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1. Introduction

One of the unsolved issues in heavy ion physics, on both a fundamen-
tal and a phenomenological level, is the problem of particle emission from
a strongly interacting system: A wealth of experimental data seems to point
to the conclusion that the “matter” created in heavy ion collisions is hot,
continuous, and locally thermalized [2–5]. In the most energetic collisions,
the local thermalization seems to happen so quickly as to give evidence that
strongly interacting matter is a “perfect fluid”, with a viscosity over entropy
density ratio lower than for any other material.

In principle, it is not trivial to describe in detail how such a strongly
coupled medium can dissolve and emit weakly coupled particles. The most
“obvious” picture is that of “freeze-out”: As the system cools down, the
mean free path of the constituent particles increases, and, at a certain point,
reaches a value comparable to the system size. At this point, particles
decouple.

The problem with this approach is that many details are unknown. It
is not well known how the hadronic mean free path changes in a hot dense
medium. It is not known at all what the degrees of freedom are, and how
strongly interacting they are, in the vicinity of the phase transition. These
ambiguities have pushed the heavy ion community to adopt somewhat ad

hoc formulae to describe the process of decoupling: The simplest approach
consistent with energy conservation and ideal hydrodynamics is the Cooper–
Frye formula [6], assuming that at a certain critical spacetime surface (usu-
ally defined in terms of a critical temperature), the mean free path goes from
zero to infinity. An additional refinement is to use the Cooper–Frye distri-
bution not as an output, but as an input into a hadronic kinetic model [7,8].

It is not so surprising that these models fail to describe the interferomet-
ric particle measurements [9], thought to indicate the spacetime distribution
of the “surface of last scattering” [10]. The character of the data-model
discrepancy is, however, interesting:

Measured parameters Ro and Rs (see Section 3.2 of this work or [10] for
a definition) are nearly identical over all ranges of energy and system size.
Their (positive) difference R2

o − R2
s is thought to correspond — somewhat

simplified — to the duration of particle emission. Hence, it looks like the
fireball emits particles almost instantaneously and does not show any sign of
phase transition or crossover. Hydrodynamics, with “reasonable” freeze-out
condition (such as a critical temperature of 100 MeV or so) cannot describe
this even qualitatively. This is more puzzling if one considers that a large
difference between R2

o − R2
s was previously used as a signature [11] of the

onset of a phase transition, since the softening of the equation of state in the
transition region would have greatly lengthened the emission time. Given
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the wide acceptance of the hypothesis that the degrees of freedom seen in
heavy ion collisions are thermalized quarks and gluons, the lack of a firm
explanation for interferometry data is puzzling. Recently, RHIC HBT radii
have been correctly described by a hydrodynamic model [12, 13], where,
however, the system is “forced” to freeze-out simultaneously (particles stop
interacting after formation) at a high (> mπ) temperature. This calculation
hints as that the missing physics might have to do with the reason hadrons
seem to stop interacting at such a high temperature.

Compounding this puzzle is the scaling of all HBT radii with the multi-
plicity rapidity density (dN/dy)1/3, over a large range of energies and system
sizes [14]. This scaling is typical for an isentropically expanding fluid that
suddenly breaks apart. While this is encouraging for practitioners of fluid
dynamics applied to heavy ion collisions (albeit it suggests that the “perfect
fluid” is not exclusive to RHIC energies), a dynamics that could break up the
system instantaneously and independently of energy is currently missing.

In this talk, we wish to suggest that this puzzle is linked to a well-
known feature of QCD: Its approximate conformal invariance in the pertur-
bative regime, combined with the presence of a non-perturbative conformal
anomaly. We argue that this suggests that the bulk viscosity of the system
suddenly spikes close to Tc, and that this could trigger instabilities that
rapidly break the system into evaporating clusters.

2. Bulk-viscosity driven clustering

The QCD Lagrangian with only light quarks is nearly conformally in-
variant: The only terms breaking conformal invariance are the light quark
masses, which are small w.r.t. the other scales relevant to Quark–Gluon
Plasma physics (temperature, energy density and so on).

It is, therefore, thought that dynamics of a QGP with no heavy quarks
is also conformally invariant. This means the pressure (p) is to a good ap-
proximation equal to a third of the energy density (ǫ) and the bulk viscosity
(ζ) is much smaller than the entropy density (s) [15].

Within the pQCD framework, this has been confirmed: The bulk vis-
cosity of high temperature strongly interacting matter has recently been
calculated using perturbative QCD [16], and found to be negligible, both in
comparison to shear viscosity and w.r.t. its effect on any reasonable collec-
tive evolution of the system.

In the hadron gas phase, of course, the numerous scales associated with
hadrons render conformal invariance a bad symmetry, and hence it is natural
to expect that bulk viscosity is not negligible. This is, again, rooted in
a fundamental feature of QCD: the non-perturbative conformal anomaly,
that manifests itself in the scale (usually called ΛQCD) at which the QCD
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coupling constant stops being small enough for the perturbative expansion
to make sense. This scale approximately coincides with the scale at which
confining forces hold hadrons together.

This violation of conformal invariance is not seen perturbatively, but
should dominate over the perturbatively calculated bulk viscosity as tem-
perature drops close enough to the QCD phase transition.

What happens to bulk viscosity in this regime, where hadrons are not yet
formed, presumably the matter is still deconfined, but conformal symmetry
is badly broken? While we cannot as yet calculate this rigorously, there is
compelling numerical evidence [17–20] that bulk viscosity rises sharply, or
even diverges, close to the phase transition temperature.

Because of the conformal symmetry argument above, this is not too sur-
prising. It becomes even less surprising if the character of the two phase tran-
sitions, deconfinement and chiral symmetry breaking, are examined more
closely; The shear (η) and bulk (ζ) viscosities roughly scale as [21–23]

η ∼ τelasticT
4 , (1)

ζ ∼

(

1

3
− vs

)2

τinelasticT
4 , (2)

where τ(in)elastic refers to the equilibration timescale of (in)elastic collisions.
The dependence of τinelastic on temperature can be guessed from the fact

that, at Tc, the quark condensate 〈qq〉 acquires a finite non-zero value, and
the gluon condensate increases. Thus, a system exactly at Tc will respond to
any infinitesimal heating by creating 〈qq〉 or gluon pairs,while any infinites-
imal cooling will destroy them. It is therefore clear that, if chiral symmetry
were exact, timescales of processes that create extra qq pairs would diverge at
Tc analogously to correlation lengths in other second order phase transitions.
As shown in [22], bulk viscosity is sensitive to the timescale of such processes
(the divergence has been directly checked in numerical simulations [17].

The sharp rise of bulk viscosity can also be understood within string
kinetics: confinement, microscopically, can be thought of as a “string tension”
appearing in the potential. The appearance of such a string tension changes
near-equilibrium kinetics profoundly even if the tension is very low compared
to the typical momentum exchange, and, therefore, the relevant degrees of
freedom are “slightly confined” quarks and gluons. With no string tension,
the vast majority of collisions in any reasonable kinetic model are elastic,
and hence the diffusion across the trace of the energy momentum tensor
(to which bulk viscosity is proportional to) is negligible. With even a small
string tension, every collision becomes inelastic. Because of this, diffusion
across the trace of the energy momentum tensor goes sharply up.

Could the sharp rise in bulk viscosity be the missing physics responsible
for making hydrodynamic models agree with data? For this to be the case,
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the bulk viscosity should trigger the system to decouple earlier, and faster,
than the “conventional” prescription of freeze-out at a critical temperature
would allow.

One mechanism which could lead to such a result are hydrodynamic
instabilities. As shown in [24], the stability condition of the Bjorken solution,
provided a conformal equation of state holds, is1

η + 3
4ζ < 3

4sTτ , (3)

where τ is the proper time of the volume element, and T is its temperature.
for the conformally invariant plasma [25] (η = s/4π, ζ = 0) this requirement
is automatically satisfied for a realistic start of the hydrodynamic evolution.

The sharp rise in bulk viscosity, however, makes the boost-invariant so-
lution of the system linger for a long time in a constant temperature state.
This state, however, is unstable against small perturbations, which then
have the time and possibility to blow up to a scale significantly altering
the background evolution, and producing a highly inhomogeneous system
(see [26] for a demonstration of this effect).

The schematic evolution of the hot spots is then illustrated in Fig. 1: the
effect of viscosity is to introduce a force resisting expansion and deformation.
This cannot be accomplished globally, since causality prevents viscous forces
from affecting the already generated flow. Viscous forces can however quench
any expansion of the grown instability, rendering it “rigid” and disconnected
from the rest of the system (the effective pressure being cancelled by the
bulk viscosity).

Each instability can then be considered as a stand-alone hot bubble, or
cluster, moving with pre-existing flow. It then presumably emits particles
by evaporation.

Thus, we have reproduced a scenario similar to the bubble-nucleation
picture more commonly associated with supercooling [28–34]. This scenario,
however, does not rely on the existence of a first-order phase transition.
Additionally, unlike [28], the nucleation examined here does not result in
an entropy increase, since the formation of clusters should quickly kill off
any gradient in the flow velocity (∂µuµ), so entropy generation (∼ (∂µuµ)2)
during clustering should be negligible. Thus, this model should obey the
constraints, pointed out in [35] on multiplicity measurements.

The cluster size will be an interplay of local scales: ΛQCD, Tc and the
expansion rate ∂µuµ. For a rough estimate, we recall that the energy momen-
tum tensor, with vanishing shear viscosity but non-vanishing bulk viscosity

1 As noted in [24] the dependence of stability on the Reynolds number is opposite to
that in usual non-relativistic hydrodynamics: Systems with small Reynolds numbers
can be unstable. A lower limit for the Reynolds number also exists, but it depends
strongly on the wavelength of the perturbations. See [24] for more details.
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Fig. 1. (Colour online) Fragmentation of the fireball due to sharply increasing bulk

viscosity as the temperature decreases. Matter which expanded easily before we

describe as oil. It suddenly becomes very rigid against expansion (described as

honey in the figure) and breaks up into fragments. Hadrons evaporate from these

fragments.

is
T µν = (ε + p)uµuν − pgµν + ζ ∂ρu

ρ (gµν − uµuν) . (4)

From energy-momentum conservation ∂µT µν = 0 we then obtain the rate of
energy density decrease

1

ε
uµ∂µε =

ε + p − ζ∂ρu
ρ

ε
∂µuµ . (5)

Note that when ζ∂ρu
ρ ∼ p the energy density decreases at the same rate as

if no work was performed in case with vanishing viscosity. For lower rates of
the energy density decrease the expansion even decelerates. Microscopically,
this is mediated by inter-particle forces which hold the system together.
It can happen that the inertia of the bulk overcomes these forces and the
system thus fragments.

In order to obtain a more quantitative estimate of droplet size, we deter-
mine it by the balance of deposited energy and collective expansion energy.
According to the definition of viscosity, it determines the amount of energy
deposited per unit volume and unit time, i.e.
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Edis =

∫

dV

∫

dτζ(∂µuµ)2 , (6)

where ζ is bulk viscosity and uµ collective 4-velocity. For simplicity let us
assume again the Bjorken [27] picture. Then ∂µuµ = 1/τ and the 3-velocity
is vz = z/t. If bulk viscosity is indeed rapidly divergent at Tc, we can replace
it with the δ-function

ζ(τ) = ζcTcδ (T (τ) − Tc) = ζcTc
dτ

dT

∣

∣

∣

∣

T=Tc

δ
(

τ − τ ′

c

)

, (7)

where ζc is a model parameter which should be given by deeper theoretical
consideration. If we call τ ′

c = Tc
dτ
dT

∣

∣

T=Tc

we get

Edis = SL
ζc

τ ′

c

, (8)

where S is the transverse area of the Bjorken cylinder and L is the droplet
longitudinal size. We consider a droplet whose center of mass is located
at z = 0 (though this assumption is not really important due to the boost
invariance of the system).

The kinetic energy of droplet’s expansion, which is in fact dissipated due
to viscosity, is in non-relativistic limit

Ekin =
1

2

∫

dV ε(τ)v2
z , (9)

where ε(τ) is the internal energy density of the fluid. It is of course a function
of time but the above expression contains only volume integration. Let us
evaluate the integral at the critical point, when actual break-up happens,
then

Ekin =
S εc

24t2c
L3 . (10)

Taking tc ≈ τ ′

c, we get finally

L2 =
24ζcτ

′

c

εc
. (11)

Notice that τ ′

c in the numerator is actually the inverse expansion rate ∂µuµ.
Thus the droplet size squared is inversely proportional to the expansion
rate. Within this scenario the droplet size will grow with the lifetime of
the hydrodynamic stage (from the initial temperature T0 to Tc), but the
growth will generally be slower than linear. For our toy model example
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where the system has a conformal equation of state and boost-invariance

(dN/dy ∼ ǫ
3/4
0 ∼ τ ′

c), this growth will be ∼ (dN/dy)1/2, but it is likely to
be slower than that when transverse expansion is considered.

Whether the cluster size is indeed only dependent on the internal scale of
the system ΛQCD or on an interplay between the internal and collective scales
(Eq. (11)) is difficult to determine from first principles, as it depends on a
quantitative understanding of the details of the non-equilibrium evolution
around Tc.

The main point argued in the last section, one that does not depend on
these details, is that the sharp rise of bulk viscosity could force the system to
break up into disconnected fragments, of a scale and lifetime much smaller
than the size of the system (O(1 GeV)). These clusters then flow apart with
pre-existing flow velocity and, presumably, decay by Hagedorn cascading. In
the next section we shall examine the effect this kind of freeze-out has on
heavy ion phenomenology.

3. Phenomenology of clustering

There are two classes of observables where clustering can be naturally
looked for: momentum fluctuations/correlations, and particle interferome-
try.

3.1. Clustering in event-by-event observables

Forward–backward multiplicity correlations [36] and angular correlations
in Cu+Cu collisions at RHIC [37] have indicated the presence of clusters at
freeze-out, the slow dependence of the clusters with the system size, and that
the contribution of these clusters seems greater than that expected from just
hadronic resonance decay.

The scaling of pT fluctuations also provides direct evidence that particles
are emitted from clusters, containing a small (∼ 5) number of particles
independently of collision energy or centrality [38]. The under-prediction,
by the equilibrium statistical model, of fluctuations of ratios such as K/π [39]
compounds this evidence, since cluster emission would enhance fluctuations
of multiplicity yields and ratios.

A more direct signature of instabilities such as clusters is provided by
the Kolomogorov–Smirnov test [40]: If, at freeze-out, the system is entirely
Cooper–Frye, than while each event will be different, the probability density

function for observables will be the same (up to resonances and initial state
fluctuations) for all momentum observables (rapidity, pT, and azimuthal an-
gle). There is a statistically rigorous way to test the equivalence of two
empirical distributions, the Kolmogorov–Smirnov test. An analysis of heavy
ion data using this method is in progress. We hope that it will lead to a sig-
nature of event-by-event differences above those expected in hydrodynamics.
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3.2. Clustering in HBT

In HBT interferometry, the most usual coordinate system used is that
defined in terms of the momentum of each particle pair and the beam: In
this usually used “out-side-long” coordinate system [10], l (“long”) is the
z direction (parallel to the beam), o (“out”) is the direction of the pair
momentum, and s (“side”) is the cross product of the previous two.

In the Gaussian approximation (the correlation function of particle mo-
menta is a Gaussian), HBT radii are directly related [10] to the system’s
correlation between the respective space directions xo,s and the emission
time t

R2
s(K) =

〈

(∆xs)
2
〉

, (12)

R2
o(K) =

〈

(∆xo)
2
〉

− 2
kT

k0
〈∆xo∆t〉 +

(

kT

k0

)2
〈

(∆t)2
〉

, (13)

where the k vector is the sum of the two momenta (the first element, k0,

is ≃
√

m2 + ~k2). For the most central events, because of cylindrical sym-
metry xo ∼ xs. The Ro ∼ Rs result is not easy to reconcile with naive
hydrodynamics plus a straight-forward (critical temperature) emission for
two reasons:

First, the higher the initial energy, the larger the final system size, and
the longer the emission time, and hence the expected discrepancy between
Ro and Rs. If the system starts close to the mixed phase, the timescale of
freezing out should be longer still due to the softest point in the equation of
state. Hence, a generic prediction from Eqs. (12) and (13) is that Ro/Rs > 1,
broadly increases with energy, and exhibits a peak when the energy density
is such that the system starts within, or slightly above the mixed phase. This
is in direct contrast with experimental data, where Ro/Rs ≃ 1 is a feature
at all reaction energies.

In addition, generally, a fluid freezes out by both evaporation from a sur-
face and final decoupling as the system cools down. In both cases the 〈∆x∆t〉
correlation is negative, since particles on the outer side are the first to freeze-
out. This increases Ro/Rs further (cf. Eq. (13)). Time dilation due to
transverse flow does not help enough, as calculations show.

Clusters can, in principle, help with both these issues. Cluster size, den-
sity and decay timescale, are approximately independent of either reaction
energy or centrality, as can be deduced from Eq. (11). Hence, the near
energy independence of the (comparatively short) emission timescale, and
hence of Ro/Rs, should be recovered.

If the decay products do not interact (or do not interact much) after
cluster decay, it can also be seen that 〈∆x∆t〉 can indeed be positive because
of time dilation in cluster decay.
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Recovering the linear scaling of the radii with (dN/dy)1/3(∼ Nclusters)
[14], while maintaining the correct Ro/Rs is also possible if the clusters decay
when their distance w.r.t. each other is still comparable to their intrinsic size.

Quantitative calculations are necessary before determining whether these
constraints can be satisfied. The technical details of how to perform such
calculations, from a hydrodynamic code output with a critical temperature
and cluster size, are outlined in the Appendix of [1]. Hydrodynamics out-
put is needed to specify the cluster flow array uµ

i and emission array Σi
µ,

(the locus of spacetime points where the cluster formation occurs). The
bulk-viscosity-driven freeze-out adds another parameter to ab initio HBT
calculations: in addition to critical temperature/energy density, we now
have the cluster size. To see whether this helps solving the HBT problem,
output from hydrodynamics with a high (T ∼ Tc) freeze-out temperature
should be fragmented into clusters with a certain distribution in size, which
then produce hadrons according to the prescription in the Appendix of [1].

In conclusion, we have described a mechanism to generate fragments that
is solidly grounded in QCD, and does not require a first order phase transi-
tion. Hence, it is possible that hadronization is governed by this mechanism
in all regimes where an approximately locally thermalized deconfined system
is produced.

Future work in this direction including quantitative signatures of our
model in both HBT data and event-by-event observables is in progress.
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