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CHAOS CONTROL OF THE AUTONOMOUS
VAN DER POL MATHIEU EQUATION FOR

DUST-CHARGE FLUCTUATION IN DUSTY PLASMA
USING BACK-STEPPING CONTROL
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This paper investigated chaos control of four-dimensional autonomous
van der Pol Mathieu (vdPM) system that describes dust-charge fluctuation
in dusty plasma. A recursive backstepping scheme was employed to design
a single control input that effectively controlled the undesirable unstable
behaviour of the vdPM system. Both theoretical analysis and numerical
simulations were presented to illustrate the effectiveness of the proposed
control scheme.

PACS numbers: 05.45.Gg, 05.45.Pq, 52.25.Gj

1. Introduction

For over a decade, dynamic chaos theory has been deeply studied and
applied to many fields extensively, such as optical system, biology, secure
communication and plasma, amongst others [1–7]. The interest in the dy-
namic chaos theory is hinged on the well demonstrated applications of chaos
including the explanation of many physical processes such as transition from
laminar to turbulent fluid, multi-photon infrared absorption, microwave ex-
citation, ionization of Rydberg atoms, and more specifically dust-charge
fluctuation in dusty plasma [6, 7]. At the same time in many situations,
chaos is an undesirable phenomenon which often leads to violent vibrations;
irregular operations in mechanical systems; breaking materials and so on.
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Thus, from a practical point of view, it is often desired to convert and control
the system dynamics with minimal effort suitably so that whenever chaotic
motion is physically harmful it can be changed to a desired periodic or fixed
point attractor. In this direction, increasing attention is being paid to this
aspect since the first classical work of Ott, Grebogi and Yorke appeared
in 1990 [8].

Basically, the chaos control problem can be formulated as follows. For
a given chaotic system, a control mechanism is designed, which forces the
system to maintain a desired dynamical behavior even when intrinsically
chaotic. The designed control is added to an isolated chaotic system in
form of a time dependent input function(s) (see for instance Refs. [2,8–10]).
There has been intensive research activities aimed at achieving this goal in
the last few years and a large variety of controllers has been introduced such
as nonlinear state-feedback controller [11–13], the sliding mode theory [14],
feedback and non-feedback methods, which are based on the Lyapunov direct
method and Routh-Hurwitz criteria [15] and backstepping recursive nonlin-
ear controller [16–20]. Among these methods, the backstepping based con-
troller is less explored [20]. In particular, backstepping based controller can
guarantee global stability, tracking and transient performance for a broad
class of nonlinear systems [16,21,23], because of its robustness. This method
in its various forms has been employed in a number of works on control
and synchronization of chaotic systems [20–26], including the RCL-shunted
Josephson junctions [20] as well as the inertial ratchet [25].

The problem of controlling the chaotic states of plasma, however, has
received little attention, even though the onset and control of chaos are
of the greatest importance for the plasma turbulence phenomenon and re-
lated fluctuations including transport. In plasma, many turbulent phenom-
ena have been observed and these are very troublesome phenomena which
could have harmful consequences. In general, chaos in high density, hot and
magnetized plasma such as fusion-oriented plasmas will evolve into fully
developed turbulence and lead to anomalous transport. Thus, the role of
turbulence in fusion-oriented plasmas motivates the special interest in chaos
control [29]. A few attempts has been made to address this problem from
different perspectives, including experimental approach (See for example
Refs. [6, 7, 29, 30]). In this present paper, we present a recursive back-
stepping control algorithm that effectively controls the chaotic behavior in
a four-dimensional (4D) autonomous van der Pol-Mathieu (vdPM) equation
describing the dynamics of dust-charge fluctuation in dusty plasma [27,28].
The rest of this paper is organized as follows: In Section 2, the vdPM system
is described and we present the backstepping design in Section 3. Numeri-
cal simulations are performed in Section 4; while we conclude the paper in
Section 5.
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2. The van der Pol Mathieu equation

Recently, Bora et al. [27] obtained a set of four-dimensional autonomous
vdPM system which modeled the evolution of simplified dusty plasma with
dust-charge fluctuation via Gram–Schmid orthogonalization procedure. The
vdPM system can be described as a set of four first order differential equa-
tions which may be written as

ẋ = y ,

ẏ = (α − βx2)y − ω2

dx(1 − ελu) ,

u̇ = u(1 − u2
− v2) −

2πv

T
,

v̇ = v(1 − u2
− v2) +

2πu

T
, (1)

where u(t) and v(t) are defined to have stable and unique solutions,

u(t) = cos(2πt/T ) , v(t) = sin(2πt/T ) ,

for the initial values [u(0), v(0)] = [1, 0]. The vdPM system has been found
to exhibit chaotic behaviour over a wide range of relevant system parameters
via the period-doubling bifurcation cascades (For detailed discussion of the

Fig. 1. Chaotic dynamics of the vdPM system in the uncontrolled state; (a) phase

portrait, (b) time series of the x variable and (c) time series of the y variable. The

parameters of the system are ωd = λ = 1, α = 0.07, ε = 3.41, β = 0.1 and T = 6.5.
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dynamics of the dusty plasma, including the transition to chaos, see for
example Refs. [28, 29]). Specifically, for the following parameter space: ω =
λ = 1, α = 0.007, ε = 3.41, β = 0.1 and T = 6.5 a chaotic attractor
has been found. The chaotic attractor and time evolution corresponding
to this chaotic behavior is depicted in Fig. 1. In what follows, we present
a systematic approach based on recursive backstepping nonlinear control
scheme to enable the stabilization of this chaotic motion to a stable state.

3. Design of backstepping control

In order to achieve our aim, a time-dependent input control function p(t)
is added to system (1), which gives the following system:

ẋ = y ,

ẏ = (α − βx2)y − ω2

d
x(1 − ελu) ,

u̇ = u(1 − u2
− v2) −

2πv

T
,

v̇ = v(1 − u2
− v2) −

2πv

T
+ p(t) . (2)

The following error states are then defined:

e1 = x − xD ,

e2 = y − yD ,

e3 = u − uD ,

e4 = v − vD , (3)

where ei(i = 1, 2, 3, 4) are feedbacks representing the differences between
the non-periodic and the desired periodic states of the system. This control
problem arises from the simplified model of the dusty plasma. Hence, we
let p(t) be as simple as possible, letting xD = 0 be the references point,
while the subsequent desired variables are recursively defined in terms of
the preceding error states with appropriate feedback gains, such that

xD = 0 ,

yD = c1e1 ,

uD = c2e1 + c3e2 ,

vD = c4e1 + c5e2 + c6e3 , (4)

where the ci’s (i = 1, 2, 3, 4, 5, 6) are arbitrary feedback gains that would be
chosen later to ensure the desired periodic state of the system is attained.
The recursive technique (4) is quite powerful in practical implementation.
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For instance, recursive feedback inputs similar to Fig. 2 of Ref. [29] could
be realized in a block electronic circuit. Using Eq. (3) in (2), we obtain the
error dynamic equations:

ė1 = e2 + c1e1 ,

ė2 = (α − βx2)(e2 + c1e1) − ω2

d[1 − ελ(e3 + c2e1 + c3e2)] − c1ė1 ,

ė3 = (e3 + c2e1 + c3e2)
[

1 − (e3 + c2e1 + c3e2)
2

−(e4 + c4e1 + c5e2 + c6e3)
2
]

−2π(e4 + c4e1 + c5e2 + c6e3)/T − c2ė1 − c3ė2 ,

ė4 = (e4 + c4e1 + c5e2 + c6e3)
[

1 − (e3 + c2e1 + c3e2)
2

−(e4 + c4e1 + c5e2 + c6e3)
2
]

+2π(e3 + c2e1 + c3e2)/T − c4ė1 − c5ė2 − c6ė3 + p(t) . (5)

Since the ci’ s = 0 are arbitrary control gains, it is convenient without loss
of generality to set ci’s (i = 1, 2, 3, 5, 6) and c4 = 1; and with this choice,
Eq. (5) reduces to:

ė1 = e2 ,

ė2 = e2(α − βx2) − ω2

de1(1 − ελe3) ,

ė3 = e3

[

1 − e2

3 − (e4 + e1)
2
]

− 2π(e4 + e1)/T ,

ė4 = (e4 + e1)
[

1 − e2

3 − (e4 + e)2
]

+ 2πe3/T − e2 + p(t) . (6)

In the absence of the control, the error dynamics system (6) would generally
have equilibrium at (0,0,0). Thus, if an appropriate controller p(t) is cho-
sen such that the equilibrium remains unchanged, theoretically, the control
problem reduces to that of achieving asymptotic stabilization of the zero
solutions of system (6). To achieve this, consider the following Lyapunov
function

V =
1

2

n
∑

i=1

kie
2

i , (n = 4) (7)

whose time derivative is written as

V =

n
∑

i=1

kiėi , (n = 4) . (8)

Substituting ėi(i = 1, 2, 3, 4) using Eq. (6) and letting ki(i = 1, 2, 3) = 0;
k4 = 1 we have

v̇ = −ė2

4 . (9)
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Indeed, v̇ is negative definite and thus satisfies the Lasalle–Yoshizawa sta-
bility criteria [16]; with the controller p(t) chosen as

p(t) = e2 −

2πe3

T
− (e4 + e1)

[

1 − e2

3 − (e4 + e1)
2
]

(10)

which forces the system to exhibit stable periodic orbit and hence the control
problem is solved. It is important to note that control input p(t) depends
on the feedback terms, implying that for practical implemented, the control
block could be quite simple.

4. Numerical simulations

In this section, the nonlinear Eqs. (1) and (2) are integrated numerically
by using the fourth order Runge–Kutta integration algorithm. The param-
eter values were fixed at ωd = λ = 1, α = 0.07, ε = 3.41, β = 0.1 and
T = 6.5 such that the system is simulated in its chaotic state. With this
parameter values, the chaotic attractor shown in Fig. 1 is fully recovered. In
Fig. 2, the designed controller p(t) is activated at t = 50 to allow the for the
transient behavior of the system. It is clear that as soon as the controller is

Fig. 2. Dynamics of the vdPM system in controlled state when p(t) has been

activated; (a) the controlled phase portrait, (b) time series of the x variable and

(c) time series of the y variable.
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applied, the system is driven to a stable state with regular vibration, thus
preventing it from entering the turbulent. This validates the effectiveness of
the proposed control method.

5. Conclusion

This study has investigated the control of chaos found in a simplified
plasma-dust grain system with temporally varying dust charge, which is de-
scribed by a 4D autonomous vdPM equation. Our result shows that the
unstable trajectories exhibited by the vdPM chaotic system have been effec-
tively pinned to a regular stable state by the proposed recursive backstep-
ping nonlinear controller. Our theoretical analysis and the numerical results
are in perfect agreement. Although many turbulent phenomenon in plasma
remains yet unexplained, the present results would complement existing ap-
proaches for chaos control in plasmas and more importantly, shed more light
on the analysis and understanding of various plasma control processes.

UEV would like to acknowledge the Alexander von Humboldt Foundation
for the award of the AvH Fellowship for postdoctoral research.
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