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By resorting to the nonlinearization approach, a Bargmann constraint
associated with a discrete 3 × 3 matrix eigenvalue problem is considered.
The lattice soliton hierarchy and the bi-Hamiltonian structures are ob-
tained. A new symplectic map of the Bargmann type is obtained by non-
linearization of the discrete eigenvalue problem and its adjoint one. With
the help of the generating function, we arrive at the involutive system of
conserved integrals of the symplectic map, which is further proved to be
completely integrable.
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1. Introduction

In recent years, there have developed several systematic approaches to
carry out the principle, pointed by Flaschka, Ablowitz and others [1–3],
that the new finite-dimensional integrable systems can be constructed from
the infinite-dimensional ones. One of the approaches, nonlinearization of
eigenvalue problems on Lax pairs [4–9], has been proved to be a powerful
tool for a wide class of continuous soliton equations. The framework of the
discrete version of classical integrable systems was found to generate the
lattice soliton hierarchies, and then some associated integrable symplectic
maps [10–12] were obtained. Since then, the discrete version of classical
integrable systems have become the focus of common concern and become
the important field of soliton and integrable systems. While the 3×3 matrix
spectral problems were few considered before the work of Blaszak et al.
[13], which using the R-matrix approach to construct the integrable lattice
systems and their bi-Hamiltonian structure. Meanwhile, several 3×3 discrete
matrix spectral problems were studied in [14–16] by the nonlinearization
method.
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The nonlinearization technique [17–19] is proved to be a powerful tool
for obtaining new finite-dimensional integrable systems from various soliton
hierarchies under certain constraints between the potentials and the eigen-
functions. The technique is also effective in the discrete case [20]. In the
continuous case, the nonlinearization of the eigenvalue problem gives an in-
tegrable system, while in the discrete case it yields an integrable symplectic
map. The constraint in nonlinearization method is practically a kind of
symmetry constraint, depends on the eigenfunctions of Lax pairs [21,22].

In this paper, we use the nonlinearization approach to study a 3× 3 ma-
trix spectral problem, and give a Bargmann constraint between the eigen-
function, the adjoint eigenfunction and potentials. A hierarchy of lattice
soliton equations associated with the discrete eigenvalue problem is con-
structed, as well as their Hamiltonian structures by making use of the trace
identity [23] in Sec. 2. In Sec. 3, a new symplectic map of the Bargmann
type is obtained by the nonlinearization of the discrete 3×3 eigenvalue prob-
lem and its adjoint one. Finally in Sec. 4, we use the generating function
approach to calculate the involutivity of integrals, by which the symplectic
map of the Bargmann type is further proved to be completely integrable in
Liouville sense.

2. The lattice soliton hierarchy and the Hamiltonian structures

We first introduce the definition of shift operator and difference operators
needed in the sequel:

Ef(n) = f(n+1) , ∆f(n) = (E−1)f(n) , ∆∗f(n) =
(
E−1− 1

)
f(n) .

For the sake of convenience, we usually write f(n) = f , f(n + k) = Ekf ,
n, k ∈ Z. Consider the discrete 3 × 3 spectral problem [13]

Eψ(λ) = Uψ(λ) , (1)

with

ψ(λ) =




ψ1(λ)
ψ2(λ)
ψ3(λ)


 , U =




a+ λ b 1
c 0 0
0 1 0


 ,

where a, b, c are three potentials and λ is a constant spectral parameter. In
order to derive the hierarchy of lattice equations associated with Eq. (1), we
first solve the stationary discrete zero-curvature equation:

(EV )U − UV = 0 , V = (Vij) , (2)
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where each entry Vij = Vij(A,B,D) of the 3 × 3 matrix V is a Laurent
expansion of λ:

V11 =D , V12 =bA+ c−1EB ,
V13 = A , V21 =E−1cA ,
V22 =E2D − E(a+ λ)A− ∆bB , V23 =B ,
V31 =E−1B , V32 =E−1c−1E−1cA−E−1c−1(a+λ)B ,
V33 = ED−(a+λ)A−bB ,

A =
∞∑

j=0

Aj−1λ
−j , B =

∞∑

j=0

Bj−1λ
−j , D =

∞∑

j=0

Dj−1λ
−j .

The stationary discrete zero-curvature Eq. (2) is equivalent to the recur-
sive relation:

(
cEb− bE−1c

)
Aj−1 +

(
cEc−1E − E−1

)
Bj−1 + a△Dj−1 = −△Dj ,(

E − E−1c−1E−1c+ b△a
)
Aj−1 +

(
E−1ac−1 − ac−1E + b△b

)
Bj−1

= −b△Aj +
(
c−1E − E−1c−1

)
Bj ,

c
(
1 −E2

)
aAj−1 − cE△bBj−1 + c

(
E3 − 1

)
Dj−1 = c

(
E2 − 1

)
Aj ,

△D−1 = 0 ,

−b△A−1 +
(
c−1E − vE−1c−1

)
B−1 = 0 ,

c
(
E2 − 1

)
A−1 = 0 . (3)

We define {Fj} by the following relation:

EDj = bBj −
(
1 + E−1

)
cFj . (4)

Using Eqs. (3) and Eq. (4), we can obtain

KGj−1 = JGj , Gj = (Aj , Bj , Fj)
T , (5)

where K,J are called Lenard’s operator pair:

K =




cEb− bE−1c −E−1+cEc−1E−a△∗b a

(
E−2 − 1

)
c

E−E−1c−1E−1c+b△a E−1ac−1 − ac−1E b
(
E − E−1

)
c

c
(
1 − E2

)
a

(
E − E−1

)
b c

(
E−1−E+E−2−E2

)
c



 ,

J =




0 △∗b −

(
E−2 − 1

)
c

−b△ c−1E − E−1c−1 0
c
(
E2 − 1

)
0 0



 ,
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and it is easy to see thatK,J are skew-symmetry. From Eqs. (3) and Eq. (5),
as well as Eq. (4), we have

G−1 = (1, 0, 0)T , G0 =
(
−a,E−1c,Eb

)T
.

Let ψ(λ) satisfy the spectral problem (1) and its auxiliary problem

∂

∂t
ψ(λ) = V (m)ψ(λ) , (6)

where

V (m) =
(
V

(m)
ij

)

3×3
, V

(m)
ij = Vij

(
A(m), B(m),D(m)

)
,

A(m) =

m∑

j=0

Aj−1λ
m−j , B(m) =

m∑

j=0

Bj−1λ
m−j , D(m) =

m∑

j=0

Dj−1λ
m−j .

Then the compatibility condition between Eq. (1) and Eq. (6) yields the
discrete zero-curvature equation

∂

∂t
U =

(
EV (m)

)
U − UV (m) ,

which is equivalent to

∂

∂tm
u = KG(m) − λJG(m) , G(m) =

(
A(m), B(m),D(m)

)T

, (7)

where u = (a, b, c)T . Eq. (7) implies the discrete soliton equation

∂

∂tm
u = Xm , m ≥ −1 , (8)

here Xj = JGj = KGj−1, j ≥ 0. When m = 0, the evolution equation of
the hierarchy (8) is

∂

∂t



a(n)
b(n)
c(n)


=




b(n+ 1)c(n) − b(n)c(n− 1)
b(n)[a(n+ 1) − a(n)] + 1

c(n−1) [c(n − 1) − c(n− 2)]

c(n)[a(n) − a(n+ 2)]


 . (9)

To establish the Hamiltonian structure of the discrete soliton hierar-
chy (8), we need to calculate the following quantities which satisfy

tr

(
V̂
∂U

∂a

)
= A, tr

(
V̂
∂U

∂b

)
= B ,

tr

(
V̂
∂U

∂c

)
=

1

c
[D − (λ+ a)A] , tr

(
V̂
∂U

∂λ

)
= A , (10)
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where V̂ = V U−1. By means of the trace identity [23], we have

(
δ

δa
,
δ

δb
,
δ

δc

)
A =

[
λ−γ

(
∂

∂λ

)
λγ

](
A,B,

1

c
[D − (λ+ a)A]

)
, (11)

where γ is a constant to be fixed. Equating the coefficients of λ−j−1 on both
sides of Eq. (11), we obtain

(
δ

δa
,
δ

δb
,
δ

δc

)
Aj = (γ − j)

(
Aj−1, Bj−1,

1

c
[Dj−1 −Aj − aAj−1]

)
, (12)

taking j = 0, we arrive at γ = −1. From the third equation of Eqs. (3) and
Eq. (4), we have

Dj−1 −Aj − aAj−1 = cFj−1 . (13)

Hence (
δ

δa
,
δ

δb
,
δ

δc

)
Hj = Gj , Hj = −

1

j + 1
Aj+1 , (14)

which shows that the discrete soliton hierarchy (8) possesses the bi-Hamilto-
nian structures

∂u

∂t
= Xm = J

(
δ

δa
,
δ

δb
,
δ

δc

)T

Hm = K

(
δ

δa
,
δ

δb
,
δ

δc

)T

Hm−1 , m ≥ 0 .

3. A symplectic map of the Bargmann type

In order to get a symplectic map associated with spectral problem (1),
we need to consider its adjoint discrete 3 × 3 matrix spectral problem

Eϕ(λ) =
(
U−1

)T
ϕ(λ) , ϕ(λ) =

(
ϕ1(λ), ϕ2(λ), ϕ3(λ)

)T
. (15)

For N mutual distinct eigenvalues λ1, λ2, · · · , λN , the systems associated
with Eq. (1) and Eq. (15) can be written in the form

E
(
q1j , q

2
j , q

3
j

)
=
(
q1j , q

2
j , q

3
j

)
U (u, λj)

T ,

E
(
p1

j , p
2
j , p

3
j

)
=
(
p1

j , p
2
j , p

3
j

)
U (u, λj)

−1 , (16)

where qi
j = ψi(λj), p

i
j = ϕi(λj), 1 ≤ i ≤ 3, 1 ≤ j ≤ N, are normalized eigen-

functions. It is readily verified that the functional gradient of the eigenvalue
λj with respect to the potentials (a, b, c) is

∇λj =




δλj/δa
δλj/δb
δλj/δc


 =




−q1jp
3
j

−q2jp
3
j

1
c
(λjq

1
jp

3
j + aq1jp

3
j − q1jp

1
j )


 . (17)
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Though a direct calculation, we can get the following equation about the
above gradient,

K∇λj = λjJ∇λj . (18)

Now consider the Bargmann constraint

G0 =

N∑

j=1

∇λj , (19)

which gives

a =
〈
q1, p3

〉
, b =

〈
q2, p2

〉

〈q2, p3〉
, c = Ω , (20)

here

Ω = −
〈
(a+ Λ)q1 + bq2 + q3, p1 − (a+ Λ)p3

〉

+(a
〈
q1, p3

〉
+
〈
Λq1, p3

〉
−
〈
q1, p1

〉
)
〈
(a+ Λ) q1 + bq2 + q3, p2 − bp3

〉
,

where 〈·, ·〉 is the standard inner-product in RN , qi = (qi
1, · · · , q

i
N )T , pi =

(pi
1, · · · , p

i
N )T , 1 ≤ i ≤ 3, Λ = diag(λ1, λ2, · · · , λN ). Substituting the expres-

sions (20) into Eqs. (16), we obtain a discrete Bargmann system

Eq1 =
〈
q1, p3

〉
q1 + Λq1 +

〈
q2, p2

〉

〈q2, p3〉
q2 + q3 ,

Eq2 = Ωq1 ,

Eq3 = q2 ,

Ep1 = p3 ,

Ep2 = Ω−1
[
p1 −

〈
q1, p3

〉
p3 − Λp3

]
,

Ep3 = p2 −

〈
q2, p2

〉

〈q2, p3〉
p3 . (21)

Through tedious calculations we get

N∑

j=1

3∑

i=1

d
(
Eqi

j

)
∧ d
(
Epi

j

)
=

N∑

j=1

3∑

i=1

dqi
j ∧ dp

i
j .

Therefore Eqs. (21) determine a symplectic map H of the Bargmann type,

(
Eq1, Eq2, Eq3, Ep1, Ep2, Ep3

)
= H

(
q1, q2, q3, p1, p2, p3

)
. (22)
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4. The integrability of the symplectic map

In this section, we will investigate the involutive of conserved integrals
for the symplectic map H.

Using Eq. (5), Eq. (18) and the constraint (19), we take the following
restriction

Gj =
N∑

k=1

λj
k∇λk , (23)

which is a special solution of Eq. (5). Then expression (23) is equivalent to

Aj = −
〈
Λjq1, p3

〉
, Bj = −

〈
Λjq2, p3

〉
,

Fj = c−1
(〈
Λj+1q1, p3

〉
+ a

〈
Λjq1, p3

〉
−
〈
Λjq1, p1

〉)
. (24)

By substitution the above expressions (24) into Eq. (13), we obtain

Dj = −
〈
Λjq1, p1

〉
, j ≥ 0 . (25)

Consider a bilinear functionQik
λ on RN and its partial-fraction expression

and Laurent expression:

Qik
λ =

〈
(λ− Λ)−1 qi, pk

〉
=

N∑

j=1

qi
jp

k
j

λ− λj

=
∑

m≥0

λ−m−1
〈
Λmqi, pk

〉
. (26)

It is easy to verify that

Qij
λ

(
Λk
)

= λQij
λ

(
Λk−1

)
−
〈
Λk−1qi, pj

〉
, (27)

where Qij
λ (Λk) = 〈(λ−Λ)−1Λkqi, pj〉. By virtue of the above notations, and

substituting expressions (24) into the Laurent expressions of A,B,D, we get

A = 1 −Q13
λ , B = −Q23

λ , D = −Q11
λ . (28)

Now introduce a Lax matrix by

Ṽλ = Q +




0 s1 −1
s2 λ 0
0 0 λ


 , (29)

where Q = (Qij
λ )3×3 and s1 = − 〈q2,p2〉

〈q2,p3〉 , s2 = 〈q2, p3〉.

Let
Fςλ = det

(
ςI − Ṽλ

)
= ς3 −F

(0)
λ ς2 + F

(1)
λ ς −F

(2)
λ , (30)
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where I is a 3 × 3 unit matrix, ς is a parameter. Then from Eq. (30), we

can arrive at a set of integrals {F
(i)
m }, 0 ≤ i ≤ 2, of the discrete Bargmann

system (22) (see Appendix). The Poisson bracket of two functions in the

symplectic space (R6N
∑3

i=1 dp
i ∧ dqi) is defined as

{f, g}=

N∑

j=1

3∑

i=1

(
∂f

∂qi
j

∂g

∂pi
j

−
∂f

∂pi
j

∂g

∂qi
j

)
=

3∑

i=1

(〈
∂f

∂qi
,
∂g

∂pi

〉
−

〈
∂f

∂pi
,
∂g

∂qi

〉)
,

which is skew-symmetric, bilinear, satisfies Jacobi identity and Leibnitz rule:
{fg, h} = f{g, h} + g{f, h}.

We can prove the following assertions:

Theorem 1 The function Fξµ is invariant along the τςλ-flow.

Proof Through tedious calculations, and with the aid of expressions (30)
and (A1)–(A4), as well as the identity

〈
(µI − Λ)−1 (λI − Λ)−1qi, pj

〉
=

1

µ− λ

(
Qij

λ −Qij
µ

)
,

we obtain {Fξµ,Fςλ} = 0,∀λ, ς, µ, ξ ∈ C, which implies the derivative of the
function Fξµ along the τςλ-flow is zero.

Theorem 2 The integrals {F
(i)
m }, 0 ≤ i ≤ 2,m ≥ 0, are in involution in

pairs, that is, {F
(i)
m , F

(j)
l } = 0, 0 ≤ i, j ≤ 2, for any m, l ≥ 0.

Theorem 3 The symplectic map of the Bargmann type defined by Eq. (22)
is completely integrable in the Liouville sense.

The project supported by the National Natural Science Foundation of
China under grant no. 10471132 and the Special Foundation for the State
Key Basic Research Program “Nonlinear Science”.

Appendix A

For the sake of convenience, we denote Qij as the cofactor of element

Qij
λ , and Q∗ as the adjoint of matrix Q. From (26), we know that Qij =∑
m≥0 λ

−m−2Qij,m and det Q =
∑

m≥0 λ
−m−3|Q|m. Regard the generat-

ing function F
(2)
λ = detṼλ as a Hamiltonian in the symplectic space (R6N ,
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∑3
i=1 dp

i ∧ dqi). Denote the variable of F
(2)
λ -flow by τλ. Through a direct

calculation gives the canonical equation of the F
(2)
λ -flow:

d

dτλ




q1k
q2k
q3k


 =




∂F
(2)
λ /∂p1

k

∂F
(2)
λ /∂p2

k

∂F
(2)
λ /∂p3

k


 = W (λ, λk)




q1k
q2k
q3k


 ,

d

dτλ




p1
k

p2
k

p3
k


 =




−∂F
(2)
λ /∂q1k

−∂F
(2)
λ /∂q2k

−∂F
(2)
λ /∂q3k


 = −W (λ, λk)

T




p1
k

p2
k

p3
k


 , (A.1)

where

W (λ, µ) =
1

λ− µ
Q∗ +




0 0 0
0 w1 0
0 w2 0



+
1

λ− µ

×




λ2+λQ22

λ
+λQ33

λ
−(λs1+λQ12

λ
+s1Q

33

λ
+Q32

λ
) Q32

λ
+s1Q

23

λ
− λQ13

λ

−(λs2+λQ21

λ
+s2Q

33

λ
) λQ11

λ
+Q31

λ
s2Q

13

λ
−s2−Q

21

λ

s2Q
32

λ
−λQ31

λ
s1Q

31

λ
λQ11

λ
−s1Q

21

λ
−s2Q

12

λ
−s1s2


 ,

with

w1 =
1

〈q2, p3〉

(
λQ21

λ + λs2 + s2Q
33
λ + Q12

)
,

w2 = −

〈
q2, p2

〉

〈q2, p3〉2
(
λQ21

λ + λs2 + s2Q
33
λ + Q12

)
,

+
(
λQ12

λ + λs1 + s1Q
32
λ +Q32

λ + Q21

)
.

Denote the variable of Fςλ-flow by τςλ, where Fςλ = det(ςI− Ṽλ), I is a 3×3
unit matrix, ς is a parameter. It is easy to see that Fςλ can be written as

Fςλ = ς3 −F
(0)
λ ς2 + F

(1)
λ ς −F

(2)
λ , (A.2)

where

F
(0)
λ = Q11

λ +Q22
λ +Q33

λ + 2λ ,

F
(1)
λ = λ

(
2Q11

λ +Q22
λ +Q33

λ +λ
)
−s1s2−s1Q

21
λ −s2Q

12
λ +Q31

λ +
∑

1≤i≤3

Qii ,
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F
(2)
λ = λ2Q11

λ − λ
(
s1Q

21
λ + s2Q

12
λ + s1s2

)
− s2Q

32
λ − s1s2Q

33
λ − Q13

+λQ33 + λQ22 − s1Q12 − s2Q21 + det Q . (A.3)

Substituting the identity (26) into expressions (A3), we arrive at

F
(0)
λ = 2λ+

∑

m≥0

λ−m−1F (0)
m , F

(1)
λ = λ2 +

∑

m≥0

λ−m−1F (1)
m ,

F
(2)
λ =

∑

m≥0

λ−mF (2)
m , (A.4)

where

F (0)
m =

〈
Λmq1, p1

〉
+
〈
Λmq2, p2

〉
+
〈
Λmq3, p3

〉
,

F
(1)
0 = 2

〈
Λq1, p1

〉
+
〈
Λq2, p2

〉
+
〈
Λq3, p3

〉
+

〈
q2, p2

〉

〈q2, p3〉

〈
q2, p1

〉

−
〈
q2, p3

〉 〈
q1, p2

〉
+
〈
q3, p1

〉
,

F (1)
m = 2

〈
Λm+1q1, p1

〉
+
〈
Λm+1q2, p2

〉
+
〈
Λm+1q3, p3

〉
+

〈
q2, p2

〉

〈q2, p3〉

〈
Λmq2, p1

〉

−
〈
q2, p3

〉 〈
Λmq1, p2

〉
+
〈
Λmq3, p1

〉
+
∑

1≤i≤3

Qii,m−1 , m > 2 ,

F
(2)
0 =

〈
Λq1, p1

〉
+

〈
q2, p2

〉

〈q2, p3〉

〈
q2, p1

〉
−
〈
q2, p3

〉 〈
q1, p2

〉
,

F
(2)
1 =

〈
q2, p2

〉

〈q2, p3〉

〈
Λq2, p1

〉
−
〈
q2, p3

〉 〈
Λq1, p2

〉
−
〈
q2, p3

〉 〈
q3, p2

〉

+
〈
q2, p2

〉 〈
q3, p3

〉
+
〈
q1, p1

〉 〈
q2, p2

〉
−
〈
q1, p2

〉 〈
q2, p1

〉

+
〈
q1, p1

〉 〈
q3, p3

〉
−
〈
q1, p3

〉 〈
q3, p1

〉
+
〈
Λ2q1, p1

〉
,

F
(2)
2 =

〈
q2, p2

〉

〈q2, p3〉

〈
Λ2q2, p1

〉
−
〈
q2, p3

〉 〈
Λ2q1, p2

〉
−
〈
q2, p3

〉 〈
Λq3, p2

〉

+
〈
q2, p2

〉 〈
Λq3, p3

〉
+
〈
q1, p1

〉 〈
Λq2, p2

〉
−
〈
Λq1, p2

〉 〈
q2, p1

〉

+
〈
Λq1, p1

〉 〈
q2, p2

〉
−
〈
q1, p2

〉 〈
Λq2, p1

〉
+
〈
q1, p1

〉 〈
Λq3, p3

〉

−
〈
Λq1, p3

〉 〈
q3, p1

〉
+
〈
Λq1, p1

〉 〈
q3, p3

〉
−
〈
Λq3, p1

〉 〈
q1, p3

〉

−
〈
q2, p1

〉 〈
q3, p2

〉
+
〈
q2, p3

〉
[
〈
q1, p3

〉 〈
q3, p2

〉
−
〈
q1, p2

〉 〈
q3, p3

〉
]

+

〈
q2, p2

〉

〈q2, p3〉

〈
q2, p1

〉 〈
q3, p3

〉
+
〈
Λ3q1, p1

〉
,
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F (2)
m =

〈
Λm+1q1, p1

〉
+

〈
q2, p2

〉

〈q2, p3〉

〈
Λmq2, p1

〉
−
〈
q2, p3

〉 〈
Λmq1, p2

〉

−
〈
q2, p3

〉 〈
Λm−1q3, p2

〉
+
〈
q2, p2

〉 〈
Λm−1q3, p3

〉
+Q33,m−1+Q22,m−1

−Q13,m−2 +

〈
q2, p2

〉

〈q2, p3〉
Q12,m−2 −

〈
q2, p3

〉
Q21,m−2 + |Q|m−3, m ≥ 3 .

In this way, we obtain the integrals {F
(i)
m }, 0 ≤ i ≤ 2, of the discrete

Bargmann system (22).
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