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Over the last 25 years Monte Carlo programs were being developed in
Cracow in the group guided by Prof. Stanislaw Jadach. Many of those
programs became standard in their application domains. In the following
let us review some aspects of such projects which were probably at the
foundation of their success. We will concentrate on mathematical aspects
of their design and history of their construction. It is rather difficult to
cover 25 years of the research in a single talk. That is why, I have organ-
ised my presentation around Monte Carlo PHOTOS but stressing its relation
to other activities and projects often realized together with Prof. Jadach.
Many of omitted aspects will find their way into other presentations col-
lected in this volume. I will concentrate on issues related to phase-space
parametrisation and spin amplitudes as used in our Monte Carlo programs
such as MUSTRAAL, TAUOLA or KKMC and their similarities and differences
with respect to solution used in PHOTOS.

PACS numbers: 11.15.Pg, 13.40.Ks, 12.38.Cy

1. Introduction

One of the essential steps in the construction of any algorithm for multi-
particle final states is the appropriate analysis of the phase space paramet-
risation. In the PHOTOS Monte Carlo [1] for multi-photon production, an
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exact phase space parametrisation is embodied in an iterative algorithm,
the details of which are best described in [2]. Control of the distributions
and relative size of sub-samples for distinct numbers of final state particles
requires a precise knowledge of the matrix elements including virtual cor-
rections as well. In the KKMC Monte Carlo, the phase space generation is
different, but the necessity to control matrix elements is also essential [3,4].

Iterative procedures for parts of amplitudes, which are at the founda-
tion of exponentiation [4,5] and structure functions [6–10] were exploited for
the sake of use in KKMC Monte Carlo. In particular the description of dom-
inantly s-channel processes e+e− → νeν̄eγγ where, t-channel W -exchange
diagrams with gauge boson couplings, contribute to matrix elements pro-
vide an interesting example [11]. These studies were motivated by practical
reasons, but also pointed at quite astonishing properties of tree-level spin
amplitudes, namely that they can be separated into gauge invariant parts in
a semi-automated way, easy to apply in the Kleiss–Stirling methods [12,13].

One could ask the question whether similar techniques can be used in
QCD, whether they are of any practical use, and in fact to which degree
they were already included in previous publications. These questions will be
discussed elsewhere [14,15]. We will not elaborate on these points requiring
good understanding of factorisation in QCD. Instead let us point to old,
but important for me Ref. [16], where properties of factorisation for cross
section, visualise themselves in a fully differential environment, even though
only for QED and at first order of perturbation expansion. For the sake
of caution, let us mention the existence of limitations in such strategies, if
applied to parton shower applications beyond NLO [17].

Our presentation is organised as follows. In Section 2 we will discuss dif-
ferent aspects of phase space parametrisation, as used in PHOTOS Monte Carlo
and how it compares to other programs. Discussion of approximations nec-
essary to construct crude distributions is started in Section 2. Presentation
of the form of first order cross section, matrix elements and approximations
which were essential for construction of the first version of the program is
given in Section 3. With all material collected, we will point in Section 4
to mathematical properties of elements used in the project, which actually
made it possible, even though their documentation was never of high priority
until now. The summary in Section 5 closes the paper.

2. Phase space

It is of no surprise that phase space must play a central role in prepara-
tion of the algorithm of any Monte Carlo based on predictions originating
from field theory. That is direct consequence of Quantum Mechanics, basic
formula for cross section consists of phase space element, matrix element
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squared and the flux factor. Over many years we were stressing, in a mul-
titude of talks and papers that the control of the eventual approximations
is essential. Let me recall here one of such S. Jadach’s plots, see Fig. 1.
At that time it was an achievement [3,18]. It required enormous amount of
work to prepare such an organisation of the phase space that would be exact,
cover complete multibody phase space, and capable to manage highly peaked
distributions of complex structure due to collinear and soft singularities.
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Fig. 1. Phase space plot for the KKMC and KORALZ Monte Carlo programs.

As these programs are discussed elsewhere in the proceedings, let us
follow here the phase space organisation of another program originating
from S. Jadach group, that is PHOTOS Monte Carlo1. It is also capable of
covering multibody phase space distributions without any approximation,
but contrary to KKMC/KORALZ solutions conformal symmetry of the eikonal
approximation is not used. Thanks to that, this solution is closer to iterative
solution used in QCD parton showers, but is still relatively simple to explain
and formalise.

Let us start with the explicit expression for the parametrisation of an
n + 1 body phase space in decay of the object of four-momentum P (P 2 =
M2), as used in PHOTOS Monte Carlo. As our aim is to define iterative
relations, let us denote the four momenta of the first n decay products as ki

(i = 1, n) and the last n+1 decay product as kn+1. In our case the n+1-th

1 The most detailed description of the program [1,19], can be found in recent Ref. [2].
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particle will always be the real and massless photon2. In the later steps of
our construction the masslessnes of photons and properties of QED matrix
elements will be used.

In the following, notation from Refs. [20, 21] will be used. We will not
rely on any particular results of these papers. We only point to other, similar
options for the exact n-body phase space parametrisations, which are also
in use.

The Lorentz invariant phase space is defined as follows:

dLipsn+1(P ) =
d3k1

2k0
1(2π)3

. . .
d3kn

2k0
n(2π)3

d3kn+1

2k0
n+1(2π)3

×(2π)4δ4
(

P − kn+1 −
n

∑

i=1

ki

)

= d4pδ4(P − p − kn+1)
d3kn+1

2k0
n+1(2π)3

d3k1

2k0
1(2π)3

. . .
d3kn

2k0
n(2π)3

×(2π)4δ4
(

p −
n

∑

i=1

ki

)

= d4pδ4(P − p − kn+1)
d3kn+1

2k0
n+1(2π)3

dLipsn(p → k1 . . . kn),(1)

where extra integration variables: four components of p (compensated
with δ4

(

p −
∑n

1 ki

)

) is introduced. If further, M1...n (compensated with

δ
(

p2 − M2
1...n

)

) is introduced, the element of the phase space takes the form:

dLipsn+1(P ) =
dM2

1...n

(2π)
dLips2(P → p kn+1) × dLipsn(p → k1 . . . kn)

= dM2
1...n

[

d cos θ̂dφ̂
1

8(2π)3
λ

1
2 (M2,M2

1...n,m2
n+1)

M2

]

×dLipsn(p → k1 . . . kn). (2)

The part of the phase space Jacobian corresponding to integration over the
direction and energy of the last particle (or equivalently invariant mass M1...n

of the remaining system of 1 . . . n particles) is explicitly given. We will use
later in the formulas m2

i = k2
i , and analogously Mi...n, defining invariant

masses of ki . . . kn systems. The integration over the angles θ̂ and φ̂ is
defined in the P rest-frame. The integration over the invariant mass, M1...n,

2 However the construction does not rely on a photon to be massless. In principle it
can be applied to define other phase space relations, for example the emission of an
extra massive pion or emission of a pair of heavy particles.
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is limited by phase space boundaries. Anybody familiar with the phase space
parametrisation as used in FOWL [22], TAUOLA [21], or many other programs
will find the above explanation quite standard3.

The question of choice of axes with respect to which angles are defined,
and order in kinematical construction, is less trivial. The choice for the
particular option stems from necessity to presample collinear singularities.
It is rather well known that the choice of the reference directions for the
parametrisation of the unit sphere is free, and can be used to advantage.
We will use related, but somewhat different freedom of choice. Instead
of variables θ̂ φ̂ defining orientation of kn+1 in P rest-frame we will use
angles θ1 φ1 orienting k1 (also in P rest-frame). The Jacobian for this
reparametrisation of unit sphere equals unity.

Formula (2) can be iterated and provide a parametrisation of the phase
space with an arbitrary number of final state particles. In such a case, the
question of orientation of the frames used to define the angles and the order of
Mi...n integrations (consequently, the choice of limits for Mi...n integration),
becomes particularly rich. Our choice is defined in Ref. [1]. We will not
elaborate on this point here.

If the invariant mass M1...n is replaced with the photon energy defined
in the P rest-frame, kγ , then the phase space formula can be written as:

dLipsn+1(P ) =

[

kγdkγd cos θ̂dφ̂
1

2(2π)3

]

× dLipsn(p → k1 . . . kn) . (3)

If we had l photons accompanying n other particles, then the factor in square
brackets is iterated. The statistical factor 1

l! would complete the form of the
phase space parametrisation, similar to the exponent. The last formula,
supplemented with definition of frames with respect to which angles are
defined is used to define the full kinematic configuration of the event. From
angles and energies (kγi

) of photons and also angles, energies and masses
of other decay products, four-momenta of all final state particles can be
constructed.

If in formula (3) instead of dLipsn(p → k1 . . . kn) one would use
dLipsn(P → k1 . . . kn) the tangent space would be obtained. Then kn+1

photon does not affect other particles’ momenta at all, and thus has no
boundaries on energy or direction. If this formula was iterated then all
such photons would be independent from one another as well4. Energy and

3 The parametrisations of such a type, use properties of the Lorentz group in an explicit
manner, in particular measure, representations and their products. That is why, they
are useful, for event building Monte Carlo programs in phase space constructions
based on boosts and rotations.

4 Expression (3) would be slightly more complicated if instead of photons a massive
particle was added.
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momentum constraints on the photon(s) are introduced with the relation
between tangent and real n+1-body phase space. The formula defining one
step in the iteration reads as follows5:

dLipsn+1(P → k1 . . . kn, kn+1) = dLips+1 tangent
n × W n+1

n ,

dLips+1 tangent
n = dkγd cos θdφ × dLipsn(P → k̄1 . . . k̄n),

{k1, . . . , kn+1} = T
(

kγ , θ, φ, {k̄1, . . . , k̄n}
)

. (4)

The W n+1
n depends on details of T , and will be thus given later in for-

mula (10). To justify (4), we have to convolute formula (2) for Lipsn+1(P →
k1 . . . kn, kn+1) with itself (for Lipsn(p → k1 . . . kn)):

Lipsn+1(P → k1 . . . kn, kn+1) =
dM2

1...n

2π
Lips2(P → kn+1p)

×Lipsn(p → k1 . . . kn) ,

Lipsn(p → k1 . . . kn) =
dM2

2...n

2π
Lips2(p → k1p

′)

×Lipsn−1(p
′ → k2 . . . kn) (5)

and use it also for Lipsn(P → k̄1 . . . k̄n):

Lipsn(P → k̄1 . . . k̄n) =
dM2

2...n

2π
Lips2(P → k̄1p̄

′) × Lipsn−1(p̄
′ → k̄2 . . . k̄n) .

(6)
Note that our tangent space of variables dkγd cos θdφ is unbounded from

above and the limit is introduced by W n+1
n which is set to zero for the

configurations outside the phase space. In principle, we should distinguish
between variables like M2...n for invariant mass of k2 . . . kn and M̄2...n for
invariant mass of k̄2 . . . k̄n, but in our choice for Gn, Gn+1 below, M2...n =
M̄2...n and M1...n is defined anyway for the n + 1-body phase space only.

We direct the reader to Refs. [1, 19] for an alternative presentation. Let
us remark that formula (4) is quite general, many options, motivated by
the properties of the matrix elements, can be introduced. Generally the
transformation T may differ from the choice to choice quite a lot. The
most straightforward choice can be based on any n and n + 1 body phase
space parametrisations using invariant masses and angles (e.g. exactly as in
TAUOLA [21] formulas 11 to 13).

5 The {k̄1, . . . , k̄n} can be identified with the event before the radiation of kγ is intro-
duced.
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If

Gn : M2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k̄1 . . . k̄n (7)

and

Gn+1 : kγ , θ, φ,M2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k1 . . . kn, kn+1

(8)
then

T = Gn+1(kγ , θ, φ,G−1
n (k̄1, . . . , k̄n)) . (9)

The ratio of the Jacobians (factors λ1/2 like in formula (2), etc.) form the
factor W n+1

n , which in our case is rather simple,

W n+1
n = kγ

1

2(2π)3
×

λ1/2(1,m2
1/M

2
1...n,M2

2...n/M2
1...n)

λ1/2(1,m2
1/M

2,M2
2...n/M2)

, (10)

because of choice for G, as explained in the Appendix of Ref. [2]. Note

that kγ =
M2

−M2
1...n

2M . There are additional benefits from such a choice.

In all relations k̄2 = Lk2, . . . , k̄n = Lkn and p̄′ = Lp′ common Lorentz
transformation L is used. Transformation L is defined by k1, k̄1, p̄

′, p′ and P ;
internal relations between four vectors k2 . . . kn, (k̄2 . . . k̄n) are not needed.

Formula (4) can be realized algorithmically in the following way:

1. For any point in n-body phase space (earlier generated event), de-
scribed for example with the explicit configuration of four vectors
k̄1 . . . k̄n, coordinate variables can be calculated, using formula (7).

2. Photon variables can be generated according to Eq. (4). The weight
W n+1

n has to be also attributed.

3. Variables obtained in this way from the old configuration and the one
of a photon can be used to construct the new kinematical configuration
for the n + 1-body final state. The phase space weight, which is zero
for configurations outside phase space boundaries, can be calculated at
this point from (4), (10) and finally combined with the matrix element.

Here we have chosen two sub-groups of particles. The first one consisted
of particle 1 alone, and the second, of particles 2 to n combined together.
Obviously in the case of 2-body decays, there is not much choice when
construction of the first photon is performed.
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By iteration, we can generalise formula (4) to the case of l photons and
we write:

dLipsn+l(P → k1 . . . kn, kn+1 . . . kn+l) =
1

l!

l
∏

i=1

[

dkγi
d cos θγi

dφγi
W n+i

n+i−1

]

×dLipsn(P → k̄1 . . . k̄n),

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

.

(11)

In this formula we can easily localise the tangent space for the multiple
photon configuration. In this space, each photon is independent from other
particles’ momenta. Note that it is also possible to fix upper boundary on kγi

arbitrary high. Photons are independent one from another as well. Correla-
tions appear later, thanks to iterated transformation T . The factors W n+i

n+i−1
are calculated when constraints on each consecutive photon are introduced;
the previously constructed ones are included in the n + i − 1 system6.

Of course, for the tangent space to be useful, the choice of the definition
of T must be restricted at least by the condition {k1, · · · kn} → {k̄1, · · · k̄n}
if all kγi

→ 0.7

It is important to realize that one has to choose matrix elements on the
tangent space to complete the construction used in PHOTOS. The number and
energies of photons will be generated on the tangent space first. Regular-
isation of (at least) soft singularity must be defined. Rejection, and event
construction, is performed with the help of formula (4) for each consecutive
photon. It diminishes photon multiplicity with respect to the one defined
for the tangent space. Of course, as rejection implements changes in phase
space density, a matrix element (with virtual corrections) of the physical
space can be introduced as well.

The treatment of the phase space presented here lies at the heart of the
construction of PHOTOS kinematics, and was used since its beginning. It
exhausts the case when there is only one charged particle in final state. For
multiple charged particle final states new complication appear, because all
collinear configurations need simultaneous attention, and not only the one
along k1 direction. A presampler with multichannel generation is needed.
In our case we follow the same method as explained in Ref. [21].

6 Configurations of kγi
which can not be resolved are reduced to the ones with that

photon dropped out.
7 In fact, further constraints have to be fulfilled to enable presampling for the collinear

singularities. Note that variables kγm
, θγm

, φγm
are used at a time of the m-th step

of iteration only, and are not needed elsewhere in construction of the physical phase
space; the same is true for invariants and angles M2

2...n, θ1, φ1, . . . , θn−1, φn−1 →
k̄1 . . . k̄n of (7), (8), which are also redefined at each step of the iteration.
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Let us now sum the above expression over l. If we add arbitrary factors
f(kγi

, θγi
, φγi

) and sum over l we obtain:

∑

l=0

exp(−F )
1

l!

l
∏

i=1

f(kγi
, θγi

, φγi
)dLipsn+l(P → k1 . . . kn, kn+1 . . . kn+l)

=
∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi
, θγi

, φγi
)dkγi

d cos θγi
dφγi

W n+i
n+i−1

]

×dLipsn(P → k̄1 . . . k̄n) ,

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

,

F =

kmax
∫

kmin

dkγd cos θγdφγf(kγ , θγ , φγ) . (12)

Some parts of r.h.s. taken alone, give crude distribution over tangent
space (orthogonal set of variables ki, θi, φi). Factors f must be integrable
over this tangent space and regulators of singularities must be introduced.
We may simply request that

σtangent = 1 =
∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi
, θγi

, φγi
)dkγi

d cos θγi
dφγi

]

and that sum rule originating from perturbative approach (Kinoshita–Lee–
Nauenberg theorem) can be used to control virtual corrections; both for
tangent and later also final distributions.

At this point we already have Monte Carlo solution of PHOTOS phase
space. In reality, for that solution to work, real emission and virtual cor-
rections need to be calculated and their factorisation properties must be
understood. That is why, choice of f is free only in principle, in practice it
must be synchronised with those results for the sake of program efficiency.
In case of final state QED bremsstrahlung it is rather simple, eventual com-
plications due to QED corrections to rates are of no major consequences [23]
for the program construction. Non leading corrections appear only.

Note that this formula is very close to other ones, used in other programs
or calculations. For example, formal solution [9, 10] of evolution equation
reads

D(x, βch) = δ(1−x)+βchP (x)+
1

2!
β2

ch{P×P}(x)+
1

3!
β3

ch{P×P×P}(x)+. . . ,

(13)
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where

P (x) = δ(1 − x)

(

ln ε +
3

4

)

+ Θ(1 − x − ε)
1

x

1 + x2

1 − x

and

{P × P}(x) =

1
∫

0

dx1

1
∫

0

dx2δ(x − x1x2)P (x1)P (x2) .

One can easily observe, that in the LL contributing regions, the phase
space Jacobians as used in PHOTOS trivialise [1] and lead directly to this
solution. In 1994, this solution was truncated to second order. It was indeed
profitable that solutions for similar problems were available in Cracow at
that time. Let us give one example [24]. In this first, on multiphoton Monte
Carlos, paper written in 1987 by S. Jadach formula (3.1) is basically the
same as tangent space of multi-photon PHOTOS (and not much different from
D(x, βch) discussed just above):

σ(K) = exp

(

2α

π

(

ln
s

m2
− 1

)

ln
ks

E
+

α

π
ln

s

m2

)

×
∑

n=0

1

n!

n
∏

m=1

∫

ks<km<K

d3km

km
S̃(k1) . . . S̃(kn)β̃0 . (14)

The difference appears in projection from this tangent space to the physical
one. Classical solution as proposed by Jadach, use conformal symmetry,
projection from eikonal (tangent) to physical space is performed in one step.
In PHOTOS eikonal symmetry is not used. Iterative projection is used instead,
it is somewhat similar to the one introduced in TAUOLA [25] for radiative
corrections in leptonic tau decays. Analogies to solutions used in QCD
parton shower algorithms can be found.

Very important aspect of all these solutions is that the structure of sin-
gularities is the same in tangent and final physical space.

3. Matrix elements

It is out of the question, that detailed analysis of MUSTRAAL Monte Carlo
[16], which was a consequence of accidental error in copying source code
from punch cards to tape, was essential for the design of PHOTOS program.
At that time (1983) I was forced to study MUSTRAAL line after line. Not only
the two missing lines8 of code were found, but I have studied the matrix

8 Punch card reader glued them together at the last time they were ever to be read?
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element and crude distributions in all possible details. This unintentionally
collected experience combined with importance of QED radiative corrections
in phenomenology of leptonic Z couplings at the time of preparation for first
measurements of τ polarisation at LEP was few years later a starting point
for PHOTOS.

Let us recall the properties of the Z → l+l−γ matrix element as studied
by me at that early time and also the approximate matrix element, which
was and still is used in PHOTOS.

Let us write the explicit form of the real-photon matrix element (sepa-
rated from the phase space Jacobians), for the e+e− → Z0/γ∗ → µ+µ−(γ)
process and as used in the standard version of PHOTOS (published in [1,19]):

XPHOTOS
f =

Q′2α(1 − ∆)

4π2s
s2

×

{

1

k′

+ + k′

−

1

k′

−

[

(

1 + (1 − xk)
2
) dσB

dΩ

(

s,
s(1 − cos Θ+)

2
,
s(1 + cos Θ+)

2

)]

×
(1 + β cosΘγ)

2

+
1

k′

+ + k′

−

1

k′

+

[

(

1 + (1 − xk)
2
) dσB

dΩ

(

s,
s(1 − cos Θ−)

2
,
s(1 + cosΘ−)

2

) ]

×
(1 − β cosΘγ)

2

}

, (15)

where:

Θ+ = ∠(p+, q+), Θ− = ∠(p−, q−) ,

Θγ = ∠(γ, µ−) is defined in (µ+, µ−)-pair rest frame.

For its calculation (with respect to the Born cross-section) it is enough to
know the four momenta of the Z and its decay products. In the presented
formulae we follow the notation from Refs. [16,23]. This expression is to be
compared with the exact one, taken from Ref. [16]:

Xf =
Q′2α(1 − ∆)

4π2s
s2

{

1

(k′

+ + k′

−
)

1

k′

−

[

dσB

dΩ
(s, t, u′) +

dσB

dΩ
(s, t′, u)

]

+
1

(k′

+ + k′

−
)

1

k′

+

[

dσB

dΩ
(s, t, u′) +

dσB

dΩ
(s, t′, u)

]

}

. (16)
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The resulting weight is rather simple, and reads:

WT1 =
dσB
dΩ

(s,t,u′)+
dσB
dΩ

(s,t′,u)
[

(1+(1−xk)2)
dσB
dΩ

(

s,
s(1−cos Θ+)

2
,
s(1+cos Θ+)

2

)

]

(1+β cos Θγ )

2

(

1+ 3
4

α
π

)

,

WT2 =
dσB
dΩ

(s,t,u′)+
dσB
dΩ

(s,t′,u)
[

(1+(1−xk)2)
dσB
dΩ

(

s,
s(1−cos Θ

−
)

2
,
s(1+cos Θ

−
)

2

)

]

(1−β cos Θγ)

2

(

1+ 3
4

α
π

)

. (17)

For its calculation the numerical value of the electroweak couplings of
Z to fermions, as well as information on the state from which the Z was
produced is nonetheless necessary. This seemingly trivial requirement puts
new stress on the event record: the details of the process of the Z pro-
duction need to be coded in the event record, then correctly deciphered by
PHOTOS to calculate the process-dependent weight. From our experience this
requirement of PHOTOS may be difficult to accept by other users of event
records. The authors of event generators often choose their own conventions
in encoding the details of hard process such as qq̄ → ngZ/γ∗;Z/γ∗ → µ+µ−

into the event record.
The NLO solution for PHOTOS, as presented in Ref. [23], would therefore

be feasible with some universal, standard event record, nonetheless difficult
due to practical issues of interfacing. One should ask the question, what
is the price related to the approximation as implemented in public version
of PHOTOS. The results for this standard and NLO improved PHOTOS are
collected in figures 2 and 3. As one can see, improvement due to the use
of exact first order matrix elements is unquestionable. On the other hand,

Fig. 2. The comparison [23] of the standard PHOTOS (with multiple photon emission)

and the KKMC generator (with second-order matrix-element and exponentiation). In

the left frame the invariant mass of the µ+µ− pair; SDP= 0.00918. In the right

frame the invariant mass of the γγ pair; SDP=0.00268. The fraction of events

with two hard photons was 1.2659 ± 0.0011% for KORALZ and 1.2952 ± 0.0011%

for PHOTOS. For the definition of shape difference parameter (SDP) see [26].
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Fig. 3. The comparisons [23] of the improved PHOTOS (with multiple photon emis-

sion) and the KKMC generator (with second order matrix element and exponentia-

tion). In the left frame the invariant mass of the µ+µ− pair; SDP= 0.00142. In

the right frame the invariant mass of the γγ; SDP=0.00293. The fraction of events

with two hard photons was 1.2659 ± 0.0011% for KORALZ and 1.2868 ± 0.0011%

for PHOTOS. For the definition of shape difference parameter (SDP) see [26].

the standard, easier to use, version seem to be sufficient in practically all
phenomenological applications as well. For the time being the problem of
the optimal choice remains rather academic.

Fig. 4. Results [2] from PHOTOS, standard version, and SANC for B0 → π−K+(γ) de-

cay are superimposed on the consecutive plots. Standard distributions, as defined

in the text and logarithmic scales are used. The distributions from the two pro-

grams overlap almost completely. Samples of 109 events were used. The ultraviolet

scale, µUV, was chosen to leave total decay width unchanged by QED.
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In Ref. [2], we presented similar modifications in the PHOTOS kernel for the
decay of B mesons into a pair of scalars. As one can see from the comparison
of plots in figures 4, 5 and 6 the implementation of the exact (but scalar-
QED only) kernel brings a minuscule improvement in the agreement between
PHOTOS and the reference exact simulation of SANC [27]. In this case both:
SANC and PHOTOS are used to simulate single photon emission. (There exists
no reference simulation with which the multi-photon version of PHOTOS could
be compared.)

For the NLO kernel in PHOTOS the results are indistinguishable from those
of SANC, even at statistical level of 109 events. In this case, the price paid for
improvement seems to be zero, as there is no need for extra information to
be pumped from the event record to the calculation of the PHOTOS weight.
Actually, the exact kernel is even simpler than the standard one.

This high precision as documented in Figs. 5 and 6 is elusive: the depen-
dencies on the production process may appear if form-factors (originating
from some unspecified here models) which have to be fitted to the data.

From the technical side, one can interpret this excellent agreement as a
strong test of numerical performance of the program. The necessary studies
of the exact parametrisation of the phase space used in PHOTOS, which will
also be important for future version of PHOTOS, are described in detail in the
journal version of Ref. [2].

Fig. 5. Results [2] from PHOTOS, standard version, and SANC for ratios of the B0 →

π−K+(γ) distributions are presented. Differences between PHOTOS and SANC are

small, but are clearly visible now.



Historical and Mathematical Aspects of Iterative Solutions . . . 1775

Fig. 6. Results [2] from PHOTOS with the exact matrix element, and SANC for ratios

of the B0 → π−K+(γ) distributions. Differences between PHOTOS and SANC are

below statistical error for samples of 109 events.

4. Mathematical aspects of the solution

One can ask if there is anything substantial in common in all these so-
lutions presented in Section 2, and whether systematisation with the help
of mathematical language is worth an effort. Indeed, at the time of writing
the first versions of the programs, which are now in a wide use, such consid-
erations were of low priority. In fact to a good reason: they were expected
to slow progress and bring little.

At present, when multitude of different solutions is available and tech-
nical complexity of details dominates over main principles of construction
such effort may be well motivated and bring useful results.

Let us look at Fig. 7 where points, curved lines and surfaces on this
heuristic plot represent consecutive manifolds of phase spaces for n, n + 1,
n + 2 particles. Note that the dimensionality of manifolds is in principle
counted by number of particles times dimension of Lorentz group represen-
tation, minus overall energy-momentum and orientation constraints. Cur-
vature appears as an ultimate expansion parameter. The crude level distri-
bution is also defined for phase spaces of n, n + 1, n + 2 particles but as
energy momentum constraint affects only first n particles, the further ones
constitute flat Cartesian sub-space. One step of the iterative projections as
presented in Section 2 is symbolically presented in Fig. 8.
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Fig. 7. Symbolic representation of phase space with up to two extra particles.

Curved surface represent actual phase space and the flat one tangent space. The

thin bands represent configurations where only one extra particle is added. Point in

the center configuration of the Born level. It is implicitly assumed that particles of

soft momenta do not provide much difference with respect to configurations when

they are absent. That is why symbolically such configuration seem to coincide.

Fig. 8. As in Fig. 7 this plot symbolically reprints phase space with up to two extra

particles. Curved surface represent actual phase space and the cylindric one the

tangent space, where projection of kinematical constraint of one of its dimensions

was already executed.

Case of QED and exponentiation of multiple photon radiation is rather
simple, we do not need to worry about topological structure which is the
same for the final (physical) phase space of multiphoton configuration and
for the tangent space (constructed from eikonal phase space and matrix
elements). The projection from tangent space to the real one is trivial
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(at least from the point of view of topological properties). In the case
of QCD we may expect complications, on the other hand, hadronisation
models simplify the task anyway as they enforce separation of colour in the
specific way. On the other hand it may be unhelpful for the discussion of
the systematic errors.

There is another mathematical concept which is worth mentioning.
Thanks to infrared sensitive regions of n+1 body phase space we obtain, in
a natural way, a triangulation line for this n+1 body phase space manifold.
In fact, structure of such induced triangulation needs to be (topologically)
the same for tangent and physical space, the projections must match these
triangulations. One can realize that the language of CW complexes (known
in theory of homotopy groups) may be useful to systematise the description
and to separate it into easier to digest parts.

Finally, let us point to nice relation between PHOTOS algorithm for single
(and fixed order) bremsstrahlung on one side and for the multibremsstrah-
lung cases. The relation is a consequence of the properties of the tangent
spaces. It can be seen from formal expansion of Poissonian distribution into
sum of binomial ones. In the following formula we identify coefficients of
binomial and Poissonian distributions: p = λ, q = 1− p. Powers of p denote
distinct multiplicities.

exp(−λ)
∑

n=0

1

n!
pn |1 = 1(p + q)1

exp(−λ)
∑

n=0

1

n!
pn |2 =

1

2
(p + q)0 +

1

2
(p + q)2

exp(−λ)
∑

n=0

1

n!
pn |3 =

2

6
(p + q)0 +

3

6
(p + q)1 +

1

6
(p + q)3

exp(−λ)
∑

n=0

1

n!
pn |4 =

9

24
(p + q)0 +

8

24
(p + q)1

+
6

24
(p + q)2 +

1

24
(p + q)4 . (18)

These somewhat unexpected numerical constants, just ratios of natural
numbers, provide trivial example of expansion of one set of special func-
tions into another one. The consecutive lines of formula (18) correspond to
expansion at, respectively, 1st, 2nd, 3rd and 4th orders.
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5. Summary

In this talk we have presented some principles used in Monte Carlo con-
struction. It was a perfect occasion to look into history of projects, often
common with Prof. Jadach’s. For that purpose illuminating mathemati-
cal aspects of the constructions seemed to be useful. They were one of the
cornerstones in achieving quality and robustness of the results. In the pre-
sented talk we have concentrated on phase space and its possible description
with the help of iterative Monte Carlo methods. Of course, main motiva-
tion of such a systematisation is to search for prototypes of algorithms to
be applied e.g. in QCD. Work on matrix elements was only marginally men-
tioned here. It is only starting, but some results could have been already
presented now, see talk by André van Hameren. For more, I am afraid, we
need to wait for some time, even though some promising results are already
available [28,29]. The next anniversary Epiphany conference, ten years from
now, will hopefully bring some nice summary on that development.
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