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The gravitational field exterior respectively interior to an axially sym-
metric, metrically stationary, isolated spinning source made of perfect fluid
is examined within the quasi-metric framework. (A metrically stationary
system is defined as a system which is stationary except for the direct
effects of the global cosmic expansion on the space-time geometry.) Field
equations are set up and solved approximately for the exterior part. To low-
est order in small quantities, the gravitomagnetic part of the found metric
family corresponds with the Kerr metric in the metric approximation. On
the other hand, the gravitoelectric part of the found metric family includes
a tidal term characterized by the free quadrupole-moment parameter J2

describing the effect of source deformation due to the rotation. This term
has no counterpart in the Kerr metric. Finally, the geodetic effect for a gy-
roscope in orbit is calculated. There is a correction term, unfortunately
barely too small to be detectable by Gravity Probe B, to the standard
expression.

PACS numbers: 04.50+h, 04.80.Cc

1. Introduction

Sources of gravitation do as a rule rotate. The rotation should in it-
self gravitate and thus affect the associated gravitational fields. In General
Relativity (GR) this is well illustrated by the Kerr metric describing the
gravitational field outside a spinning black hole. More generally, for cases
where no exact solutions exist, it is possible to find numerical solutions of the
full Einstein equations, both interior and exterior to a stationary spinning
source made of perfect fluid with a prescribed equation of state. Besides, on
a more analytical level, weak field and slow angular velocity approximations
are useful to show the dominant effects of rotation on gravitational fields.

(1849)
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Such approximations may be checked for accuracy against numerical calcu-
lations of the full Einstein equations. See, e.g., [1] for a recent review of
rotating bodies in GR.

Similarly, in any realistic alternative theory of gravity it must be possible
to calculate the effects of rotation on gravitational fields. In particular this
applies to quasi-metric gravity (the quasi-metric framework is described in
detail elsewhere [2, 3]). In this paper, equations relevant for a metrically
stationary, axially symmetric, isolated system in quasi-metric gravity are
set up and a first attempt is made to find solutions. The paper is organized
as follows. Sec. 2 contains a brief survey of the quasi-metric framework.
In Sec. 3, the relevant equations are set up and the gravitational field out-
side a metrically stationary, axially symmetric, isolated spinning source in
quasi-metric gravity is calculated approximately and compared to the Kerr
metric. In the limit of no rotation, one gets back the spherically symmetric,
metrically static case treated in [4] if the source cannot support shear forces.
In Sec. 4 we calculate the geodetic effect for a gyroscope in orbit within the
quasi-metric framework. Sec. 5 contains some concluding remarks.

2. Quasi-metric gravity described succinctly

Quasi-metric relativity (QMR), including its current observational sta-
tus, is described in detail elsewhere [2–4]. Here we give a very brief survey
and include only the formulae needed for calculations.

The basic idea which acts as a motivation for postulating the quasi-metric
geometrical framework is that the cosmic expansion should be described as
an inherent geometric property of quasi-metric space-time itself and not as
a kinematical phenomenon subject to dynamical laws. That is, in QMR,
the cosmic expansion is described as a general phenomenon that does not
have a cause. This means that its description should not depend on the
causal structure associated with any semi-Riemannian manifold. Such an
idea is attractive since in this way, one should be able to avoid the in princi-
ple enormous multitude of potential possibilities, regarding cosmic genesis,
initial conditions and evolution, present if space-time is modeled as a semi-
Riemannian manifold. Therefore, one expects that any theory of gravity
compatible with the quasi-metric framework is more predictive than any
metric theory of gravity when it comes to cosmology.

The geometric basis of the quasi-metric framework consists of a 5-dimen-
sional differentiable product manifold M×R1, where M = S×R2 is a (glob-
ally hyperbolic) Lorentzian space-time manifold, R1 and R2 are two copies
of the real line and S is a compact Riemannian 3-dimensional manifold
(without boundaries). The global time function t is then introduced as a co-
ordinate on R1. The product topology of M implies that once t is given,
there must exist a “preferred” ordinary time coordinate x0 on R2 such that
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x0 scales like ct. A coordinate system on M with a global time coordinate of
this type we call a global time coordinate system (GTCS). Hence, expressed
in a GTCS {xµ} (where µ can take any value 0 − 3), x0 is interpreted as
a global time coordinate on R2 and {xj} (where j can take any value 1–3) as
spatial coordinates on S. The class of GTCSs is a set of preferred coordinate
systems inasmuch as the equations of QMR take special forms in a GTCS.

The manifold M×R1 is equipped with two degenerate 5-dimensional
metrics ḡt and gt. By definition the metric ḡt represents a solution of
field equations, and from ḡt one can construct the “physical” metric gt

which is used when comparing predictions to experiments. To reduce the
5-dimensional space-time M×R1 to a 4-dimensional space-time, we just
slice the 4-dimensional sub-manifold N determined by the equation x0 = ct
(using a GTCS) out of M×R1. It is essential that there is no arbitrariness
in this choice of slicing. That is, the identification of x0 with ct must be
unique since the two global time coordinates should be physically equiva-
lent; the only reason to separate between them is that they are designed
to parameterize fundamentally different physical phenomena. Note that S
is defined as a compact 3-dimensional manifold to avoid ambiguities in the
slicing of M×R1.

Moreover, in N , ḡt and gt are interpreted as one-parameter metric
families. Thus by construction, N is a 4-dimensional space-time manifold
equipped with two one-parameter families of Lorentzian 4-metrics parame-
terized by the global time function t. This is the general form of the quasi-
metric space-time framework. We will call N a quasi-metric space-time

manifold. The reason why N cannot be represented by a semi-Riemannian
manifold is that the affine connection compatible with any metric family is
non-metric; see [2, 3] for more details.

From the definition of quasi-metric space-time we see that it is con-
structed as consisting of two mutually orthogonal foliations: on the one
hand space-time can be sliced up globally into a family of 3-dimensional
space-like hypersurfaces (called the fundamental hypersurfaces (FHSs)) by
the global time function t, on the other hand space-time can be foliated
into a family of time-like curves everywhere orthogonal to the FHSs. These
curves represent the world lines of a family of hypothetical observers called
the fundamental observers (FOs), and the FHSs together with t represent
a preferred notion of space and time. That is, the equations of any the-
ory of gravity based on quasi-metric geometry should depend on quantities
obtained from this preferred way of splitting up space-time into space and
time.

The metric families ḡt and gt may be decomposed into parts respec-
tively normal to and intrinsic to the FHSs. The normal parts involve the
unit normal vector field families n̄t and nt of the FHSs, with the property
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ḡt(n̄t, n̄t) = gt(nt,nt) = −1. The parts intrinsic to the FHSs are the spatial
metric families h̄t and ht, respectively. We may then write

ḡt = −ḡt(n̄t, ·)⊗ḡt(n̄t, ·) + h̄t , (1)

and similarly for the decomposition of gt. Moreover, expressed in a GTCS,
n̄t may be written as (using the Einstein summation convention)

n̄t ≡ n̄µ
(t)

∂

∂xµ
= N̄−1

t

( ∂

∂x0
− t0

t
N̄k ∂

∂xk

)

, (2)

where t0 is an arbitrary reference epoch, N̄t is the family of lapse functions
of the FOs and (t0/t)N̄

k are the components of the shift vector field family
of the FOs in (N , ḡt). (A similar formula is valid for nt.) Note that in the
rest of this paper we will use the symbol ‘⊥̄’ to mean a scalar product with
−n̄t. A useful quantity derived from N̄t is the 4-acceleration field āF of
the FOs in (N , ḡt) which is a quantity intrinsic to the FHSs. Expressed in
a GTCS, āF is defined by its components

c−2āFj ≡
N̄t,j
N̄t

, ȳt ≡ c−1
√

āFkā
k
F , (3)

where its norm is given by cȳt and where a comma denotes partial derivation.
For reasons explained in [2,3], the form of ḡt is restricted such that it con-

tains only one dynamical degree of freedom. That is, gravity is required to
be essentially scalar in (N , ḡt). Besides, the geometry of the FHSs is defined
to represent a gravitational scale as measured in atomic units. Therefore ḡt

takes an even more restricted form. And expressed in a GTCS (where the
spatial coordinates do not depend on t), the most general form allowed for
the family ḡt is represented by the family of line elements (this may be taken
as a definition)

ds
2
t =

[

N̄sN̄
s − N̄2

t

]

(

dx0
)2

+ 2
t

t0
N̄idx

idx0 +
t2

t20
N̄2

t Sikdx
idxk , (4)

where Sikdx
idxk is the metric of the 3-sphere S3 (with radius equal to ct0)

and N̄i ≡ N̄2
t SikN̄

k. Note that the form of ḡt is strictly preserved only under
coordinate transformations between GTCSs where the spatial coordinates do
not depend on t. (However, if one transforms to a GTCS where the new

spatial coordinates x′j do depend on t, but also fulfill the scaling conditions
∂
∂t

∂x′j

∂xi = 0, ∂
∂t

∂x′j

∂x0 = −1
t

∂x′j

∂x0 , the line element family expressed in such
a GTCS may still be taken to be of the form (4), since the extra terms
induced in the line element family and in the affine connection influence
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neither the field equations nor the equations of motion.) Also note that, by
formally setting t/t0 = 1 and replacing the metric of the 3-sphere with an
Euclidean 3-metric in equation (4), we get a single metric which represents
the correspondence with metric gravity. By definition this so-called metric

approximation is possible whenever a correspondence with metric theory can
be found by approximating tensor field families by single tensor fields not
depending on t.

Field equations from which N̄t and N̄ j can be determined are given as
couplings between projections of the Ricci tensor family R̄t and the active
stress-energy tensor T t. The field equations read (using a GTCS)

2R̄(t)⊥̄⊥̄ = 2(c−2āi
F|i + c−4āFiā

i
F − K̄(t)ikK̄

ik
(t) + £n̄t

K̄t)

= κ(T(t)⊥̄⊥̄ + T̂ i
(t)i) , (5)

R̄(t)j⊥̄ = K̄i
(t)j|i − K̄t,j = κT(t)j⊥̄ , (6)

where £n̄t
denotes Lie derivation in the direction normal to the FHS and

K̄t is the extrinsic curvature tensor family (with trace K̄t) of the FHSs.
Moreover, κ≡ 8πG/c4, a “hat” denotes an object projected into the FHSs
and the symbol ‘|’ denotes spatial covariant derivation. The value of G is
by convention chosen as that measured in a (hypothetical) local gravita-
tional experiment in an empty universe at epoch t0. Note that all quantities
correspond to the metric family ḡt.

It is useful to have an explicit expression for K̄t, which may be calculated
from equation (4). Using a GTCS we find

K̄(t)ij =
t

2t0N̄t
(N̄i|j + N̄j|i) +

(

N̄t,⊥̄
N̄t

− t0
t
c−2āFk

N̄k

N̄t

)

h̄(t)ij , (7)

K̄t =
t0
t

N̄ i
|i

N̄t
+ 3

(

N̄t,⊥̄
N̄t

− t0
t
c−2āFk

N̄k

N̄t

)

. (8)

It is also convenient to have explicit expressions for the curvature intrinsic
to the FHSs. From equation (4) one easily calculates

H̄(t)ij = c−2
(

āk
F|k −

1

N̄2
t t

2

)

h̄(t)ij − c−4āFiāFj − c−2āFi|j , (9)

P̄t =
6

(N̄tct)2
+ 2c−4āFkā

k
F − 4c−2āk

F|k , (10)

where H̄ t is the Einstein tensor family intrinsic to the FHSs in (N , ḡt).

The coordinate expression for the covariant divergence of T t, i.e.,
⋆

∇̄·T t,
reads

T ν
(t)µ∗̄ν ≡T ν

(t)µ;ν + c−1T 0
(t)µ∗̄t , (11)
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where the symbol ‘∗̄’ denotes degenerate covariant derivation compatible
with the family ḡt and a semicolon denotes metric covariant derivation in
component notation. Moreover, assuming that there is no local matter cre-
ation, we have

T 0
(t)µ∗̄t = − 2

N̄t

(

1

t
+
N̄t,t
N̄t

)

T(t)⊥̄µ . (12)

We also have

T ν
(t)µ;ν = 2

N̄t,ν
N̄t

T ν
(t)µ = 2c−2āFiT̂

i
(t)µ − 2

N̄t,⊥̄
N̄t

T(t)⊥̄µ , (13)

which, together with equations (11) and (12), constitute the local conserva-
tion laws in QMR. Note that even the metric approximation of equation (13)
is different from its counterpart in metric gravity.

To construct gt from ḡt we need the 3-vector field family vt. Expressed
in a GTCS vt by definition has the components [2, 3]

vj
(t) ≡ ȳtb

j
F , v = ȳt

√

h̄(t)ikb
i
Fb

k
F , (14)

where v is the norm of vt and bF is a 3-vector field found from the equations

[

āk
F|k + c−2āFkā

k
F

]

bjF −
[

āj
F|k + c−2āFkā

j
F

]

bkF − 2āj
F = 0 . (15)

We now define the unit vector field ēb ≡ t0
t ē

i
b

∂
∂xi and the corresponding co-

vector field ēb ≡ t
t0
ēbidx

i along bF . Then we have [2,3]

g(t)00 =

(

1 − v2

c2

)2

ḡ(t)00 , (16)

g(t)0j =

(

1 − v2

c2

)[

ḡ(t)0j +
t

t0

2v
c

1 − v
c

(ēibN̄i)ē
b
j

]

, (17)

g(t)ij = ḡ(t)ij +
t2

t20

4v
c

(1 − v
c )2

ēbi ē
b
j . (18)

These formulae define the transformation ḡt→gt. Notice that we have elim-
inated any possible t-dependence of N̄t in equations (16)–(18) by setting
t= x0/c where it occurs. This implies that N does not depend explicitly on t.
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3. Metrically stationary, axially symmetric systems

In this section we examine the gravitational field interior respectively
exterior to an isolated, axially symmetric, spinning source made of perfect
fluid. We require that the rotation of the source should have no time de-
pendence apart from the effects coming from the global cosmic expansion.
Besides, as for the spherically symmetric, metrically static case treated in [4],
we require that the only time dependence of the gravitational field is via the
cosmic scale factor. (See the appendix where it is shown that we can ne-
glect any net translatory motion of the source with respect to the cosmic
rest frame without loss of generality.) But contrary to the metrically static
case, there is a non-zero shift vector field present due to the rotation of the
source. However, we require that a GTCS can be found where N̄t and N̄j

are independent of x0 and t. We call this a metrically stationary case.
The axial symmetry can be directly imposed on equation (4). Introduc-

ing a spherical GTCS {x0, ρ, θ, φ} where ρ is an isotropic radial coordinate
and where the shift vector field points in the negative φ-direction, N̄t and
N̄φ do not depend on φ and equation (4) takes the form

ds
2
t =
[

N̄φN̄
φ−N̄2

t

]

(dx0)2+2
t

t0
N̄φdφdx

0+
t2

t20
N̄2

t





dρ2

1− ρ2

Ξ2

0

+ρ2dΩ2



 , (19)

where dΩ2 ≡ dθ2 + sin2θdφ2, Ξ0 ≡ ct0 and 0≤N̄tρ < Ξ0. The range of ρ is
limited for both physical and mathematical reasons; truly isolated systems
cannot exist in quasi-metric gravity [4]. That is, nontrivial global solutions
of the field equations on S3 for isolated systems do not exist, according to the
maximum principle applied to closed Riemannian manifolds. However, for
some isolated systems QMR allows exact “semiglobal” solutions on half of

S3 (with reasonable boundary conditions). Since the half of S3 is an open
manifold (with boundary), the maximum principle does not disallow such
solutions.

Using the definition B̄≡ N̄2
t , equation (19) may conveniently be rewrit-

ten in the form

ds
2
t = B̄

[

− (1 − V̄ 2ρ2sin2θ)(dx0)2 + 2
t

t0
V̄ ρ2sin2θdφdx0

+
t2

t20

(

dρ2

1 − ρ2

Ξ2

0

+ ρ2dΩ2

)]

, (20)

where

V̄ ≡ N̄φ

B̄ρ2sin2θ
. (21)
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Simple expressions for the non-vanishing components of the extrinsic curva-
ture tensor family may be found from equations (7), (20) and (21). They
read (note that the trace K̄t vanishes)

K̄(t)ρφ = K̄(t)φρ =
t

2t0

√

B̄ρ2sin2θV̄ ,ρ ,

K̄(t)θφ = K̄(t)φθ =
t

2t0

√

B̄ρ2sin2θV̄ ,θ . (22)

The unknown quantities B̄(ρ, θ) and V̄ (ρ, θ) may now in principle be calcu-
lated from the field equations and local conservation laws.

3.1. The interior field

We will now set up the general field equations interior to the source,
which is modelled as a perfect fluid. However, no attempt will be made to
find a solution. To begin with we consider T t for a perfect fluid

T t = (ρ̃m + c−2p̃)ūt⊗ūt + p̃ḡt , (23)

where ρ̃m is the active mass-energy density in the local rest frame of the
fluid and p̃ is the active pressure. Furthermore, ūt is the 4-velocity vector
family in (N , ḡt) of observers co-moving with the fluid. It is useful to set up
the general formula for the split-up of ūt into pieces respectively normal to
and intrinsic to the FHSs:

ūt = γ̄
⋆

(cn̄t + w̄t) , γ̄
⋆

≡
(

1 − w̄2

c2

)− 1

2

, (24)

where w̄t (with norm w̄) is the 3-velocity family with respect to the FOs.
Note that due to the axial symmetry, w̄t points in the ±φ-direction. More-
over, by definition the quantity ρm is the passive mass-energy density as
measured in the local rest frame of the fluid and p is the passive pressure.
The relationship between ρ̃m and ρm is given by

ρm =







t0
t N̄

−1
t ρ̃m for a fluid of material particles ,

t2
0

t2
N̄−2

t ρ̃m for the electromagnetic field ,
(25)

and a similar relationship exists between p̃ and p. The reason why the
relationship between ρ̃m and ρm is different for a null fluid than for other
perfect fluid sources is that gravitational or cosmological spectral shifts of
null particles influence their passive mass-energy but not their active mass-
energy.
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The next step is to use equations (23) and (24) to find suitable expres-
sions for the source terms of the field equations (5) and (6). We find

T(t)⊥̄⊥̄ + T̂ i
(t)i = γ̄

⋆
2

(

1 +
w̄2

c2

)

(ρ̃mc
2 + p̃) + 2p̃

≡ t20
t2B̄

[

γ̄
⋆
2

(

1 +
w̄2

c2

)

(

ρ̄mc
2 + p̄

)

+ 2p̄

]

, (26)

where ρ̄m is the coordinate volume density of active mass and p̄ is the asso-
ciated pressure. Moreover, we find (assuming that the source rotates in the
positive φ-direction)

T(t)⊥̄φ = γ̄
⋆
2 w̄(t)φ

c
(ρ̃mc

2 + p̃) =
t0

t
√
B̄
γ̄
⋆
2ρsinθ

w̄

c
(ρ̄mc

2 + p̄) . (27)

The nontrivial parts of the local conservation laws (13) yield

p̄,ρ = −
[

ρ̄mc
2 − 3p̄ − γ̄

⋆
2V̄ ρsinθ

w̄

c
(ρ̄mc

2 + p̄)
]B̄,ρ

2B̄
+ γ̄

⋆
2ρ−1 w̄

2

c2
(ρ̄mc

2 + p̄),

p̄,θ = −
[

ρ̄mc
2 − 3p̄ − γ̄

⋆
2V̄ ρsinθ

w̄

c
(ρ̄mc

2 + p̄)
]B̄,θ

2B̄
+ γ̄

⋆
2cotθ

w̄2

c2
(ρ̄mc

2 + p̄).

(28)

Note that the metrically stationary condition implies that one must have an
equation of state of the form p∝ρm since otherwise ρ̄m and p̄ cannot both
be independent of t.

We are now in position to set up the field equations (5), (6) for the system
in as simple as possible form. After calculating the necessary derivatives
and doing some simple algebra we find the two coupled partial differential
equations

(

1 − ρ2

Ξ2
0

)

B̄,ρρ +
1

ρ2
B̄,θθ +

2

ρ

(

1 − 3ρ2

2Ξ2
0

)

B̄,ρ +
cotθ

ρ2
B̄,θ

= B̄

{

ρ2sin2θ

[(

1 − ρ2

Ξ2
0

)

(V̄ ,ρ )2 +
1

ρ2
(V̄ ,θ )2

]

+κ

[

γ̄
⋆
2

(

1 +
w̄2

c2

)

(ρ̄mc
2 + p̄) + 2p̄

]

}

, (29)

(

1 − ρ2

Ξ2
0

)

V̄ ,ρρ +
1

ρ2
V̄ ,θθ +

[

4

ρ
− 5ρ

Ξ2
0

+ (1 − ρ2

Ξ2
0

)
B̄,ρ
B̄

]

V̄ ,ρ

+
[

3cotθ +
B̄,θ
B̄

] 1

ρ2
V̄ ,θ = 2κγ̄

⋆
2 w̄

c

(ρ̄mc
2 + p̄)

ρsinθ
. (30)
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Notice that the left hand side of equation (29) is equal to ∇2
s B̄, where ∇2

s

is the Laplacian compatible with the standard metric on S3 (with radius
equal to Ξ0).

To avoid problems with coordinate pathologies along the axis of rotation
it would probably be convenient to express equations (28)–(30) in Cartesian
coordinates rather than trying to solve them numerically as they stand.
However, due to their complexity no attempt to find an interior solution
will be made in this paper.

3.2. The exterior field

For illustrative purposes, let us first consider exact solutions of equation
(29) without source terms for the metrically static, axisymmetric case; we
may then set V̄ = 0. If we also insist that the solution B̄(ms)(ρ, θ) fulfils
the boundary condition B̄(ms)(Ξ0, θ) = 1 (which should not be taken to be
a realistic physical constraint, since true isolated systems do not exist in
QMR [4]), it turns out that the solution (on the half of S3) must take the
form

B̄(ms)(ρ, θ) = 1 − rs0
ρ

√

1 − ρ2

Ξ2
0

[

1 − J2
R̄2

2ρ2
(3cos2θ − 1)

]

, (31)

where J2 is the (static) quadrupole-moment parameter and the other quan-
tities are as in equation (32) below. It is clear that the source corresponding
to this solution is a body which has a nonspherical shape (oblate spheroid)
in absence of any rotation. Thus this body cannot be made of perfect fluid,
since the source material must be able to support shear forces. From the so-
lution (31) one is in principle able to construct the counterpart exact “physi-

cal” metric family g
(ms)
t using equations (14)–(18). However, the expressions

thus obtained are extremely complicated so we will not include them here.
A series expansion can be obtained from equation (41) below in the limit of
no rotation with a non-zero static quadrupole-moment parameter.

Returning to the metrically stationary, axisymmetric case; so far we
have not been able to find any exact exterior solution (where V̄ 6=const.)
of equations (29) and (30) (without sources). On the other hand, it is
straightforward to find the first few terms of a series solution. Whether or
not this series converges to a real solution on the half of S3 is not known. It
is plausible that it does, however, since in the limit of no rotation, the first
terms of the series are identical to those obtained by writing the solution
(31) as a series expansion.

The first few terms of the series solution is (for the case where the source
spins in the positive φ-direction):
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B̄(ρ, θ) = 1 − rs0
ρ

+
rs0ρ

2Ξ2
0

+ J2
R̄2rs0
2ρ3

(3cos2θ − 1)

+
r2s0a

2
0

2ρ4
(3sin2θ − 1) + · · · , (32)

V̄ (ρ, θ) = −rs0a0

ρ3

(

1 +
3rs0
4ρ

+ · · ·
)

, (33)

where J2 now is the rotationally induced quadrupole-moment parameter
and R̄ is the mean coordinate radius of the source. Furthermore, rs0 is the
Schwarzschild radius at epoch t0 defined from the Komar mass Mt0 [5, 6],
i.e., rs0 ≡ (2Mt0G)/c2 where

Mt0 ≡ c−2

∫ ∫ ∫

[

N̄t0(T(t0)⊥̄⊥̄ + T̂ i
(t0)i) − 2N̄φT(t0)⊥̄φ

]

√

h̄t0d
3x , (34)

and a0 is a length at epoch t0 defined from the angular momentum integral
Jt0 [6] (the integrals are in principle taken over the half of S3, but with no
contributions exterior to the source)

a0 ≡ Jt0

cMt0

, Jt0 ≡ c−1

∫ ∫ ∫

ψφT(t0)⊥̄φ

√

h̄t0d
3x . (35)

Here h̄t0 is the determinant of h̄t0 and ψ ≡ ∂
∂φ is a Killing vector field

associated with the axial symmetry. Note that Jt = t2/t20 Jt0 is the active
angular momentum of the source at epoch t. (The corresponding passive
angular momentum of the source is given by Lt = t/t0 Lt0 , where Lt0 =

c−1
∫ ∫ ∫

ψφT̄(t0)⊥̄φ

√

h̄t0d
3x, and where T̄t is the passive stress-energy tensor

in (N , ḡt).) We now insert equations (32) and (33) into equation (20).
Taking into account a relevant number of terms we get

dst
2

= −
(

1− rs0
ρ

+
rs0ρ

2Ξ2
0

+J2
R̄2rs0
2ρ3

(3cos2θ−1)− r2s0a
2
0

2ρ4
cos2θ+· · ·

)

(dx0)2

− 2
t

t0

(

1 − rs0
4ρ

+ · · ·
)

rs0a0

ρ
sin2θdφdx0

+
t2

t20

(

1 − rs0
ρ

+ · · ·
)





dρ2

1 − ρ2

Ξ2

0

+ ρ2dΩ2



 . (36)

To construct gt from ḡt we need to calculate the vector field bF from equation
(15) (āF and its derivatives may be found from equations (3) and (31)).
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These calculations get quite complicated so it is convenient to do them by
computer. The result is

bρF = ρ
(

1 − rs0
2ρ

− r2s0
4ρ2

+ J2
3R̄2

2ρ2
(3cos2θ − 1) − rs0ρ

4Ξ2
0

− r3s0
8ρ3

+
3rs0a

2
0

2ρ3
(3sin2θ − 2) − J2

3R̄2rs0
4ρ3

(3cos2θ − 1) + · · ·
)

, (37)

ρbθF = −3sin(2θ)

ρ

(

J2R̄2

(

1 − 3rs0
4ρ

+ · · ·
)

− 3rs0a
2
0

2ρ
+ · · ·

)

. (38)

Furthermore, we need the quantity v defined in equation (14). This may be
expressed by B̄ and its derivatives together with the components of bF . We
find

v =
c

2B̄

√

(

1 − ρ2

Ξ2
0

)

(B̄,ρ )2 + ρ−2(B̄,θ )2

√

(

1 − ρ2

Ξ2
0

)−1

(bρF )2 + (ρbθF )2

=
rs0c

2ρ

(

1 +
rs0
2ρ

+
r2s0
4ρ2

+
ρ2

2Ξ2
0

+
r3s0
8ρ3

− rs0ρ

2Ξ2
0

− J2
R̄2rs0
2ρ3

(3cos2θ − 1)

− rs0a
2
0

2ρ3
(3sin2θ + 2) + · · ·

)

. (39)

Finally, to do the transformation shown in equation (18) we need the quan-
tities ēbρ and ēbθ. Since ēbθ is equal to ρbθF to the accuracy calculated here, it is

sufficient to write down the expression for ēbρ. A straightforward calculation
yields

ēbρ =1 − rs0
2ρ

− r2s0
8ρ2

+
ρ2

2Ξ2
0

+
rs0ρ

4Ξ2
0

− r3s0
16ρ3

+J2
R̄2rs0
4ρ3

(3cos2θ − 1)+· · · , (40)

and the transformations (16)–(18) then yield, to desired accuracy

dst
2 = −

(

1 − rs0
ρ

− r2s0
2ρ2

+
rs0ρ

2Ξ2
0

+ J2
R̄2rs0
2ρ3

(3cos2θ − 1) − r2s0a
2
0

2ρ4
cos2θ

+
3r4s0
16ρ4

− r2s0
2Ξ2

0

+ · · ·
)

(dx0)2 − 2
t

t0

(

1 − rs0
4ρ

+ · · ·
)rs0a0

ρ
sin2θdφdx0

+
t2

t20

((

1 +
rs0
ρ

+
r2s0
ρ2

+ · · ·
) dρ2

1 − ρ2

Ξ2

0

+
(

1 − rs0
ρ

+O
(r3s0
ρ3

))

ρ2dΩ2
)

.(41)

Note that to O(r3s0/ρ
3) or higher, the spatial metric family ht is not diagonal

in these coordinates.
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It may be convenient to express the metric family (41) in an “almost
Schwarzschild” radial coordinate r defined by

r ≡ ρ

√

√

√

√1 − rs0
ρ

√

1 − ρ2

Ξ2
0

=
(

1 − rs0
2ρ

− r2s0
8ρ2

− r3s0
16ρ3

+
rs0ρ

4Ξ2
0

+ · · ·
)

ρ ,

ρ =
(

1 +
rs0
2r

+
r2s0
8r2

− rs0r

4Ξ2
0

+ · · ·
)

r . (42)

That is, to the order in small quantities considered in equation (41), at
epoch t0 the surface area of spheres centered on the origin is equal to 4πr2.
Expressed in the new radial coordinate (41) reads

dst
2 = −

(

1 − rs0
r

+
3r3s0
8r3

+
rs0r

2Ξ2
0

+ J2
R̄2rs0
2r3

(3cos2θ − 1)

(

1 − 3rs0
2r

)

− r2s0a
2
0

2r4
cos2θ − r4s0

16r4
− r2s0

2Ξ2
0

+ · · ·
)

(dx0)2

− 2
t

t0

(

1 − 3rs0
4r

+ · · ·
)

rs0a0

r
sin2θdφdx0

+
t2

t20

(

(

1+
rs0
r

+
r2s0
4r2

+
r2

Ξ2
0

+· · ·
)

dr2+r2
(

1+O
(r3s0
r3

))

dΩ2

)

. (43)

This expression represents the gravitational field outside an isolated, met-
rically stationary, axially symmetric spinning source made of perfect fluid
(obeying an equation of state of the form p∝ρm) to the given accuracy in
small quantities. Note in particular the presence of a tidal term contain-
ing the free parameter J2 describing the effect of source deformation due
to the rotation. This tidal term has a counterpart in Newtonian gravita-
tion. (However, to higher order there is also a term due to the rotation
itself, and this term has no counterpart in Newtonian gravitation.) The
existence of a tidal term means that the metric family (43) has built into
itself the necessary flexibility to represent the gravitational field exterior to
a variety of sources. That is, since the exact equation of state describing
the source is not specified, the effect of the rotation on the source and thus
its quadrupole-moment should not be exactly known either, since this effect
depends on material properties of the source. On the other hand, which is
well-known, no such flexibility is present in the Kerr metric, meaning that
the Kerr metric can only represent the gravitational field outside a source
which material properties are of no concern; e.g., a spinning black hole.
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4. The geodetic and Lense–Thirring effects

To calculate the predicted geodetic and Lense–Thirring effects within the
quasi-metric framework we can use the metric family (43) with some extra
simplifications.

We thus examine the behaviour of a small gyroscope in orbit around
a metrically stationary, axially symmetric, isolated source. We may assume
that the source is so small that any dependence on the global curvature of
space can be neglected. Furthermore, we assume that the exterior gravita-
tional field of the source is so weak that it can be adequately represented by
equation (43) with the highest order terms cut out, i.e.,

dst
2 = −

(

1 − rs0
r

+ J2
R̄2rs0
2r3

(3cos2θ − 1) + · · ·
)

(dx0)2

− 2
t

t0

rs0a0

r
sin2θdφdx0+

t2

t20

((

1+
rs0
r

+ · · ·
)

dr2+r2dΩ2
)

. (44)

In this section we calculate the predicted geodetic effect. In this case equa-
tion (44) can be simplified even further by assuming that the gravitational
field is spherically symmetric, i.e., that the spin of the source can be ne-
glected. We then set J2 = a0 = 0 in equation (44) and it takes the form

dst
2 = −B(r)(dx0)2 +

t2

t20

(

A(r)dr2 + r2dΩ2
)

, (45)

where A(r) and B(r) are given as series expansions from equation (44) (with
spin parameters neglected).

Our derivation of the geodetic effect in QMR will be a counterpart to
a similar calculation valid for GR and presented in [7]. To simplify calcula-
tions we assume that the gyroscope orbits in the equatorial plane and that
the orbit is a circle with constant radial coordinate r = R. Furthermore,
the gyroscope has spin St and 4-velocity ut. Then the norm S∗≡

√
St·St is

constant along its world line and, moreover, normal to ut, i.e.

St·ut = 0 , ⇒ S(t)0 = −S(t)i
dxi

dx0
. (46)

The equation of motion for the spin St is the equation of parallel transport
along its world line in quasi-metric space-time, i.e.

∇
⋆

utSt = 0 , ⇒
dSµ

(t)

dτt
= −Γ

⋆
µ

λνS
λ
(t)u

ν
(t) −Γ

⋆
µ

λtS
λ
(t)

dt

dτt
. (47)

Next we define the angular velocity of the gyroscope. This is given by

Ωt ≡ dφ
dt = c dφ

dx0 . Thus uφ
(t) ≡

dφ
dτt

= c−1Ωt
dx0

dτt
. Now a constant of motion J
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for the orbit is given by the equation [3, 4] (using the notation ′ ≡ ∂
∂r )

t

t0
R2Ωt = B(R)Jc , J =

B′(R)R3

2B2(R)
, (48)

where the last expression is shown in [8]. Equations (48) then yield

Ωt =
t0
t

√

B′(R)

2R
c . (49)

Also, from the fact that ut·ut = −c2, we find

u0
(t) =

dx0

dτt
=

c
√

B(R) − 1
2B

′(R)R
, (50)

and using (50), equation (46) yields

S0
(t) =

t

t0
B−1(R)

√

1

2
B′(R)R3Sφ

(t) . (51)

We now insert the expressions found above into equation (47). (The relevant
connection coefficients can be found in [3] or [4].) Equation (47) then yields
a set of 2 coupled, first order ordinary differential equations of the form

d

dt

[ t

t0
Sr

(t)

]

= f(R)Sφ
(t) ,

d

dt

[ t

t0
Sφ

(t)

]

= −g(R)Sr
(t) , (52)

where the functions f(R), g(R) are given by

f(R) ≡ c

A(R)

(

√

1

2
B′(R)R −B−1(R)

√

1

8
B′3(R)R3

)

,

g(R) ≡
√

B′(R)

2R3
c . (53)

A solution of the system (52) can be found by computer. Assuming that
St points in the (positive) radial direction at epoch t0, the solution of (52)
reads

Sr
(t) =

t0
t
S∗A

−1/2(R)cos
[

ωSt0ln
( t

t0

)]

, (54)

Sφ
(t) = − t0

t

S∗Ωt0
√

A(R)RωS

sin
[

ωSt0ln
( t

t0

)]

, (55)
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where

ωS ≡
√

f(R)g(R) = A−1/2(R)

√

1 − B′(R)R

2B(R)
Ωt0 . (56)

After one complete orbit of the gyroscope t = t0 + (2π)/Ωt, and the angle
between St and a unit vector er in the radial direction is given by

α = arccos

(

St

S∗
·er

)

= ωSt0 ln

[

1 +
2π

Ωtt0

]

. (57)

The difference ∆φ between a complete circle of 2π radians and the angular
advancement of St will then be

∆φ = 2π − α = 2π

[

3rs0
4R

− πR

Ξ0

√

2R

rs0
+ · · ·

]

=
3πMt0G

c2R
− 2π2

t0

√

R3

Mt0G
+ . . . . (58)

We see that there is a quasi-metric correction term in addition to the usual
GR result. Unfortunately, the difference amounts only to about −5×10−5′′

per year for a satellite orbiting the Earth, i.e. the predicted correction is
too small by a factor about ten to be detectable by Gravity Probe B.

One may also calculate the Lense–Thirring effect for a gyroscope in polar
orbit, using equation (44). But except from the variable scale factor, the
off-diagonal term in (44) is the same as for the Kerr metric. Any correction
term to the Lense–Thirring effect should therefore depend on the inverse age
of the Universe and thus be far too small to be detectable. But notice that,
for a gyroscope in orbit around the Earth, there is also an extra contribution
term of the type shown in equation (58), to the geodetic effect coming from
the Earth’s orbit around the Sun. Numerically this correction term is similar
to the correction term found above.

5. Conclusion

In GR, very many exterior and interior solutions of Einstein’s equations
are possible in principle for axisymmetric stationary systems. The problem
is to find physically reasonable solutions where the exterior and interior
solutions join smoothly to form an asymptotically flat, global solution. Such
solutions would be candidates for modelling isolated spinning stars. And
although no exact solution having the desired properties has been found so
far, accurate analytical approximations exist, and also numerical solutions
of the full Einstein equations, see, e.g., [9].
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The quasi-metric counterpart to axially symmetric, stationary systems
in GR, is metrically stationary, axially symmetric systems. This research
subject is largely unexplored. However, this paper contains some basic re-
sults for such systems. That is, we have set up the relevant equations for
a metrically stationary, axially symmetric isolated source within the quasi-
metric framework, both interior and exterior to the source. A series solution
was found for the exterior part. The biggest difference between the found
solution and the Kerr metric is the presence of a term containing the free pa-
rameter J2 representing the quadrupole-moment of the source. Such a free
parameter is necessary to ensure sufficient flexibility so that the solution
does not unduly constrain the nature of the source. On the other hand, the
multipole moments of the Kerr metric are fixed. This means that, unlike
the Kerr metric, the metric family found in this paper may represent the
gravitational field exterior to a variety of sources. Besides, for the case when
the source is made of perfect fluid, in the limit where the rotation of the
source vanishes, the found metrically stationary, axially symmetric solution
becomes identical to the spherically symmetric, metrically static exterior
solution found in [4] (to the given accuracy). This means that, for a source
made of perfect fluid, its quadrupole-moment vanishes in the limit of no
rotation and that the source should be unable to support shear forces. Thus
for such a source, its quadrupole-moment is purely due to rotational defor-
mation. It is also possible that part of the source’s quadrupole-moment is
static, in which case the source cannot be made of perfect fluid. One possible
limit of no rotation is then given from equation (31).

Since the field equations (5), (6) in some sense represent only a subset
of the full Einstein equations [2, 3], one would expect that the number of
possible solutions of equations (29) and (30) (with and without sources) are
considerably smaller than for the GR counterpart. In particular, one would
expect that the number of unphysical solutions are much smaller, and since
the metric family ḡt is constrained to take the form (4), that the problem
of smooth matching between interior and exterior solutions would be more
or less absent. However, if this is correct will only be known from further
research.

Appendix A

Preferred frame effects are absent in QMR

Both in this paper and in [4] it is assumed that the gravitating source
has no net translatory motion with respect to the FOs. However, a given
object will usually have a non-zero velocity with respect to the cosmic rest
frame (i.e., a non-zero dipole moment in the cosmic microwave background
will in general be observed for observers being at rest with respect to the
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object). Since the FOs do not move on average with respect to the cosmic
rest frame it might be natural to assume that an isolated, gravitating source
could have a net translatory motion with respect to the FOs. This would
represent a “preferred frame” effect which might possibly be measurable.
However, as we shall see, an isolated source can never have a net translatory
motion with respect to the FOs in QMR, so there will be no preferred-frame
effects.

Let us consider an isolated, metrically stationary, gravitating source mov-
ing with constant speed Ū with respect to a GTCS where the cosmic substra-
tum is at rest on average. That is, the cosmic rest frame may be represented
by a cylindrical GTCS (x0, ξ′, z′, φ′) oriented such that the source moves in

the positive z′-direction with coordinate velocity dz′

dx0 = t0
t

Ū
c , where we for

simplicity have neglected the global curvature of the FHSs. This system has
axial symmetry and the shift vector field has a z′-component only, so from
equation (24) we find

w̄z′

(t) =
c

N̄t

(

dz′

dx0
+
t0
t
N̄ z′

)

, ⇒ N̄ z′ = − Ū − w̄

c
. (A.1)

The line element family (4) then takes the form (B̄≡ N̄2
t )

ds
2
t = B̄

[

−
(

1 − (Ū − w̄)2

c2

)

(dx0)2 − 2
t

t0

Ū − w̄

c
dz′dx0

+
t2

t20

(

dξ′
2
+ dz′

2
+ ξ′

2
dφ′

2
)]

. (A.2)

Here B̄ and w̄ are functions of x0, ξ′ and z′ but not of φ′. We now assume
that the stationary nature of the system makes it possible to eliminate the
dependence on x0 by making the coordinate transformation

ξ = ξ′ , z = z′ − t0
t

Ū

c
(x0 − x0

0) , φ = φ′ , (A.3)

where x0
0 is a constant. Holding t constant we find the coordinate differential

dz = dz′ − t0
t

Ū

c
dx0 ⇒ dz

dx0
=
dz′

dx0
− t0

t

Ū

c
= 0 , (A.4)

confirming that the source has no net velocity with respect to the new GTCS.
Using equation (A.4) we now write the metric family (A.2) on the form
(since the coordinate transformation (A.3) satisfies the scaling properties
mentioned in section 2, it makes no difference that t is held constant)

ds
2
t =B̄

[

−
(

1− w̄2

c2

)

(dx0)2 + 2
t

t0

w̄

c
dzdx0+

t2

t20

(

dξ2 + dz2 + ξ2dφ2
)]

, (A.5)



Metrically Stationary, Axially Symmetric, Isolated Systems in . . . 1867

where B̄ and w̄ are functions of ξ and z only. Note that the performed
coordinate transformation yields a new shift vector field pointing in the
z-direction with magnitude w̄/c. From equations (7), (8) and (A.5) we may
calculate the non-vanishing components of the extrinsic curvature tensor.
We find

K̄(t)zz =
t

t0

(
√

B̄
w̄,z
c

+
w̄

2c

B̄,z√
B̄

)

, K̄(t)ξz = K̄(t)zξ =
t

2t0

√

B̄
w̄,ξ
c
, (A.6)

K̄(t)ξξ =
t

2t0

w̄

c

B̄,z√
B̄
, K̄(t)φφ =

t

2t0

w̄

c

ξ2B̄,z√
B̄

, (A.7)

K̄t =
t0
t
B̄−1/2

( w̄,z
c

+
3w̄

2c

B̄,z
B̄

)

. (A.8)

Using equations (A.6), (A.7) and (A.8) we may now compute the necessary
quantities entering into the field equations (5), (6). After some calculations
the field equations yield

B̄,ξξ

B̄
+
(

1 − 3
w̄2

c2

)B̄,zz

B̄
+

3w̄2

2c2

(B̄,z
B̄

)2
+
B̄,ξ
ξB̄

−2
w̄w̄,zz

c2
− 2
(w̄,z
c

)2
− 2
(w̄,ξ
c

)2
− 4

B̄,z
B̄

w̄w̄,z
c2

= 0 , (A.9)

w̄,ξξ +

[

1

ξ
+

3

2

B̄,ξ
B̄

]

w̄,ξ −
B̄,z
B̄
w̄,z −

[

2B̄,zz

B̄
− 3
( B̄,z
B̄

)2
]

w̄ = 0 , (A.10)

w̄,ξz +
B̄,z
B̄
w̄,ξ +

[

2B̄,ξz

B̄
− 3

B̄,ξ B̄,z

B̄2

]

w̄ = 0 . (A.11)

Equations (A.9)–(A.11) are far too complicated to have any hope of finding
an exact solution. But what we can do is to look for a weak field solution.
That is, for weak field we can set (since by hypothesis, the FOs are at rest
with respect to the cosmic rest frame far away from the object)

B̄≈1 , w̄ = Ū − ǭ , |ǭ|≪1 , (A.12)

and neglect all non-linear terms in equations (A.9)–(A.11). Using equation
(A.12) the weak field versions of equations (A.9)–(A.11) then read

B̄,ξξ +

(

1 − 3
Ū2

c2

)

B̄,zz +
1

ξ
B̄,ξ +2

Ū

c2
ǭ,zz = 0 , (A.13)

1

Ū
ǭ,ξξ +2B̄,zz +

1

Ūξ
ǭ,ξ = 0 , ǭ,ξz = 2Ū B̄,ξz . (A.14)

Since ǭ is required to vanish far from the source, (A.14) yields

ǭ = 2Ū(B̄ − 1) , B̄,ξξ +B̄,zz +
1

ξ
B̄,ξ = 0 , (A.15)
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but this expression for ǭ inserted into equation (A.13) yields

B̄,ξξ +

(

1 +
Ū2

c2

)

B̄,zz +
1

ξ
B̄,ξ = 0 , (A.16)

which is inconsistent unless Ū = 0. Equations (A.9)–(A.11) thus have no
solution unless w̄ = 0 in which case the solution is equivalent to that of the
metrically static, axially symmetric case. That is, the gravitational field of
an isolated source does not depend on the source’s net motion with respect
to the cosmic rest frame; such motions may be neglected without loss of
generality.
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