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In this paper we discuss decomposition principle for a-stable Lévy pro-
cesses. We investigate asymptotic properties of components and stochastic
integrals driven by such processes providing an important class of anoma-
lous diffusions. We consider two case studies with integrands being frac-
tional Brownian motion and gamma process.
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1. Introduction

Continuous time random walk (CTRW) was introduced in pioneering
works by Sher, Montroll and Weiss [1,2]. Beginning with stochastic formu-
lation in [1] of transport phenomena in terms of CTRW, the physical com-
munity showed a steady interest in the anomalous diffusion. In recent years,
systems exhibiting anomalous diffusion behavior attracted growing attention
in the various fields of physics and related sciences. After the first step made
by Einstein and Smoluchowski who explained why the range reached by a
Brownian particle is proportional to the square root of the movement dura-
tion, there were constructed many physical examples of anomalous diffusion
where this kind of behavior is often violated and being replaced by an anoma-
lous power-law scaling, see Metzler and Klafter 3] and references therein. On
a mathematical side, Lévy stable motion and fractional Lévy stable motion,
see Mercik et al. [4], provide the most prominent examples of such anomalous
diffusion processes. For example, the stochastic resonance was investigated
by Dybiec and Gudowska-Nowak [5], where the generic double-well poten-
tial models perturbed by an a-stable noise were applied via the overdamped
Langevin equation. The fractional Fokker—Planck equation for the proba-
bility distribution of particles whose motion is governed by a subordinated

(1825)
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Langevin equation, which is driven by an a-stable noise rather than a Gaus-
sian was studied by Magdziarz and Weron [6] and Weron, Magdziarz and
Weron [7]. A new type of subordinator by modifying the well known strictly
increasing a-stable process was introduced by Magdziarz and Weron, [§],
where it was demonstrated how the empirical time-domain stretched expo-
nential function can be obtained from the anomalous diffusion model.

The list of systems displaying subdiffusive dynamics is diverse and very
extensive. It encompasses charge career transport in amorphous semicon-
ductors, diffusion in percolative and porous materials, stretched exponen-
tial relaxation phenomena and protein conformational dynamics. Since the
CTRW has found its widespread applications in many scientific fields such
as statistical physics, finance and insurance, there are many models which
replace CTRW by a certain diffusion. In this paper we investigate processes
which can serve as an approximation of CTRW. We consider anomalous
diffusions (stable Lévy processes) and stochastic integrals driven by stable
noise. We investigate some distributional properties of a stochastic integral
driven by an anomalous diffusion. Especially, we study the tail probability of
supremum over finite horizon which is related to the distribution of the first
passage time of a given process. Similar problems for the generalized Wiener
process driven by Lévy stable noises are investigated in Dybiec, Gudowska-
Nowak and Hénggi [9,10]. Stable distributions and processes serve as models
in statistical physics see e.g. Dybiec and Gudowska-Nowak [5,11] or finance
modeling and risk theory see e.g. Weron [12], Burnecki and Weron [13],
Michna [14] and Magdziarz, Mista and Weron [15] and references therein.

Stable Lévy process plays an important role among stable processes like
the Brownian motion among Gaussian processes (see e.g. Janicki and Weron
[16]). Thus we start with the definition of an a-stable Lévy process. We will
consider stochastic processes on the time interval [0, 1]. A stochastic process
{Z(t),0 <t <1} is called an a-stable Lévy process (0 < a < 2) if

1. Z(0) =0 aus.
2. Z has independent increments.

3. Z(t)— Z(s) has distribution Sy(o(t— )/, 3,0) forany 0 < s <t <1
that is a-stable distribution with scale parameter o (t—s)%/®, skewness
0 and shift parameters equal zero.

For a = 2 we get Brownian motion. If the two first assumptions are satisfied
and the process has stationary increments we call such a process a Lévy
process. In this paper we will consider 0 < a < 2. By Lévy-Ito integral
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representation an a-stable Lévy process can be written

(1) = / y (Nu(dy) — tw(dy)) + / y Ni(dy) + at (1)

lyl<1 ly[>1

where NV is the point process of jumps of Z: N = Zs:AZ(s);ﬁO O(s,A7(s)) (see
e.g. Kallenberg [17]) and N;(A) = N([0,¢] x A) for A € R such that 0 ¢ A.
N is a Poisson point process with the mean measure ds x v(dy) where v(dy)
is a Lévy measure on R\ 0

v(dy) = yl%f (0,00) () dy + M%I (—o0,0) (¥) dy - (2)
and
P:ﬂa(}aaa, Q:l_ o Cpo®, (3)
2 2
where
o0 -1 w ’
Cy = /s_o‘sinsds :{ W ;fzi? (4)

0

In this paper we investigate an a-stable Lévy motion under condition on
the length of the largest jump. Then we get a certain decomposition into
a simple process and a Lévy process which has finite some exponential mo-
ments and these processes are independent. We show that this Lévy pro-
cess converges to the a-stable Lévy process uniformly on compact sets with
probability one. In other limit we can approximate this process by Brow-
nian motion. We use this decomposition to find an exact asymptotic of
the tail distribution of supremum for stochastic integrals with respect to an
a-stable Lévy motion. In Samorodnitsky and Taqqu [18] the tail distribution
of supremum for an integral of deterministic function with respect to inde-
pendently scattered a-stable measure is investigated. Hult and Lindskog [19]
find an exact asymptotic behavior of the supremum of an stochastic inte-
gral driven by regularly varying Lévy processes with predictable integrands.
The tail distribution of supremum of Lévy processes is treated in Albin [20],
Willekens [21], Braverman [22], Braverman [23], Braverman and Samorod-
nitsky [24], Michna and Weron [25] and Rosinski and Samorodnitsky [26].
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2. Decomposition of a-stable Lévy process

An a-stable Lévy process can be represented as the following series (see
LePage [27] or Samorodnitsky and Taqqu [18]) for 0 < o < 1

Z(t) = oCY* Y I Oy I {Uy, < 1} (5)
k=1
fora=1
Z(t)=0Cr Y <Fk_1’ykI{Uk <t} - mbfj)) + BtoCyIn(eCy)  (6)
k=1
and for 1 < a < 2
2(t) = oCY* Y (r,;l/%kz{Uk <t - ﬁtb,@) , (7)
k=1

where 0 < ¢t < 1 and {I}}}2, is a sequence of arrival epochs in a Poisson
process with unit arrival rate, {7}, is a sequence of iid random variables
satisfying
1+ 4

2

and {Uj}72, is a sequence of iid random variables uniformly distributed on
[0,1]. These sequences are independent and

Plyy=1)=1-P(y=-1) =

1/(k—1)
o / y ?siny dy ifa=1,
bl(c )= 1/k (8)

o (klamb/e — (p —1)le=b/e) if 1 <o < 2,
where k£ € IN.

Consider an a-stable Lévy process under condition Iy = x, where x > 0
(I'y has exponential distribution with parameter equal 1). Then we get the
following theorem (for a similar treatment of symmetric a-stable processes
see, Michna [28]).

Theorem 1 (decomposition principle) Under condition I't =x an a-stable
Lévy process has the following form

Zx(t) = Aa&(t) + Ya&(t) ; (9)

where
Ag(t) = oCY oz Vg TI{U, < 8}
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and

Ya(t) £
oC* 2 (T+2) ™Yoy I{U, < t} if o<l
oL [(Dta) I (Us < )=t + BtoCin(oC) if a=1,
oCY" 3 (Dt a) Ve I{U < 1} - 56" fl<a<2

The process Y, is well-defined that is the sum converges almost surely and is
a Lévy process with finite some exponential moments around zero. Its Lévy
measure is the following

P Q
V:B(dy) = WI(O,UCé/axfl/a)(y) dy + WI(—UC})/al‘fl/a,o)(y) dy

and its distribution is given by

B0 —explism, + [ (6~ 1= isyI{ly] < 1)) valdy),

R\0
where
1/a
— GG 0 (500, — @)t 4 x)@D/e if a1,
My = 0o | 1, PRV )
—BoCy (f Slyngy dy+ [ (Slyngy - %) dy + In —(001gcl)++ > if a=1.
1 0

The processes A, and Y, are independent.

Proof: In the proof we take advantage of Th. 4.1 and 5.1 of Rosinski [29].
In our cases the function H from Rosinski [29] for the process Y, has the
following form

1/a
oCy

H, (I, = .

Thus
1+
() = PUL( ) € = 7570y vogre)
1-p

+T 6f(r+m)*1/o‘06’é/a(‘)

and
vldy) = [ oulridy)dr
0

P Q
= WI(ngo;/am—l/a)(y) dy + WI(_J(;&/%_W’O) (y) dy . (10)
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The function B,(s) which is responsible for centering terms is the following

s 1 sV(0*Ca—z)
Bx(s) = / /yax(ra dy) dr = 60’001/0{ / (r + x)fl/a dr .
0 -1 (0% Co—x)F

e Case 1 < aw < 2. Since

_ BoCY
 a—1
x [(5 V (0°Cy — ) + x)(oz—l)/a — ((6°Cy — 2)T + x)(oz—l)/a}

B.(s)

and limg_, o Bz(s) = oo we get that the following series is convergent a.s.

Vi t) = oCY Y (T + ) oI {U < 1) - Bra” ], (11)
k=1

where

BoCla" = B,(k) — By(k — 1)

_ BoCY

- [(k t )@ D/e (k14 g)leD/a
a_

forke Nand k > 1+ 0“C, — z. Put

n 1/a
_ 1/a “1/a oCy " Bta (o_1)/a
Yon(t) = O’CO/ kEZI(Fk + x) / i I{U, <t} — 1 nla—1/ (12)

and
n

V() = oCl/* > (I + )"V I{Uy < t} — tBy(n) (13)
k=1

and note that Yx(%) (t) — v, (t) as n — oo a.s. for all ¢ (the convergence is
even uniformly in ¢ € [0, 1], see Th. 5.1 of Rosinski [29]). Since lim,,—,o(n +
z)le=D/e _ple=D/a = ( we get

1/
Yan(t) — YO () + M
a —

T,n

((0°Cy — z)F + )= D/e 0
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as n — oo which gives that Y ,(t) — Y(t) as n — oo a.s. for all ¢. Thus

by Th. 4.1 of [29]

Eei*¥" M) = exp( / (€ — 1 —isyI{|y| < 1}) va(dy)),
R\0

where measure v, is defined in (10) which results in

B0 —explism, + [ (€7~ 1~ isyT{ly] < 1)) v (dy).
R\O

where
BoCL

o o0\t (a—1)/«
o ((6%Co — )" + )

my =

e Case o= 1. Since

B.(s) = poCi(In|(sV (6C; — z) + 2)| — In|(cCy — 2)T +z|)
and lim,_, o, B, (s) = oo we get that the following series is convergent a.s.

YO () = oCr Y (I + o) I {0 <t} = Bt . (19)
k=1

where
BoCral”) = Bu(k) — Bu(k — 1)
= BoCi(ln|(kV (6Cy —z)+ )| —In|((k = 1)V (¢C1 — x) + z)|)

for kK € IN. Put

n

Yon(t) = 0CvY (T +2) V% I{U < t}

k=1
sin
—tB0C) / y2y dy — In(oCy) (15)
1/n
and .
V() = 0Cy Y (T +2) Vo0 I{Ux <t} — tBy(n) (16)

k=1
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and note that Yx(fln)( t) — x(a)( t) as m — oo a.s. for all ¢ (the convergence is
even uniformly in ¢t € [0, 1], see Th. 5.1 of Rosinski [29]). Since

0 . 0 . 1 .
siny sin y siny 1
/ 9 dy_lnn:/ P} dy+/< D) __> dy
Y Y Y Y

1/n 1 1/n

and by Taylor expansion

siny 1 |y
_ 2\ < Y
‘( y2 y> (1/n,1)(y)‘ =6’

where the right-hand side is integrable on (0,1) which by Lebesgue domi-
nated convergence theorem gives that

1

/smyd —lnn—>/smyd /(sty_l) dy < 0.
y? ; Yy Yy

1/n

Using the fact lim,, o In(n + ) —Inn = 0 we get

Yx,n(t) - Yac(,a)( )

o0

1
—_ )t
B0 Cy /Slnyd +/<51ny >d ol (cCL—2)" +x 0
1 0

ocCy

as n — oo which gives that Y, ,,(t) — Y;(t) as n — oo a.s. for all t. Thus
by Th. 4.1 of [29)]

. (a) .
B0 —oxp | [ (@7 -1 isy{ly] < 1Dy |
\O
where measure v, is defined in (10) which results in
EeisY=() — exp(ism, + / (eisy — 1 —isyI{|ly| <1})v.(dy)),
R\0

where
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e Case a < 1. Since

1/a
By(s) = % (sV (0%Co—z)+2) @D/ _((67Clp— )+ + x)(oc—l)/a]
and lim, o By(s) = 2202 ((00C, — o)t + 2)@D/a by Th, 4.1 of

Rosinski [29] no centering is needed and

Ee*Ye() = exp | ism, + / (e — 1 —isyI{|y| <1})v.(dy) |,
R\0
where
ﬂaCol/aa

a—1

((O_aca _ $)+ +x)(a71)/a )

My =

Since the jumps of the process Y, are bounded some exponential moments
around zero of Y, are finite (see e.g. Protter [30] Th. 34).
(]

By the existence of some exponential moments around zero Y, has finite
moments of all orders and it is well known that for Lévy processes

EY, (1) = m, + / y valdy)
ly|>1

and

VarY, (1) = / v v (dy) .

R\0
Thus integrating we get
—BoCy/* GopaleN/e ifatl,
EY,(1) = oo I
— siny smy 1 _r_ iy —
BJC1<1f 2 dy—i-of(yz y> dy+ln<acl>> ifa=1,
212/
VarY,(1) = UQCM gla=2)/a (17)
-«

/a
Note that VarY, (1) = %x(o‘_m/a — 202 as o 1 2 (since al'(a) =
I'la+1) — 1 as a | 0, see the form of C,, in (4)) which is variance of
52(0767 0)'
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Let us notice that Y, (t) — IEY, (1)t is a square integrable martingle thus
we have the following decomposition

Za:(t) = Mar(t) + Na&(t) )

where M, (t) = Y (t) — EY,(1)t is a square integrable martingle and
N,(t) = Az(t) + EY;(1)t is a finite variation process which gives that Z, is
the so-called decomposable process (see e.g. Protter [30]).

3. Asymptotic behavior of Y, component

In this section we investigate asymptotic behavior of the process Y, which
appears in the decomposition of an a-stable Lévy process under condition
of the length of the largest jump. We consider two domains when = | 0 and
x — 00. The process Y, can serve as an approximation of the a-stable Lévy
process Z.

Theorem 2 The process Y, converges uniformly on compact sets to the pro-
cess Z with probability one as x | 0 more precisely

sup [Yy(t) — Z(t)| < 2 'oCMZ o (18)
0<t<1 otl

a.s. where x > 0 and
o

1
L _a_ = _ (19)
at1 kz::l Fk(a—i—l)/a
s an ai_,_l—stable random wvariable with skewness parameter one and shift

parameter zero.

Proof: Let us consider the function g(z) = a='/* — (a4 z)~'/* for a fixed
a >0 and x > 0. Since

d

o

1 1
a(a_{_x)lJrl/a — aqgltl/a

it is easy to notice that

1
<

‘ a_l/a — (a + 1')_1/& <~ ml’ .

(20)
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Thus we obtain

sup oCY/ | [ = (1 + @)V I {Ux < 1}
0<t<1 P
< aCé/aZ‘Fgl/a — (4 2)~ Y
k=1
.%' 1/0{ e 1
< = - -
= aaCa ];Flirl/a
_ T e~ L
= aO'Ca ;Fk(a+1)/a

X
= ZoCMZ o,
o a+1

(63
atl”
and shift parameter zero (the series is a.s. convergent, see Samorodnitsky
and Taqqu [18]).

where 7 o is an stable random variable with skewness parameter one
«

d

A different approximation we get as r — o0.

\/% 2o (Yalt) - BY,(1)1) = B(t) 21

as x — oo weakly in the Skorokhod space D equipped with the uniform metric
where B is a standard Brownian motion.

Theorem 3

Proof: For z > 0“C,, processes Y,(t) — IEY, (1)t is a Lévy process with
the following characteristic function

Eexp(is(Ya(t) ~ EYa(U1) =exp | ¢ [ (€7~ 1~ isyT{ly] < 1}, (dy)
R\0

=exp |t / (eisy — 1 —isyI{ly| < 1})v(dy)

1 1
ly|l<oCz™a

1
Put e = 0cCg x*é then
2 UaCOéa 2—«
—
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Since lim,_,q 2 — 5 and by Prop. 2.2 and Th. 2.1 of Asmussen and

€
Rosinski [31] we have that o~ (€) (Y, (t) — EY,(1)t) = B(t) as € — 0 weakly
in the Skorokhod space D equipped with the uniform metric where B is a
standard Brownian motion. This finishes the proof.

O
4. Asymptotic behavior of the supremum tail distribution
of stochastic integrals
We will write g(u) = h(u) if lim, o % = 1. Let us notice that
Z(t)=A@)+Y(t), (22)
where
A(t) = oCYer Ve T{Uy <t} (23)
and
1/a oo —1/a .
oCa/ " > iy I Vi1 L{Ug+1 < t} ifa<l,
y()={ 7O i DI (Ui < 1) - o |
+BtoCq ln(aCl) if a=1,
oCa/ S [F,;j{ g1 I{Upsq <t} — 6tb,(€“)} ifl<a<?2.
(24)

Let us consider the following process

X(t) = / V(s)dZ(s), (25)
0

where V is a measurable stochastic process independent of the process Z
and

1
/EVQ(S) ds < 0. (26)
0
Moreover, we assume that
sup X (t) < oo a.s. (27)
t<1

Note that
dX(t) =V (s)dA(s) + V(s)dY(s).
Thus we are able to state the main result of this section which generalizes

the results of Samorodnitsky and Taqqu for the case V' being a deterministic
function to the case V being a stochastic process.
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Theorem 4 If a > 1, (26) and (27) are satisfied and
1 . 1
1 _
%ﬂ /]E[V+(s)]0‘ ds + Tﬁ /]E[V_(s)]“ ds >0
0 0

then

Proof: Using Lemma A.1 and Lemma A.2 we have that

P (suptgl fot V(s)dY(s) > u>

lim t ~0. (28)
R <supt§1 Jo V(s)dA(s) > u)
It is easy to see that
t t
P sup/V(s) dZ(s)>u| < P sup/V(s) dA(s)
t<1 t<1
0
¢
+sup/ V(s)dY (s) > u)
=

which by (28), Lemma A.2 and Lemma A.3 yields

P (suptgl fg V(s)dZ(s) > u

lim sup ;
u—oco Jp <supt§1 Jo V(s)dA(s) > u

— [N—
IN
—_

Similarly

P sup/V(s) dZ(s) >u ]| > P sup/V(s) dA(s)
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t
=1P (Sup/V(s) dA(s) — sup
t<1 t<1

0

t

- / V(s)dY(s)

and since the process —Y is of the form in (24) with 3 := —f it satisfies the
thesis of Lemma A.1 which yields

P (supt<1 [— fg V(s dY(s)} > u> .

lim =

R <5Upt<1 fo s) dA(s) > )

Hence using Lemma A.2 and Lemma A.3 we get

P (supy<, [ V(s)dZ(s) > u)
M P (supyey [y V(s) dA(s) > u)

v
—_

Corollary 1 Let the assumption of Th. /4 be satisfied and let d be a real
bounded function defined on [0,1]. Then

P (Stlgl)/V(s) dZ(s) + d(t) > u)

0
o 145 1 1 ]
= Ca [ 0/ E[V*(s)]*ds + 0/ .

Proof: Let M = sup,; d(t) and m = infy<; d(t). Thus

P (Sup/ V(s)dZ(s) +d(t) > u) <P (sup/V(s) dz(s) + M > u)
t<1 t<1

-0 0
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Since by Th. 4
t
P sup/V(s)dZ(s) +M>u

<1
0 1 / 1 /
& [y — M|~ 6°C,, %/]E[V+(s)]ads+ %/]E[V‘(s)]“ ds
0 0
1 1
&y goC, %/E[W(s)]adsﬂ%/E[v—(s)]a ds
0 0

Similarly we get for the lower bound which gives the thesis.

Case study 4.1 We can investigate the following process

:/BH(S)dZ(S) —ct,
0

where ¢ € IR, By is a standard fractional Brownian motion with 0 < H <'1
and Z is an a-stable Lévy motion with 1 < a < 2 and By is independent
of Z. Using Corollary 1 we get the exact asymptotic behavior of the so-called
finite time ruin probability of the process X

1
1
sup/BH )dZ(s) —ct>u | = u “0Cy %B/E[BE(S)]O‘CZS
<1 )
1 7 . 1
/ )%ds| = u “0Cy %B/E[BE(S)]O‘ ds
0 L 0
1—ﬁ + 1 - __ [e%
t—— ]E[BH(S)] ds| = qu o Co | E|Bg(s)|“ds
0 J
1
= —u aaaCa]E\BH(l)]a/saHds
0
25 (2t
= -u “0%Cy I) .
(14 aH)\/7
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Notice that this asymptotic probability does not depend on 3 because the
process By is symmetric.

Case study 4.2 Let us consider the following process

X(t) = / S(s) dZ(s) + d(t)
0

where d is a bounded function defined on [0, 1], S is a gamma Lévy process
with shape parameter a > 0 and scale parameter b > 0 that is S(1) has the
following density distribution function

(0 ify <0,
fly) = i v texp (—4) ify>0.

and Z is an a-stable Lévy motion with 1 < o < 2, 8 > —1 and S is
independent of Z. Using Corollary 1 we get

sup/S )dZ(s) +d(t) >

t<1

1
=y Y0“Cy “ds + —B/]E[S_(s)]o‘ ds
0

1
/ ;
0
1
0
1
_ e O‘C bo‘/ as—i—a

1—|—ﬂ
e aa Y! l
b Ca I'() /Basa) o

where B(z,y) (z > 0, y > 0) is beta function.
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5. Conclusions

In this paper we consider an a-stable Lévy process under condition on
the length of the largest jump. We show that under this condition a-
stable Lévy process can be decomposed into a Lévy process and a certain
simple process. This Lévy process can serve as an approximation of the
a-stable Lévy process and in other domain approximates Brownian motion.
Using this decomposition we investigate the distributional properties of a
stochastic integral. We show that the asymptotic distributional properties
of supremum of certain stochastic integrals are not far away from those of
the a-stable Lévy process that is the tails are also regularly varying. The in-
tegrand in the stochastic integrals driven by a-stable noise affects the value
of the pre-factor of the asymptotic function and the a-stable Lévy process
is responsible for the speed of the asymptotic behavior.

Appendix A

Here we present auxiliary results.
Lemma A.1 Let o > 1 and (26) and (27) be satisfied then

t

P sup/V(s) dY(s) >u | <u™2C,
<1
0

where C' is a positive constant.
Proof: First let us construct two stochastic processes. Let {T},}7°, and
T, {T}}32, be two iid sequences of exponential random variables with pa-
rameter equal 1 such that the sequences {1} }7° ., and {77}, are indepen-
dent. Let {v4}72, and {Ui}}2, be the sequences defined in Section 2 and
{7172, and {U}.}72, their independent copies and the sequences {T}}7° ,,
{30 oy {2y {UR}ys {7}, and {U.}72, are independent. Put
N=I=T,Iy=%, T and I}, =Ty + Y ,_,T]. Let us define pro-
cess Y as in (24) using the sequences {I}}72, {1 }ro, and {Ux}32, and
similarly process Y using the sequences {I7,}%2 , {7,.}%2, and {U.}?2,. No-
tice that the processes Y and Y’ are not independent but under condition
I't = I'| = x these two processes are independent. Thus the process Y, — Y,
is a symmetric Lévy process which implies by Theorem 1 that this process
is a square integrable martingale.

By independence V' of Z note that (we can assume that the process V
is independent of (Y,Y”))
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=Ey O/]P(il_lyl)o/v(s) d(Yy(s) = Y.(s)) >u)e Tdx,

where [Ey is expectation with respect to V and v is a trajectory of V. By
(26) 01 v%(s) ds < 0o a.s. Hence we get that fg v(s)d(Yz(s) — Y/(s)) is also
a martingale and

1
B | [ o) dvils) - Vi(s)
0

0
1
= 2Vaer(1)/v2(s) ds. (A1)
0

Since the process fgv(s) d(Yz(s) — Y)(s) is a martingale [f(f v(s)d(Yy(s) —
Y/(s)]? is a submartingale thus by Doob inequality for submartingales (see
e.g. Ethier and Kurtz [32] Prop. 2.16) we get



Asymptotic Behavior of Anomalous Diffusions . .. 1843

1 2
<u’E /v(s) d(Y,(s) = Y/!(s))
' 1
= u"22VarY,(1) [ v*(s)ds, (A.2)
[

where in the last line we used (A.1).
Now we consider the general case. Using (A.2) for M > 0 we obtain

1
2 VarY,(1) / v?(s)ds
0

> limsup(u — M)?P | sup [ v(s)d(Yy(s) — Y.(s)) >u— M
t<1

U—00

o

= limsup(u — M)?P | sup

o

v(s)dY,(s) — /v(s)de/(s) >u—M
0

U—00 t<1
t t
> limsup(u — M)*IP sup/v(s)dYx(s) > u,sup/v(s)lef(s) <M
U—00 t<1 9 t<1

¢
x limsup (u — M)*IP sup/v(s)dYx(s) >u

U—00 t<1

)

where in the last line we used independence of the processes Y, and Y. By

t
(27) sup;<; [V (s)dY'(s) < oo a.s. thus using the last inequalities we get
0

U—00 t<1

1
lim sup u? IP sup/v(s) dY;(s) >u | <2VarY,(1) /02(3) ds
0 0
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for x > 0 a.e. and almost all v. Hence for ¢ > 0 and sufficiently large u we
have

t 1
SU S S U u? ar 2(s)ds +e).
P sp0/v<>dyx<>> <u?@2V Ym<1>0/1Ev<>d+>

Since [;° VarY,(1)e * dx < oo by (17) for o > 1 thus we obtain

t

[ 1
P sup/V(s)dY(s) >u | <u™? 2/VarYx(1)exdx/]EVQ(s)ds—i—e
<1
T 0 0 0

for sufficiently large u which gives

I sup/V(s) dY(s) >u | <u™2C
t<1
0

for all w > 0 and C is a positive constant. This finishes the proof.

Now let us consider the first term of the integral (25).

Lemma A.2 Let A be the stochastic process defined in (23) and
1 ; 1 i
%ﬁ /]E[V+(s)]0‘ ds + %ﬁ /IE[V_(S)]O‘ ds > 0.
0 0

Then

Proof: Note that

t
/V(S)dA(S) = oCYor V() H{U, < t).
0
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t<1

¢
P (sup/V(s)dA(s) > u) =P (supJCé/o‘Fll/a%V(Ul)I{Ul <t} > u)
t<1

0

1
+1;/]P(UC}/°‘F11/QV(S) > u)ds

0

10, / 1 — exp(—u—"0"Cia v~ (5)]%)]ds . (A3)

Let us notice that for x > 0 |1 —e™® — x| < 2%/2 and [1 —e™® — 2| <
1 —e™®| +|z| =1 —e® 4+ 2 < 22 which yields |1 — e™® — 2| < 22'"° where
0 <6 <1 Thus

1
Ey [ [1—exp(—u%0®Ca[vt(s)]*)] ds — Ev /uaaaCa [vT ()] ds
0

O\H

1
]EV/ [1 —exp(—u~%0“CyuvT(5)]*) — u™“0*Cy v (s)]*] ds
0

( —agec 1+5E / a(1+5
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1
= 2(u"Y0C,) / E[V*(s)]*1+9 ds,
0

where we take a(1 + ) < 2 and hence fol E[V+(5)]*1%9) ds < oo by (26).
Thus from the last computations it follows that

1 1
Ey /[1 — exp(—u_aJO‘Ca[v+(s)]a)] ds = u_O‘JO‘C'a/]E[V+(S)]O‘ ds.
0 0

Similarly we obtain for the second term in (A.3) that

1 1
Ey /[1 —exp(—u “0%Culv (5)]%)]ds Zu“c*C, /E[V(s)]a ds
0 0

which finishes the proof.

It is easy to prove the following lemma.

Lemma A.3 Suppose that X is a random variable with a reqularly varying
tail with index 8 > 0 and T is a non-negative random variable such that

. P(T>uw)
lim ——~ =
u—oo IP(X > u)
Then
1.]P(X+T>u) . P(X—-T>u)
m —7 = _

= =1.
woso . P(X >u)  umee P(X > )

Proof: See e.g. Samorodnitsky and Taqqu [18] Lemma 4.4.2.

REFERENCES

[1] E-W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965).
[2] H. Scher, E.-W. Montroll, Phys. Rev. B12, 2455 (1975).
[3] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000).

[4] S. Mercik, K. Weron, K. Burnecki, A. Weron, Acta Phys. Pol. B 34, 3773
(2003).



5]
16]
7]
18]
19]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
[18]

[19]
[20]
21]
22]
23]
[24]
[25]
[26]
[27]
28]
29]

[30]

31]
32]

Asymptotic Behavior of Anomalous Diffusions . .. 1847

B. Dybiec, E. Gudowska-Nowak, Acta Phys. Pol. B 37, 1479 (2006).

M. Magdziarz, A. Weron, Phys. Rev. E75, 056702 (2007).

A. Weron, M. Magdziarz, K. Weron, Phys. Rev. E77, 036704 (2008).

M. Magdziarz, K. Weron, Acta Phys. Pol. B 37, 1617 (2006).

B. Dybiec, E. Gudowska-Nowak, P. Hinggi, Phys. Rev. E73, 046104 (2006).
B. Dybiec, E. Gudowska-Nowak, P. Hanggi, Phys. Rev. E75, 021109 (2007).
B. Dybiec, E. Gudowska-Nowak, Fluct. Noise Lett. 4, L273 (2004).

R. Weron, J. Modern Phys. C12, 200 (2001).

K. Burnecki, A. Weron, Acta Phys. Pol. B 35, 1443 (2004).

Z. Michna, Probab. Math. Statist. 25, 173 (2005).

M. Magdziarz, P. Mista, A. Weron, Acta Phys. Pol. B 38, 1647 (2007).

A. Janicki, A. Weron, Simulation and Chaotic Behavior of a—Stable Stochastic
Processes, Marcel Dekker, New York 1994.

O. Kallenberg, Foundations of Modern Probability, Springer, New York 1997.

G. Samorodnitsky, M. Taqqu, Non—Gaussian Stable Processes: Stochastic
Models with Infinite Variance, Chapman and Hall, London 1994.

H. Hult, F. Lindskog, Ann. Probab. 35, 309 (2007).

J.M.P. Albin, Stat. Probab. Lett. 16, 219 (1993).

E. Willekens, Stoch. Proc. Appl. 26, 173 (1987).

M. Braverman, Stoch. Proc. Appl. 68, 265 (1997).

M. Braverman, Stat. Prob. Lett. 43, 41 (1999).

M. Braverman, G. Samorodnitsky, Stoch. Proc. Appl. 56, 207 (1995).
Z. Michna, A. Weron, Acta Phys. Pol. B 38, 1881 (2007).

J. Rosinski, G. Samorodnitsky, Ann. Prob. 21, 996 (1993).

R. LePage, Lect. Notes Math. 860, 279 (1980).

Z. Michna, Studia Math. 180, 1 (2007).

J. Rosinski, Lévy Processes — Theory and Applications, Eds O.E. Barndorff-
Nielsen, T. Mikosch, S. Resnick, Birkh&user, Boston 2001, p. 401.

Ph. Protter, Stochastic Integration and Differential Equations, Springer, New
York 1990.

S. Asmussen, J. Rosinski, J. Appl. Probab. 38, 482 (2001).

S. Ethier, T. Kurtz, Markov Processes. Characterization and Convergence,
John Wiley, New York 1986.



