavy-ion
collisions in the longitudinal direction both for the ideal and for the vis-
cous fluid hydrodynamics [9]. Starting with Gaussian profiles of the energy
density in space-time rapidity and with a Bjorken scaling longitudinal flow,
the hydrodynamic evolution reduces the energy density and accelerates the
longitudinal flow. The rate of these processes is governed by gradients of
the effective pressure p−Π , therefore nonzero shear viscosity corrections Π

reduce the cooling rate and, at the same time, make the longitudinal flow
to stay closer to the initial Bjorken scaling flow. At RHIC energies, com-
parison to meson rapidity distributions of the BRAHMS Collaboration [13]
allows to constraint the parameters of the initial state. Depending on the
value of the shear viscosity coefficient one gets a reduction of the initial
energy density by a factor 2–3 for η/s = 0.1–0.2. At LHC energies, the
same effects take place for similar Gaussian initial conditions. Assuming an
initial distribution with a plateau at central rapidities, where the Bjorken
scaling solution applies, the dynamics is different. Within the plateau re-
gion the Bjorken flow is stable, both in the ideal and viscous hydrodynamics.
Nonzero viscosity helps to preserve the Bjorken plateau in a wider region
of rapidities trough the evolution; reduced gradients in the hydrodynamic
equations make smaller the rate at which the Bjorken plateau diminishes.
For η/s = 0.2, the plateau region remaining till freeze-out is wide enough
to survive the hadron emission process, and could be visible as a plateau in
the final meson distribution in the kinematic rapidity.



Viscosity and Boost Invariance at RHIC and LHC 1547

REFERENCES

[1] P.F. Kolb, U.W. Heinz, Quark Gluon Plasma 3, eds. R.C. Hwa, X.N. Wang,
World Scientific, Singapore 2004, [nucl-th/0305084].

[2] M. Chojnacki et al., arXiv:0712.0947 [nucl-th].

[3] H. Song, U.W. Heinz, Phys. Lett. B658, 279 (2008)
[arXiv:0709.0742 [nucl-th]].

[4] D. Teaney, Phys. Rev. C68, 034913 (2003) [nucl-th/0301099].

[5] R. Baier, P. Romatschke, U.A. Wiedemann, Nucl. Phys. A782, 313 (2007)
[nucl-th/0604006].

[6] R. Baier, P. Romatschke, Eur. Phys. J. C51, 677 (2007) [nucl-th/0610108].

[7] A.K. Chaudhuri, Phys. Rev. C74, 044904 (2006) [nucl-th/0604014].

[8] A. Muronga, D.H. Rischke, nucl-th/0407114.

[9] P. Bozek, arXiv:0712.3498 [nucl-th].

[10] W. Israel, J. Stewart, Ann. Phys. 118, 341 (1979).

[11] M. Chojnacki, W. Florkowski, Acta Phys. Pol. B 38, 3249 (2007)
[nucl-th/0702030].

[12] R. Venugopalan, M. Prakash, Nucl. Phys. A546, 718 (1992).

[13] I.G. Bearden et al. [BRAHMS Coll.], Phys. Rev. Lett. 94, 162301 (2005)
[nucl-ex/0403050].

[14] F. Cooper, G. Frye, Phys. Rev. D10, 186 (1974).

[15] G. Torrieri et al., Comput. Phys. Commun. 167, 229 (2005)
[nucl-th/0404083].

[16] L.M. Satarov et al., Phys. Rev. C75, 024903 (2007) [hep-ph/0606074].

[17] T. Hirano, K. Tsuda, Phys. Rev. C66, 054905 (2002) [nucl-th/0205043].


