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We discuss possible separations into gauge invariant parts of exact,
massive, tree-level spin amplitudes of processes involving two quarks, two
gluons and a color-neutral current. We search for forms compatible with
parton shower languages, without applying approximations or restrictions
on phase space regions. Special emphasis will be put on the isolation of
parts corresponding to the running coupling constant and parts necessary
for the construction of evolution kernels for individual splittings. Our rep-
resentation is quite universal: any color-neutral current can be used, in
particular our approach is not restricted to vector currents only.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction

One of the essential steps in the construction of any algorithm for multi-
particle final states is the appropriate analysis of the phase space parametri-
zation. In the PHOTOS Monte Carlo [1] for multi-photon production, such
an exact phase space parametrization is embodied in an iterative algorithm,
the details of which are best described in [2], but the control of the relative
size of sub-samples of distinct numbers of final state particles requires a pre-
cise knowledge of the matrix elements including virtual corrections. In the
KKMC Monte Carlo, the approach to phase space generation is different, but
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the necessity to control matrix elements and their truncation is again essen-
tial [3,4]. For the latter, iterative procedures for parts of amplitudes, which
are at the foundation of exponentiation [4,5] and structure functions [6–10],
were exploited. In particular the description of the dominantly s-channel
process e+e− → νeν̄eγγ where t-channel W -exchange diagrams with gauge
boson couplings contribute to matrix elements provided an interesting ex-
ample [11]. These studies were motivated by practical reasons, but also
pointed at quite astonishing properties of tree-level spin amplitudes, namely
that they can be separated into gauge invariant parts in a semi-automated
way, easy to apply in the Kleiss–Stirling methods [12, 13].

Here, we want to handle the question whether similar techniques can be
used for QCD. Similar analyses are, of course, already included in existing
works, such as for example at the foundation of parton shower algorithms
(new or well established) [14–22] or for other, fundamental or phenomeno-
logical applications [23–30]. The common idea between all of these papers
is to separate approximate or exact results into parts, often with the help of
iteration. In this context, we also want to mention the existence of possible
limitations in such strategies, if applied to parton shower applications [31].

As was done for QED, we will study possible ways of separating am-
plitudes, but now for the process of two quarks and two gluons entering
a color-neutral current. First, we try to identify sub-structures of the ampli-
tude which would be useful for possible applications. Then we would like to
verify to which degree they can be used to localize parts of the amplitude re-
lated to e.g. evolution kernels and the running coupling constant. We expect
such expressions to be identifiable at least in approximations valid in certain
regions of phase space, dominant for specific purposes, like in applications
using pT ordered phase space, but we hope to localize them partly already
at the level of exact amplitudes.

The text is organized as follows. In Sec. 2 we present our notation
and general strategy to organize the amplitude. The treatment of different
possibilities for this organization concerning the color part of the amplitude
is distributed over Sec. 3 and Sec. 4. In Sec. 5 we explore certain limits, in
which some parts of the amplitude can be dropped out. Sec. 6, finally, is
the summary.

2. Notation and general strategy

The exact spin amplitude for the process qq̄ → Jgg can be written as
an expansion in combinations of the SU(Nc)-generators, for example the
combinations {T a, T b} and [T a, T b]. Here, T a is the color generator associ-
ated with gluon number 1, which has momentum k1 and polarization vector
e1, and T b is the color generator associated with gluon number 2, which
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has momentum k2 and polarization vector e2. Another option would be to
use, for example, the combinations T aT b and T bT a. But let us stick to the
former example for now, and return to this issue later. The amplitude can
then be expressed as

Ma,b =
1

2
v̄(p)

([

T a, T b
]

I [1,2] +
{

T a, T b
}

I{1,2}
)

u(q) , (1)

where v̄(p) and u(q) are the spinors associated with the anti-quark, which
has momentum p, and the quark, which has momentum q, respectively. We
do not specify the spin or color states for the quark fields, any choice can
be used. This type of separation of the spin amplitude into gauge invariant
parts is known [32] and exploited since long time. The main task is now to
calculate the coefficients I [1,2] and I{1,2}. Our expressions will contain the
object J/, representing the color neutral current, and we want to stress that
they are valid under the condition that this object is constructed from color
neutral objects like (v + aγ5), γµ, p/, k/1, etc., although our notation might
seem to indicate stronger limitations.

The first step in this calculation is the construction of the relevant graphs,
depicted in Fig. 1, from the Feynman rules. Next, we choose to replace
explicit mass terms by fermion momenta using the Dirac equation. It is
not difficult to extract expressions of the type mentioned before for I [1,2]

and I{1,2} at this point. Thanks to properties of the gamma-matrices, we
can choose how their contractions with four-momenta are ordered, at the
expense of the appearance or disappearance of certain scalar products of
those four-momenta. We choose to order them such that factors J/e/1,2, e/1,2J/
or k/1,2k/2,1, e/1,2e/2,1 are not present. This is for the convenience of possible
use of the Kleiss–Stirling method for coding final expressions similarly as
in [3].
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Fig. 1. Feynman graphs for the process qq̄ → Jgg.
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The game is now to compactify expressions, or organize them in an easily
interpretable way, by factorizing certain sums of terms. The most impor-
tant guideline we use is that each term, consisting of factors which consist
themselves of sums of terms, should be manifestly gauge invariant. In this
process, we allow for the introduction of what we call subtraction terms, that
is terms subtracted at one place of the complete expression, and added at
another place. They can help to make certain factorizations possible, which
look desirable but for which some terms appear to be missing. Such subtrac-
tion terms were also used in our earlier QED-studies of the same type [11].
In fact, the terms were constructed from parts of lower-order amplitudes
and were an important element in the attempt to define a semi-automated
method to obtain expressions for spin amplitudes also used in Monte Carlo
programs. For the two-photon case, the following subtraction terms were
used:

S
{1,2}
1,q =

1

2
J/

(

q ·e1

q ·k1

q ·e2

q ·k1 + q ·k2
+

q ·e1

q ·k1 + q ·k2

q ·e2

q ·k2

)

, (2)

S
{1,2}
2,q =

1

2
J/

(

k/2e/2

q ·k2

q ·e1

q ·k1
+

k/1e/1

q ·k1

q ·e2

q ·k2

)

, (3)

and similar terms with q replaced by p. As mentioned before, these terms
are constructed from parts of the one-photon amplitude, which is given by

Ma = v̄(p)T aI(1)u(q) , (4)

with

I(1) = J/

[(

p·e1

p·k1
− q ·e1

q ·k1

)]

− 1

2

[

e/1k/1

p·k1

]

J/ +
1

2
J/

[

k/1e/1

q ·k1

]

. (5)

Note that each segment encapsulated by square brackets is manifestly gauge
invariant. As in the case of QED, we will use subtraction terms (2) and (3).
In addition, however, we will also use

S
{1,2}
3,q = −1

2
J/

k1 ·k2

q ·k1 + q ·k2 − k1 ·k2

k1 ·e2 k2 ·e1

k1 ·k2k1 ·k2
(6)

and a similar term with q replaced by p. Note that, in contrast to (2) and
(3), subtraction term (6) is not constructed from elements present in the
single bremsstrahlung amplitude given in Eq. (5). In particular, it intro-
duces an artificial singularity 1/(k1 ·k2) which would be worrisome for QED
applications. We, however, are not concerned with that, since it points at
the singularity of an intermediate gluon virtuality, with which we have to
deal anyway in a QCD amplitude.



Exact Tree-Level QCD Spin-Amplitudes and their Gauge Invariant . . . 1569

We already mentioned the examples of an expansion in [T a, T b] and
{T a, T b}, and an expansion in T aT b and T bT a. We will deal with both
cases in the next sections. The most compact expressions for the amplitude
will be obtained with a mixed choice, in which all four combinations [T a, T b],
{T a, T b}, T aT b and T bT a of color generators are used. The coefficients for
each term is not unique in this case of course, but we will be able to find
a choice which seems to be optimal.

3. QED-inspired picture

In this section, we investigate expressions for the two-gluon amplitude
obtained when expanded in its color contents as in Eq. (1). We start our
analysis by collecting terms proportional to the anti-commutator of the color
generators. It can be considered the less complicated one, because it does
not include terms originating from the triple-gluon vertex. Note that it is
identical with the expression for the QED amplitude of the process e+e− →
νµν̄µγγ as described in [11]. This is possible, because the anti-commutator
projects out the triple-gauge coupling.

The choice of the subtraction terms affects the final form of the results. In
case of QED we could limit ourselves to the gauge invariant parts available
from the single photon (gluon) amplitude, leading to a seemingly unique
result. The case of QCD is more complex, and the choice of subtraction
terms is rather motivated by aesthetic considerations.

3.1. {T a, T b}-part
The part of the amplitude proportional to {T a, T b} can be represented

as sum of twelve individually gauge invariant parts:

I{1,2} = I
{1,2}
1 + I

{1,2}
2l + I

{1,2}
2r + I

{1,2}
3 + I

{1,2}
4l + I

{1,2}
4r

+I
{1,2}
5lA + I

{1,2}
5lB + I

{1,2}
5rA + I

{1,2}
5rB + I

{1,2}
6l + I

{1,2}
6r , (7)

where

I
{1,2}
1 =

1

2
J/

(

p·e1

p·k1
− q ·e1

q ·k1

)(

p·e2

p·k2
− q ·e2

q ·k2

)

, (8)

I
{1,2}
2l = −1

4

[(

p·e1

p·k1
− q ·e1

q ·k1

)

e/2k/2

p·k2
+

(

p·e2

p·k2
− q ·e2

q ·k2

)

e/1k/1

p·k1

]

J/ , (9)

I
{1,2}
2r =

1

4
J/

[(

p·e1

p·k1
− q ·e1

q ·k1

)

k/2e/2

q ·k2
+

(

p·e2

p·k2
− q ·e2

q ·k2

)

k/1e/1

q ·k1

]

, (10)

I
{1,2}
3 = −1

8

(

e/1k/1

p·k1
J/

k/2e/2

q ·k2
+

e/2k/2

p·k2
J/
k/1e/1

q ·k1

)

, (11)
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I
{1,2}
4l =

1

8

1

p·k1 + p·k2 − k1 ·k2

(

e/1k/1e/2k/2

p·k1
+

e/2k/2e/1k/1

p·k2

)

J/ , (12)

I
{1,2}
4r =

1

8
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k/2e/2k/1e/1

q ·k1
+

k/1e/1k/2e/2

q ·k2

)

, (13)

I
{1,2}
5lA =

1

2
J/

k1 ·k2

p·k1 + p·k2 − k1 ·k2

(

p·e1

p·k1
− k2 ·e1

k2 ·k1

)(

p·e2

p·k2
− k1 ·e2

k1 ·k2

)

, (14)

I
{1,2}
5lB = −1

2
J/

1

p·k1 + p·k2 − k1 ·k2

(

k1 ·e2k2 ·e1

k1 ·k2
− e1 ·e2

)

, (15)

I
{1,2}
5rA =

1

2
J/

k1 ·k2

q ·k1 + q ·k2 − k1 ·k2

(

q ·e1

q ·k1
− k2 ·e1

k2 ·k1

)(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2

)

,(16)

I
{1,2}
5rB = −1

2
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k1 ·e2k2 ·e1

k1 ·k2
− e1 ·e2

)

, (17)

I
{1,2}
6l = −1

4

k1 ·k2

p·k1 + p·k2 − k1 ·k2

[

(

p·e1

p·k1
− k2 ·e1

k1 ·k2

)

e/2k/2

p·k2

+

(

p·e2

p·k2
− k1 ·e2

k1 ·k2

)

e/1k/1

p·k1

]

J/ , (18)

I
{1,2}
6r = −1

4
J/

k1 ·k2

q ·k1 + q ·k2 − k1 ·k2

[

(

q ·e1

q ·k1
− k2 ·e1

k1 ·k2

)

k/2e/2

q ·k2

+

(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2

)

k/1e/1

q ·k1

]

. (19)

Note that contrary to [11] (formula (27)), where the amplitude is separated
into seven terms M1 to M7, we have allowed here a new object e1 ·e2,
which from the point of view of fermionic spin amplitudes and Kleiss–Stirling
methods [12] can be considered to be rather ugly. It will appear anyway in
the commutator part discussed in the next section as a consequence of the
triple gauge coupling. Furthermore, we separated the expressions M2 and
M4 of [11] into several new parts, partly because of the new subtraction term
(6). Such a separation is inappropriate for QED applications, since the new
gauge invariant parts, even though compact, are more singular in the soft-
photon limit than their sum, and would form an obstacle to exponentiation.
For QCD, however, this is not so much an issue because of the triple-gluon
vertex and such a separation will be useful later. That is why we allow the
structure of apparent singularities to be larger than necessary.
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3.2. [T a, T b]-part

For the commutator part, we introduce subtraction terms mainly in or-
der to separate terms depending simultaneously on both momenta p and q
into simple and intuitively clear expressions. The part of the amplitude
proportional to [T a, T b] is again represented as a sum of individually gauge
invariant parts and reads:

I [1,2] = I
[1,2]
1 + I

[1,2]
2l + I

[1,2]
2r + I

[1,2]
3 + I

[1,2]
4l + I

[1,2]
4r + I

[1,2]
5lA + I

[1,2]
5lB

+I
[1,2]
5rA + I

[1,2]
5rB + I

[1,2]
6l + I

[1,2]
6r + I

[1,2]
7lA + I

[1,2]
7lB + I

[1,2]
7rA + I

[1,2]
7rB , (20)

where

I
[1,2]
1 = −1

4
J/

(

p·e1

p·k1
− q ·e1

q ·k1

)(

p·e2

p·k2
+

q ·e2

q ·k2
− 2

k1 ·e2

k1 ·k2

)

(21)

+
1

4
J/

(

p·e2

p·k2
− q ·e2

q ·k2

)(

p·e1

p·k1
+

q ·e1

q ·k1
− 2

k2 ·e1

k1 ·k2

)

, (22)

I
[1,2]
2l =

1

4

[(

p·e1

p·k1
− q ·e1

q ·k1

)

e/2k/2

p·k2
−
(

p·e2

p·k2
− q ·e2

q ·k2

)

e/1k/1

p·k1

]

J/ , (23)

I
[1,2]
2r =

1

4
J/

[(

p·e1

p·k1
− q ·e1

q ·k1

)

k/2e/2

q ·k2
−
(

p·e2

p·k2
− q ·e2

q ·k2

)

k/1e/1

q ·k1

]

, (24)

I
[1,2]
3 =

1

8

(

−e/1k/1

p·k1
J/

k/2e/2

q ·k2
+

e/2k/2

p·k2
J/

k/1e/1

q ·k1

)

, (25)

I
[1,2]
4l =

1

8

1

p·k1 + p·k2 − k1 ·k2

(

e/1k/1e/2k/2

p·k1
− e/2k/2e/1k/1

p·k2

)

J/ , (26)

I
[1,2]
4r =

1

8
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k/1e/1k/2e/2

q ·k2
− k/2e/2k/1e/1

q ·k1

)

, (27)

I
[1,2]
5lA = −1

2
J/

p·k1 − p·k2

p·k1 + p·k2 − k1 ·k2

(

p·e1

p·k1
− k2 ·e1

k2 ·k1

)(

p·e2

p·k2
− k1 ·e2

k1 ·k2

)

,(28)

I
[1,2]
5lB =

1

2
J/

p·k1 − p·k2

p·k1 + p·k2 − k1 ·k2

(

k1 ·e2

k1 ·k2

k2 ·e1

k1 ·k2
− e1 ·e2

k1 ·k2

)

, (29)

I
[1,2]
5rA = −1

2
J/

q ·k2 − q ·k1

q ·k1 + q ·k2 − k1 ·k2

(

q ·e1

q ·k1
− k2 ·e1

k2 ·k1

)(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2

)

,(30)

I
[1,2]
5rB =

1

2
J/

q ·k2 − q ·k1

q ·k1 + q ·k2 − k1 ·k2

(

k1 ·e2

k1 ·k2

k2 ·e1

k1 ·k2
− e1 ·e2

k1 ·k2

)

, (31)

I
[1,2]
6l =

1

4

k1 ·k2

p·k1 + p·k2 − k1 ·k2

[

+

(

p·e1

p·k1
− k2 ·e1

k1 ·k2

)

e/2k/2

p·k2

−
(

p·e2

p·k2
− k1 ·e2

k1 ·k2

)

e/1k/1

p·k1

]

J/ , (32)
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I
[1,2]
6r =

1

4
J/

k1 ·k2

q ·k1 + q ·k2 − k1 ·k2

[

−
(

q ·e1

q ·k1
− k2 ·e1

k1 ·k2

)

k/2e/2

q ·k2

+

(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2

)

k/1e/1

q ·k1

]

, (33)

I
[1,2]
7lA =

1

2

1

p·k1 + p·k2 − k1 ·k2

[

−
(

p·e1

p·k1
− k2 ·e1

k1 ·k2

)

e/2k/2

+

(

p·e2

p·k2
− k1 ·e2

k1 ·k2

)

e/1k/1

]

J/ , (34)

I
[1,2]
7lB =

1

4

1

k1 ·k2

1

p·k1 + p·k2 − k1 ·k2

(

e/2k/2e/1k/1 − e/1k/1e/2k/2

)

J/ , (35)

I
[1,2]
7rA =

1

2
J/

1

q ·k1 + q ·k2 − k1 ·k2

[

+

(

q ·e1

q ·k1
− k2 ·e1

k1 ·k2

)

k/2e/2

−
(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2

)

k/1e/1

]

, (36)

I
[1,2]
7rB = −1

4
J/

1

k1 ·k2

1

q ·k1 + q ·k2 − k1 ·k2
(k/1e/1k/2e/2 − k/2e/2k/1e/1) . (37)

This time, we do not have a good motivation for the particular form. We
mainly tried to keep it analogous to I{1,2} term by term. Only the terms
with a subscript starting with 7 do not have an analogue in I{1,2}. The
subtraction terms

S
[1,2]
1,q = J/

k2 ·e1

k1 ·k2

(

p·e2

p·k2
− q ·e2

q ·k2

)

, (38)

S
[1,2]
2,q = −J/

(

k/2e/2

q ·k2

q ·e1

q ·k1
− k/1e/1

q ·k1

q ·e2

q ·k2

)

, (39)

S
[1,2]
3,q =

1

2
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

−2q ·e2k2 ·e1

q ·k2
+

2q ·e1k1 ·e2

q ·k1

)

(40)

are quite analogous to the ones used in the previous subsection and we will

not elaborate on them further. The terms S
[1,2]
1,p , S

[1,2]
2,p and S

[1,2]
3,p are chosen

analogously.

4. Picture of consecutive gluon emission

Now, we try to reorganize the expressions by incorporating an ordering
of the gluons, a strategy which has proved its usefulness in a broad spectrum
of applications and calculations concerning QCD.
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4.1. Color-ordered amplitudes

Instead of an expansion in the commutator and the anti-commutator of
color generators, let us simply use generator products to express

Ma,b =
1

2
v̄(p)

(

T aT bI(1,2) + T bT aI(2,1)
)

u(q) . (41)

The so-called color-ordered amplitudes are obtained from the coefficients
I(1,2) and I(2,1) by including the spinors v̄(p) and u(q). Thanks to this
ordering the expressions shorten significantly. For the T aT b-part, we find

I(1,2) =

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

J/

(

k/2e/2

2q ·k2
+

k1 ·e2

k1 ·k2
− q ·e2

q ·k2

)

(42)

+
p·k2

p·k1 + p·k2 − k1 ·k2

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

×
(

p·e2

p·k2
− k1 ·e2

k1 ·k2
− e/2k/2

2p·k2

)

J/ (43)

+J/
q ·k1

q ·k1 + q ·k2 − k1 ·k2

(

q ·e1

q ·k1
− k2 ·e1

k2 ·k1
− k/1e/1

2q ·k1

)

×
(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2
− k/2e/2

2q ·k2

)

(44)

+J/

(

1 − p·k2

p·k1 + p·k2 − k1 ·k2
− q ·k1

q ·k1 + q ·k2 − k1 ·k2

)

×
(

k1 ·e2

k1 ·k2

k2 ·e1

k1 ·k2
− e1 ·e2

k1 ·k2

)

(45)

−1

4

1

p·k1 + p·k2 − k1 ·k2

(

e/1k/1e/2k/2 − e/2k/2e/1k/1

k1 ·k2

)

J/ (46)

−1

4
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k/1e/1k/2e/2 − k/2e/2k/1e/1

k1 ·k2

)

. (47)

Each term in the above expressions is individually gauge invariant. The co-
efficient I(2,1) is obtained by a permutation of the momenta and polarization
vectors of the two gluons in I(1,2).

4.2. Mixed representation

Now we use a mixed, and therefore over-defined, basis. Thanks to such
a representation not only the exact results, but also expressions dominant
in some regions of the phase space (obtained simply by truncation) will be
more compact. The decomposition of the amplitude looks as follows
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Ma,b =
1

2
v̄(p)

(

T aT bI
(1,2)
mix + T bT aI

(2,1)
mix

+[T a, T b]I
[1,2]
mix + {T a, T b}I{1,2}

mix

)

u(q) . (48)

The first coefficient is given by

I
(1,2)
mix =

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

J/

(

k/2e/2

2q ·k2
+

k1 ·e2

k1 ·k2
− q ·e2

q ·k2

)

+
p·k2

p·k1 + p·k2 − k1 ·k2

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

×
(

p·e2

p·k2
− k1 ·e2

k1 ·k2
− e/2k/2

2p·k2

)

J/

+J/
q ·k1

q ·k1 + q ·k2 − k1 ·k2

(

q ·e1

q ·k1
− k2 ·e1

k2 ·k1
− k/1e/1

2q ·k1

)

×
(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2
− k/2e/2

2q ·k2

)

, (49)

and coefficient I
(2,1)
mix is again obtained by a permutation of the momenta

and polarization vectors of the gluons in the above expression. The other
coefficients are given by

I
[1,2]
mix =

1

2
J/

(

p·k1 − p·k2

p·k1 + p·k2 − k1 ·k2
+

q ·k2 − q ·k1

q ·k1 + q ·k2 − k1 ·k2

)

×
(

k1 ·e2

k1 ·k2

k2 ·e1

k1 ·k2
− e1 ·e2

k1 ·k2

)

−1

4

1

p·k1 + p·k2 − k1 ·k2

(

e/1k/1e/2k/2 − e/2k/2e/1k/1

k1 ·k2

)

J/

−1

4
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k/1e/1k/2e/2 − k/2e/2k/1e/1

k1 ·k2

)

, (50)

I
{1,2}
mix = −1

2
J/

(

1

p·k1 + p·k2 − k1 ·k2
+

1

q ·k1 + q ·k2 − k1 ·k2

)

×
(

k1 ·e2 k2 ·e1

k1 ·k2
− e1 ·e2

)

. (51)
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The choice for the above representation is not unique, and at this point
it seems to be based mainly on aesthetic grounds. Again each term in
the above expressions is individually gauge invariant. In order to justify
our choice a bit further, we change our strategy in the construction of the
expressions. So far, the only manipulations we performed consisted of the
reorganization of terms, and the introduction of our so-called subtraction
terms. All these terms were written explicitly in terms of momenta and
polarization vectors. Now, we will leave this path, and start to introduce
new objects useful to compactify the expression even further. The objects
are the momentum of the virtual gluon

kµ
1+2 = kµ

1 + kµ
2 , (52)

and the four-vectors

eµ
1+2 =

kµ
1 − kµ

2

2 k1 ·k2

(

e1 ·k2 e2 ·k1

k1 ·k2
− e1 ·e2

)

,

êµ
1+2 =

kµ
1 − kµ

2

2 k1 ·k2

i
4 Tr(γ5e/1k/1e/2k/2)

k1 ·k2
, (53)

which represent the effective polarizations of the virtual gluon piled together
with its propagator1. Notice, that the expressions are gauge-invariant. Using
the fact that

e/1k/1e/2k/2 − e/2k/2e/1k/1

2k1 ·k2
= (e/1+2 + iγ5ê/1+2)k/1+2 , (54)

we immediately see that we can write

I
[1,2]
mix = J/

(

p·e1+2

p·k1+2 − k1 ·k2
− q ·e1+2

q ·k1+2 − k1 ·k2

)

−1

2

[

(e/1+2 + iγ5ê/1+2)k/1+2

p·k1+2 − k1 ·k2

]

J/+
1

2
J/

[

k/1+2(e/1+2−iγ5ê/1+2)

q ·k1+2−k1 ·k2

]

.(55)

Notice the similarity of this expression with Eq. (5) for the single-gluon
emission. In the limit when k1 ·k2 becomes zero, whether it be a soft or a
collinear limit, the quantities

(

e1 ·k2e2 ·k1

k1 ·k2
− e1 ·e2

)

and
i
4 Tr(γ5e/1k/1e/2k/2)

k1 ·k2
(56)

1 Proper units of energy will appear only after including the appropriate factor from
the phase space Jacobian (this is usually done, only after some assumption is made
on phase space regions to be considered). Note also, that e1+2 is parallel to ê1+2 and
has a significant component along the k1+2-direction. This is another reason to be
cautious with their physical interpretation.
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stay both finite. In particular, when the polarization vectors e1 and e2

become parallel, ê1+2, absent anyway in the first line of (55), becomes zero,
indicating that it contributes negligibly compared to e1+2, and making the
(55) even more similar to (5). Also,

(

p

p·k1 + p·k2 − k1 ·k2
− q

q ·k1 + q ·k2 − k1 ·k2

)

· k1 − k2

k1 ·k2
(57)

remains finite when k1 and k2 become collinear. This property of the ex-
pression present in the first term of (50) is a technical manifestation of the
absence of longitudinal gluons, but this time for the virtual gluon. Again,
the similarity to (5) manifests itself. There, the cancellation is exact, and
is a consequence of gauge invariance in combination with the fact that the
gluon is on mass-shell.

4.3. Properties of the amplitudes

Let us analyze the building blocks which appear at the exact amplitude
level in the expressions given in Sec. 4.1 and Sec. 4.2. In [33] (Sec. 13.1) it
was shown in a pedagogical manner, that for example in case k1 becomes
collinear with p the factor

(

p·e1

p·k1
− e/1k/1

2p·k1

)

(58)

gives, after phase space integration over the appropriate region, the Altarelli–
Parisi kernel. It can thus be understood as its precursor at the spin ampli-
tude level. Like this, of course, such an expression makes no sense, since it
is gauge-dependent. Only a gauge invariant-object like

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

(59)

can be interpreted unambiguously. It can be understood as a precursor at
the spin amplitude level for the emission of k1 from a dipole-source spanned
by p and k2, but this time including the effect due to the fermion spin as
well. Not only this assures gauge invariance, but also gives a scale for the
appropriate logarithm if the integration would be completed. At this point,
it seems straightforward to interpret expressions like (59) present in (49) as
factors for the emission from incoming fermions and with angle distributions
controlled by the direction of the other gluon, completing at the same time
the second arm of the dipole. This interpretation is based mainly on the
visual appearance of the expressions, ignoring the structure of singular terms
and/or interferences, and therefore might be misleading. On the other hand,
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we want to note that our observations are similar to the ones which can be
found in the literature, where indeed such interpretation was performed for
the sake of constructing parton shower models, even though usually some
approximations were used then.

Let us look at (59), as present e.g. in the first line of (49). Indepen-
dently whether we interpret this factor as the description of the emission of
a gluon or not, the momentum entering J from the left side is p − k1. If the
collinear limit can be used, and thus to a good approximation J varies slowly
with an eventual virtuality (p − k1)

2, then the effective intermediate state
of a fermion of momentum p − k1 can be used to simplify the description.
A similar line of arguments is used in [33] (and since long in any formula-
tion of the PDF evolution) and we will not repeat it here. Note that the
intermediate effective gluon definition introduced in Sec. 4.2 is valid all over
phase space, even in phase space regions where it does not have any physi-
cal meaning anymore. We do not have such descriptions for an intermediate
effective fermion available at this moment: we would have to stick to the
low virtuality limit, and thus have to introduce an approximation.

Let us shift our attention to the second term of (49). For the simplified
picture of the previous paragraph to work, one of the effective incoming mo-
menta must be a collinear projection of p − k1 − k2 (or q − k1 − k2), while
the other one simply remains q or p. No ambiguity appears in this respect.
Regarding the factors (q ·k1)/(q ·k1 + q ·k2 − k2 ·k1) and (p·k1)/(p·k1 + p·k2

−k2 ·k1) we want to mention that, in case of collinear configurations, they
are indispensable for the redefinition of the spinor normalization used in the
definition of evolution kernels. As we do not want to limit ourselves to such
configurations, but want to use expressions valid all over the phase space, def-
initions of spinors for intermediate, seemingly on mass-shell, fermion states
should remain valid everywhere as well. We do not have such definition
available.

Let us now turn our attention to (50). It is rather tempting to interpret
its p- and q-dependent parts as the real-emission contributions to the running
of the coupling constant (of the single gluon emission). The most singular
parts of these contributions cancel each other partly as we can see in Eq. (57).
Such a partial result may already provide a hint on the possible optimal
choice of scale to be used as an argument of the running coupling constant.

The role of the remaining parts of the amplitude, expression (51), is
less clear, although it resembles the running coupling constant part. It may
equally well be interpreted as a genuine second-order part of the amplitude,
which cannot be interpreted in the language suitable for resummation at
all. Note that, from the point of view of pq → k1k2J kinematics, this
contribution is less singular than any of the previously discussed ones.
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5. Picture of ordered gluon emission in dipole language

In the previous chapters we have collected several forms for exact spin
amplitudes. Now, we concentrate on cases of special limits, usually associ-
ated with some type of ordering, and for which iterative descriptions such as
BFKL [34,35], DGLAP [6,7, 36] or CCFM [37–39] are valid and are known
to be useful. We will attempt to define amplitudes which are dominant in
certain regions of phase space, but nonetheless valid all over phase space,
and which differ from the complete amplitude only by gauge invariant and
analytically available expressions.

5.1. x ordering and soft gluon limit (BFKL)

Let us restrict our attention to the region of phase space where
√

s ≫ k0
1

≫ k0
2 and k0

1k
0
2 ≃ k1 ·k2 (all in the reaction rest frame). As a consequence,

we can use the conditions p·k1 ≫ p·k2 ≫ k1 ·k2 and/or q ·k1 ≫ q ·k2 ≫ k1 ·k2

for the localization of dominant terms. Such a choice is consistent with the
BFKL approximation [34, 35]. Under these constraints, the T aT b-part (49)
of our expression reduces to

I
(1,2)
mix = J/

(

p·e1

p·k1
− k2 ·e1

k2 ·k1

)(

k1 ·e2

k1 ·k2
− q ·e2

q ·k2

)

+J/

(

q ·e1

q ·k1
− k2 ·e1

k2 ·k1

)(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2

)

. (60)

All other parts are smaller. A similar expression is obtained for I
(2,1)
mix . After

some short manipulations, and since the contributions from Eq. (50) and
Eq. (51) are also negligible thanks to the conditions, the full amplitude
reduces to:

Ma,b
BFKL =

1

2
v̄(p)J/u(q)

[

T aT b

(

q ·e1

q ·k1
− p·e1

p·k1

)(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2

)

+T bT a

(

p·e1

p·k1
− q ·e1

q ·k1

)(

p·e2

p·k2
− k1 ·e2

k1 ·k2

)

]

. (61)

A picture of linked dipoles is manifest in this expression. It is also worth
mentioning that (50), suspected to contribute to the running of the cou-
pling constant, can be neglected under our conditions. The obtained ampli-
tude (61) is a well defined part of the exact one, and at the same time is con-
sistent with the BFKL approximation. It is easy to implement into a Monte
Carlo program incorporated with exact Lorentz invariant phase space as in
QED [1,2] for the solution based on the exact matrix element and full phase
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space coverage. Note that the truncated amplitude is given in the same kine-
matical formulation as the complete exact amplitude for two-gluon emission.
It can be calculated at any point in phase space, and not only where the
approximation is justified. Re-installation of the exact amplitude into a cal-
culation based on sufficiently refined dipole language can be accommodated
for by a well-defined weight. We want to mention, that the picture of linked
dipoles is used with success in Ariadne parton shower [40].

5.2. pT ordering or DGLAP

Also pT ordering can be formulated in terms of properties of Lorentz
invariant expressions, allowing for an easy identification of the parts of the
amplitudes which may be simply dropped out. In the following, we will
discuss the two kinematical cases of emissions into one, or two (opposite)
hemispheres. We will devote a separate subsection to the discussion of the
running coupling constant contribution.

5.2.1. Dominant parts for emissions in one hemisphere

We assume first that p·k1 ≫ p·k2 or q ·k1 ≫ q ·k2, but we accept config-
urations where p·k1 ≃ k1 ·k2 or q ·k1 ≃ k1 ·k2. In practice, such conditions
mean that k2, p and q are basically parallel to each other from the point
of view of the direction of k1. The ‘macroscopic’ size of k1 ·k2 implicitly
removes the phase space regions where the gluons become collinear. Such
a case must be treated separately. Under our conditions and after some
manipulations, the T aT b part of the amplitude takes the form:

I
(1,2)
mix = − k1 ·k2

q ·k1 − k1 ·k2

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

J/

(

k/2e/2

2q ·k2
+

k1 ·e2

k1 ·k2
− q ·e2

q ·k2

)

+
q ·k1

q ·k1 − k1 ·k2

{

J/

(

q ·e1

q ·k1
− k2 ·e1

k2 ·k1
− k/1e/1

2q ·k1

)

−
(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

J/

}

(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2
− k/2e/2

2q ·k2

)

, (62)

and the T bT a part becomes

I
(2,1)
mix = − k1 ·k2

p·k1 − k2 ·k1

(

p·e2

p·k2
− k1 ·e2

k1 ·k2
− e/2k/2

2p·k2

)

J/

(

k/1e/1

2q ·k1
+

k2 ·e1

k2 ·k1
− q ·e1

q ·k1

)

+
p·k1

p·k1 − k2 ·k1

(

p·e2

p·k2
− k1 ·e2

k1 ·k2
− e/2k/2

2p·k2

)

×
{(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

J/+J/

(

k/1e/1

2q ·k1
+

k2 ·e1

k2 ·k1
− q ·e1

q ·k1

)}

. (63)
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The above expressions can easily be understood in the language of evolu-
tion kernels. The factors (q ·k1)/(q ·k1 − k2 ·k1) and (p·k1)/(p·k1 − k2 ·k1)
can be understood as redefinition of the spinor normalization, again simi-
larly as explained in [33]. Note that the contents of the curly brackets in
the last two formulas are free of terms proportional to (k1 ·e2)/(k2 ·k1) and
(k2 ·e1)/(k2 ·k1). They represent simple dipoles spanned on the p,q-pair. In
contrast with the previous section, correcting terms with k/1 and/or k/2 in
the numerator remain. This is closely related to the necessity/possibility to
introduce effective momenta flowing into J , once the language of PDFs is
introduced.

The coefficient for the running coupling constant (55) seems to survive in
its near complete form. In our limit and because of cancellations it develops
an extra power of k1 ·k2 in the eikonal part, and a factor of

√
k1 ·k2 in the

terms proportional to k1+2. This will cancel the singularity of the virtual
gluon once the amplitude is squared and a partial integration over the phase
space is performed. Because of this, an interpretation in the language of the
running coupling constant is prevented. It can be treated as a non-singular
correction, and thus ignored.

For now, we can conclude that our amplitude, with properties consistent
with pT ordering, is more compact than the exact one. It is gauge invariant
and valid all over phase space. Such a simple, amplitude-level, expression
can be used at the intermediate step for the definition of a parton shower
algorithm, or to better understand the already existing ones. As in the
previous BFKL case, an explicit form for the weight necessary to reinstall
the exact distribution based on the two-gluon amplitude is available. It was
mentioned already earlier how to identify emission kernels already at the
spin amplitude level. It seems that the explanations included in [33] can be
applied here as well.

5.2.2. Dominant parts for simultaneous emissions from p and q

Now, let us assume that p·k2 ≫ p·k1 and q ·k1 ≫ q ·k2. Under such con-
ditions, k1 is basically parallel to p, and k2 to q. It is obvious that con-
tribution (42) dominates over all other contributions of the complete spin
amplitude. If in addition p·k2 ≫ q ·k1, then we can replace (k1 ·e2)/(k1 ·k2)
with (p·e2)/(p·k2) and get

I(1,2) =

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

J/

(

k/2e/2

2q ·k2
+

p·e2

p·k2
− q ·e2

q ·k2

)

. (64)

This expression is again of the dipole form. At the same time it is part of
the expression discussed previously. This means, that the replacement of
(k1 ·e2)/(k1 ·k2) with (p·e2)/(p·k2), which is potentially dangerous and valid
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only in this particular region of phase space, is not necessary, except for
our proof here. Difficulties, as the ones to be discussed in Sec. 5.3, can be
avoided.

5.2.3. Case when k1 and k2 may become parallel

So far, we have implicitly excluded the phase space region contribut-
ing to the running coupling constant from our discussion. The pT ordering
makes it unfavorable for the two gluons to become parallel one to another.
Therefore, we have to look at regions of phase space where the virtuality of
the gluon may approach zero separately. For that purpose, we will assume
that the overall pT of the virtual gluon is small, but larger than k1 ·k2. We
have found such an approach in studies presented in [41, 42]. We will con-
sider the configuration when q ·k1 ≫ p·k1, q ·k2 ≫ p·k2, p·k1 ≫ k1 ·k2 and
p·k1 ∼ p·k2. Such choice represents the splitting of the anti-quark with mo-
mentum p into a virtual fermion line entering J , and a single gluon of small
virtuality and (moderately) small pT. Under such circumstances, dominant
contributions from (49) take the form:

I
(1,2)
mix =

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)

J/

(

k/2e/2

2q ·k2
+

k1 ·e2

k1 ·k2
− q ·e2

q ·k2

)

+
p·k2

p·k1 + p·k2

(

p·e1

p·k1
− k2 ·e1

k2 ·k1
− e/1k/1

2p·k1

)(

p·e2

p·k2
− k1 ·e2

k1 ·k2
− e/2k/2

2p·k2

)

J/

+J/
q ·k1

q ·k1+q ·k2

(

q ·e1

q ·k1
− k2 ·e1

k2 ·k1
− k/1e/1

2q ·k1

)(

q ·e2

q ·k2
− k1 ·e2

k1 ·k2
− k/2e/2

2q ·k2

)

.

(65)

The analogous form for I
(2,1)
mix is obtained by a permutation of the mo-

menta and polarization vectors of the gluons in the above expression. The
dominant contributions of (50) take the form:

I
[1,2]
mix =

1

2
J/

(

p·k1 − p·k2

p·k1 + p·k2
+

q ·k2 − q ·k1

q ·k1 + q ·k2

)(

k1 ·e2

k1 ·k2

k2 ·e1

k1 ·k2
− e1 ·e2

k1 ·k2

)

−1

4

1

p·k1 + p·k2

(

e/1k/1e/2k/2 − e/2k/2e/1k/1

k1 ·k2

)

J/

−1

4
J/

1

q ·k1 + q ·k2

(

k/1e/1k/2e/2 − k/2e/2k/1e/1

k1 ·k2

)

. (66)

Contribution (51) becomes non-leading as a whole. Obviously our choice
of remaining terms is different from the one of Sec. 5.2.1. Nonetheless one
can observe that (65) is included in (62), if for the latter both possibilities
p·k1 ≫ p·k2 and p·k1 ≪ p·k2 are added together. Expression (66) may con-
tribute to the running coupling constant. The last two terms of (66) are
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non-leading for our choice of kinematical conditions and could be dropped
out. However, it is gauge invariant and rather compact, and it is necessary in
case gluons would be collimated with q. Also, one should bear in mind that
the first line of (66) is less singular than it may seem, because of a partial
cancellation of p and q dependent terms.

5.3. Angular ordering or CCFM style

The CCFM case is definitely more difficult for our approach than the
ones discussed so far. We have to use angular ordering to select the domi-
nant terms. Such a choice is less straightforward for the Lorentz invariant
representation. It is thus not possible to simply neglect some terms be-
cause they would be explicitly smaller than others. In fact, it seems that
all terms of our expressions for the amplitude will need to be kept. Some
kind of a language exploiting the concept of effective intermediate states
is needed. Even if approximated amplitudes would be defined, they would
differ from the complete ones quite substantially by the presence of these
effective intermediate states. That would definitely be out of scope of our
present discussion.

On the other hand, we want to remark that the interpretation of the
result using some sort of dipole language will persist in this case as well, as
it is already visible in the exact amplitudes. There will simply be more
terms to take into account, that is formulas (42), (43), (44) and their
symmetric analogies. The fermion normalization redefinition factors (q ·k1)
/(q ·k1 + q ·k2 − k2 ·k1) and (p·k1)/(p·k1 + p·k2 − k2 ·k1) are more compli-
cated than in the previously discussed cases. Also the terms contributing
to the running of the coupling constant would require a more sophisticated
treatment.

6. Summary

We have analyzed different forms of the exact tree level QCD spin am-
plitude for the process qq̄ → Jgg where J may represent any, color singlet,
current. We have found quite well structured representations consisting of
sums and products of compact gauge invariant parts. In contrast to previous
studies for QED, the present expressions do not seem to be unique. This is
understandable, since amplitudes and the structure of singularities are more
complex in QCD. In particular, the discussion of singularities for processes
where incoming quarks would be interchanged with outgoing gluons should
be included in our considerations to constrain ambiguities.

We have used two types of organizations of parts. The first one, dis-
cussed in Sec. 3, manifests the relation between QCD and QED amplitudes.
In Sec. 4, we provided expressions for the exact spin amplitude more useful
for QCD phenomenology. In Sec. 4.3, we attempted to give a physical inter-
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pretation for the different parts that can be recognized in these expressions.
We found a separation into terms possible to interpret either as responsi-
ble for consecutive emissions of gluons or as contribution to the decay of
a virtual gluon (running of the coupling constant).

In Sec. 5, we discussed approximations for the amplitude, which consist
of BFKL and DGLAP pictures. As a consequence, some parts of our expres-
sions for the exact amplitude could be dropped. The remaining parts are
straightforward to interpret, and explicit expressions for the difference with
the exact amplitude at any point of phase space exist. They are straight-
forward to manipulate in any numerical application, for example in parton
shower Monte Carlo applications, using positively defined weights.
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