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The Renyi entropies, Hl, of Hawking radiation contained in a thin shell
surrounding the black hole are evaluated. When the width of the shell
is adjusted to the energy content corresponding to the mass defect, the
Bekenstein–Hawking formula for the Shannon (S = H1) entropy of a black
hole is reproduced. This result does not depend on the distance of the
shell from the horizon. The Renyi entropies of higher order, however, are
sensitive to it.
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1. Introduction

We have shown recently [1] that the the Bekenstein–Hawking formula
for the entropy of a black hole [2, 3]

SM = 4πM2 (1)

can be obtained by evaluation of the entropy content of the Hawking radi-
ation in an adequately selected region (an infinitesimal spherical shell close
to the horizon) and integration of the result over the whole history of the
black hole. SM gives an important information about the probabilities pi of
the states ψi forming the black hole1. Indeed, when pi’s are introduced into
the general formula for entropy of a statistical system

S = −
∑

i

pi log pi (2)

they have to satisfy (1).

1 Throughout this paper we take G = ~ = 1.

(1869)
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To obtain more information about pi it is necessary to investigate other
quantities of similar nature. In [1] we discussed the Renyi entropies [4]
defined as

Hl = − 1

1 − l
logCl , (3)

where Cl are moments of pi (coincidence probabilities),

Cl =

Γ
∑

i=1

[pi]
l , (4)

where Γ is the total number of states of the system were evaluated.
It is not difficult to show that Hl’s are related to the standard (Shannon)

entropy S

S = H1 , (5)

where the r.h.s. must be understood as a limiting value of Hl when l → 1.
It was shown [1] that when the procedure leading to (1) is applied to

evaluation the Renyi entropies, one obtains

Hl =

(

1 +
1

l
+

1

l2
+

1

l3

)

SM

4
. (6)

This relation is identical to that satisfied by the Renyi entropies of the
ideal photon gas at equilibrium in the flat space [6].

The results (1) and (6) of [1] were obtained by evaluating the properties
of Hawking radiation close to the horizon of the black hole. In the present
paper we investigate the question how much these results change when one
considers the Hawking radiation at a certain distance from the horizon. To
this end we evaluated the Renyi entropies of Hawking radiation emitted into
a thin shell around the black hole. The radius r of the shell (in Schwarzschild
coordinates) is kept proportional to the radius ρ of the black hole

r = ρ/α , (7)

with α being a constant over the whole history of the black hole. With
this new assumption the argument of [1] is repeated: The width of the
shell is expressed in terms of the change of the mass of the black hole, as
determined from the amount of the energy emitted into the shell; The total
Renyi entropies are obtained by summing the contributions from the whole
history of the black hole.
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It is found that this procedure provides the correct Bekenstein–Hawking
formula (1) for H1, i.e. the entropy of the black hole [c.f. (5)]. This shows
that, indeed, the entropy of the black hole is encoded in the Hawking radi-
ation. This result does not depend on the parameter α, indicating that this
information is not necessarily attached to the horizon but it is contained
in the Hawking radiation anywhere around the black hole. It reflects the
simple fact that the entropy emitted by the black hole is conserved during
evolution of the Hawking radiation.

When the same procedure is applied to evaluate the Renyi entropies, the
result turns out not independent of α. As one moves out of the horizon of the
black hole (i.e. when α decreases from 1 towards 0), the Renyi entropies Hl

decrease substantially (by a factor of about 10). Thus the Renyi entropies
are not conserved when the Hawking radiation expands into the space out
of the black hole.

If one wants to identify the Renyi entropies of the Hawking radiation with
those of the black hole itself, it seems natural to take the values obtained by
considering the region close to the horizon. It is remarkable that in this case
our calculation gives the result which is identical to that of the free photon
gas in the flat space.

To summarize, we evaluate the Renyi entropies of the Hawking radia-
tion in a certain region of configuration space. This region is selected in such
a way that the standard Bekenstein–Hawking formula for entropy is recov-
ered. The same procedure is then employed for evaluation of other Renyi
entropies.

In the next section the general formulae for entropies of the photon
gas are given. The boundary conditions for the black hole are discussed
in Section 3. In Section 4 the volume left by the shrinking black hole is
estimated and expressed in terms of mass defect. The final formulae for the
Shannon and Renyi entropies are obtained in Section 5. Our conclusions are
listed in the last section. Evaluation of some relevant integrals is described
in the Appendix.

2. A general formula for Renyi entropies of the photon gas

The probability of having n1 photons in a state with energy ǫ1, n2 pho-
tons with energy ǫ2,... is given by

P (n1, n2, ...nM ) =

M
∏

m=1

(

1 − e−βǫm

)

e−βnmǫm , (8)

where β = 1/T and we have put the chemical potential to zero.
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The coincidence probabilities are

Cl =
∑

n1,n2,...

[P (n1, n2, ...nM )]l =
M
∏

m=1

(

1 − e−βǫm

)l

(1 − e−βlǫm)
. (9)

This gives for the Renyi entropies

Hl =
1

1 − l
logCl =−

M
∑

m=1

log
(

1 − e−βǫm

)

+
1

1 − l

M
∑

m=1

log

(

1 − e−βǫm

1 − e−βlǫm

)

. (10)

Finally, when the sum over photon states is replaced by an integral we have

Hl =

∫

d3pdV

(2π~)3
Wl(βǫ) , (11)

where dV is the volume element in configuration space, ǫ = ǫ(p) is the energy
of the photon of momentum p and

Wl(z) = − log(1 − e−z) +
1

1 − l
log

(

1 − e−z

1 − e−lz

)

. (12)

This formula (with the relation ǫ = p, valid in flat space) was derived in [6].

3. Boundary conditions for the black hole

Our problem now is to evaluate Hl for the radiation emitted by the black
hole of radius ρ into an infinitesimal layer around its surface. To this end
we first have to specify the physical meaning of the energy ǫ and of the
temperature T = 1/β in the case of the black hole. Assuming that the
emitted radiation is in equilibrium, we conclude that the temperature T is
a constant, provided ǫ is the energy conserved in the process2.

This identification implies that T should be taken as the Hawking tem-
perature

T = TH =
1

4πρ
=

1

8πM
. (13)

To perform the integration in (11) we have to determine the phase-space
volume.

2 Since the gravitational field outside of the black hole is static, the conserved energy
can be defined, c.f. [7], Chapter 88, and [8], Chapter 27.
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Consider first the configuration space. We begin by evaluation of the
contribution from a thin layer around the surface of the black hole. In
presence of the gravitational field the 3-dimensional volume element can be
expressed as

dV = ǫ0ijkdx
i
1dx

j
2
dxk

3 →
√

|g|uµǫµνλκdx
ν
1dx

λ
2dx

κ
3 , (14)

where uµ = dxµ/ds is the 4-velocity of the volume element and g is the
determinant of the metric tensor. For the volume element at rest we have

1 = uµuµ = (u0)2g00 → u0 = 1/
√
g00 . (15)

In terms of the Schwarzschild coordinates we thus obtain

dV = r2dr sin θdθdφ/
√
g00 , (16)

with

g00 = g00(r; ρ) = 1 − ρ/r = 1 − α , (17)

with α defined in (7).
Integration over the angular variables implies

dV = 4πr2dr/
√
g00 . (18)

At this point we observe that, as seen from (17), g00(ρ; ρ) = 0, i.e. the
formula (18) exhibits a singularity at r = ρ. Consequently, (17) can only be
applied at r > ρ. We shall show below that the final result does not depend
on this limitation.

Next step is to perform integration over momentum space. To this end
we observe that the wave length of the radiation emitted from a sphere of
radius ρ must be smaller than the diameter of the sphere [2, 9].

The condition λ = h/p ≤ 2ρ [2, 9], where λ is the wavelength, gives the
lower limit of integration

pmin =
h

2ρ
=
π~

ρ
. (19)

Since p is the true momentum of the photon (and not just a parametriza-
tion), the volume element in momentum space, after integration over angles,
is simply

d3p→ 4πp2dp . (20)
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Introducing all this into (11) we obtain for the Renyi entropy contained
in the layer between r and r + dr

dHl =
2r2dr

π
√
g00

∞
∫

pmin

p2dpWl(βǫ(p)) . (21)

To perform the integration it is necessary to express the energy ǫ in terms
of the momentum p.

Putting

ǫ = γp , (22)

where γ represents possible modifications of the black-body spectrum in
presence of the black hole, we can rewrite (21) as

dHl =
2

π
√
g00

dr

r

(

r

γβ~

)3

Φl , (23)

where Φl are numerical constants defined as

Φl =

∞
∫

ǫ0

z2dzWl(z) , (24)

with Wl defined in (12), and

ǫ0 = pminγβ =
πγ

ρT
= 4π2γ , (25)

where T is the Hawking temperature TH, given by (13). One sees that the
lower limit of integration in (24) depends on the factor γ expressing the
modification of the photon energy in presence of the black hole.

If the only effect of the black hole on the spectrum of the photon (con-
served) energy ǫ is the presence of the gravitational field, then [7])

γ =
√
g00 (26)

implying that ǫ ≈ 0 close to the surface of the black hole. On the other
hand, if the gravitational filed is neglected we have γ = 1, i.e. ǫ0 = 4π2.

From (23), using (13) we have

dHl =
1

32π4
√
g00

dr

r

(

1

αγ

)3

Φl . (27)

This formula gives the Renyi entropy of the black-body radiation contained
inside the layer between ρ and ρ+ dr.
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4. Relation to the mass defect

We have evaluated the contribution to the Renyi entropies from the
Hawking radiation emitted into an infinitesimal layer of width dr outside of
a black hole. At this point the width dr is still arbitrary. To connect it to
the physical properties of the black hole we observe that it can be related
to the change of the black hole mass, dM .

To relate dr to dM we observe that the emission of radiation causes
the decrease of the mass of the black hole by the amount of emitted energy
reduced by the amount of free energy used in the process of emission and
shrinking of the black hole:

dM = dE − dF , (28)

where F is the free energy of the photon gas.
The amount of emitted energy dE can be evaluated from the well-known

formula for the photon gas:

dE =
d3pdV

(2π~)3
ǫ

e−βǫ

1 − e−βǫ
=
d3pdV

(2π~)3
γp

e−βγp

1 − e−βγp
. (29)

Similarly, using the relation between the free energy and the statistical
sum Z we have

dF = −d
3pdV

(2π~)3
T logZ =

d3pdV

(2π~)3
T log(1 − e−βγp) . (30)

The integration over dV d3p goes exactly as in the previous section and we
obtain, using the same boundary conditions for momentum integration

dE =
1

32π4
√
g00

dr

r

(

1

αγ

)3

TΩ , (31)

dF =
1

32π4
√
g00

dr

r

(

1

αγ

)3

Tω , (32)

where

Ω =

∞
∫

ǫ0

z3dz
e−z

1 − e−z
, ω =

∞
∫

ǫ0

z2dz log(1 − e−z) . (33)
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Introducing (31) and (32) into (28) we obtain

dM =
1

32π4
√
g00

dr

r

(

1

αγ

)3

T (Ω − ω) . (34)

Consequently,

dr

r
=

32π4√g00α3γ3

(Ω − ω)

dM

TH

. (35)

5. Renyi entropies of the black hole

We are now in the position to determine the Renyi entropies. To this
end we introduce dr given by the formula (35) into (27). One sees that the
factors

√
g00(αγ)

3 in the numerator and denominator cancel exactly and one
obtains

dHl =
Φl

Ω − ω
8πMdM , (36)

where we have used (13). Thus we have expressed the change of the Renyi
entropy in terms of the change in the black hole mass, essentially repeating
the original procedure of Bekenstein [2, 9].

After integration of (36) from 0 to M we thus have

Hl =
Φl

Ω − ω

4πGM2

~
=

Φl

Ω − ω
S , (37)

where S is the Bekenstein–Hawking entropy of the black hole [2, 3], given
by (1). It is demonstrated in the Appendix that Φ1 = Ω − ω and thus (5)
implies the correct formula (1) for the Shannon entropy.

When the numerical constants Φl, Ω and ω (evaluated in the Appendix)
are introduced into (37) one obtains

Hl =
Φl

Φ1

S , (38)

where

Φ1 = 8F4(u) + 8ǫ0F3(u) + 4ǫ20F2(u) + ǫ30F1(u) , (39)

and for l ≥ 2

Φl =
l

l − 1

[

2F4(u) + 2ǫ0F3(u) + ǫ2F2(u)
]

− 1

l − 1

[

2F4(u
l)

l3
+

2ǫ0F3(u
l)

l2
+
ǫ2
0
F2(u

l)

l

]

, (40)
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with u = e−ǫ0 and

Fk(x) =
∞
∑

n=1

xk

nk
. (41)

A simple algebra shows that for ǫ0 = 0 one recovers (6). On the other hand,
when ǫ0 is large we have for l ≥ 2

Hl =
l

l − 1

1 + 2/ǫ0 + 2/ǫ2
0

ǫ0(1 + 2/ǫ0 + 4/ǫ2
0
+ 4/ǫ3

0
)
S . (42)

One sees that in this case the second Renyi entropy is by factor of
about 20 times smaller than the Shannon entropy.

The dependence of the ratio Hl/S = Φl/Φ1, evaluated from (40), is
plotted in Fig. 1 versus g00.

Fig. 1. The ratio Hl/S plotted versus g00 = 1 − ρ/r.

6. Conclusion and comments

Our results can be summarized as follows.

(i) Starting from the assumption that statistical properties of a Schwarzs-
child black hole of radius ρ are encoded in the Hawking radiation,
we have evaluated its Renyi entropies by counting the states of the
Hawking radiation which fills an infinitely thin spherical shell of radius
r > ρ, where ρ = 2M is the radius of the black hole. The width of the
shell is determined from the condition that the energy of the radiation
contained there corresponds to the mass defect which the black hole
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suffers during the emission process. This procedure leads to the correct
formula for the Shannon entropy of the black hole, independently of
the radius r of the shell. The results for Renyi entropies Hl at l ≥ 2
are sensitive, however, to the chosen value of the ratio r/ρ. Thus
additional condition is needed to obtain a unique result.

(ii) As shown in [1], our argument can be also applied to the shell infinitely
close to the horizon. In spite of the singularity of the Schwarzschild
metric at the horizon, the result turns out finite and no regularization
procedure is necessary. This limit can thus be considered as a real-
ization of the idea that the statistical properties of the black hole are
determined by its surface [2, 3, 9]. In this case the Renyi entropies
are uniquely determined and their relation to the Shannon entropy is
identical to that obtained for the free photon gas in the flat space.

We would like to add two more comments.

(a) Since the Renyi entropies provide additional information about the
statistical properties of the black hole, we feel that our calculation
may be useful in the search for its internal structure.

(b) Although in our argument we have used the description of Hawking
radiation in terms of plain waves, an analogous calculation can be
performed using the spherical waves [1], as formulated, e.g., in [5]. We
have checked that both calculations give identical results.

Discussions with Piotr Bizoń, Andrzej Staruszkiewicz and Kacper Za-
lewski are highly appreciated. This investigation was partly supported by
the Ministry of Science and Higher Education research grant 1 P03B 045 29
(2005–2008).

Appendix

Evaluation of numerical constants

To find Φl we have to evaluate integral

Θl =

∞
∫

ǫ0

z2dz log
(

1 − e−lz
)

. (43)
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This can be done by expansion in series of e−lz

Θl = −
∞

∑

n=1

1

n

∞
∫

ǫ0

z2dze−nlz (44)

giving

Θl = −ǫ20
∞

∑

n=1

l2n2 + 2ln/ǫ0 + 2/e2
0

l3n4
e−nlǫ0

= −ǫ20

[

F2

(

ul
)

l
+

2F3

(

ul
)

l2ǫ0
+

2F4

(

ul
)

l3ǫ2
0

]

, (45)

where u = e−ǫ0 and

Fk(x) =

∞
∑

n=1

xn

nk
. (46)

Using this we have for l ≥ 2

Φl = − l

l − 1
Θ1 +

1

l − 1
Θl ≈

l

l − 1
ǫ20

(

1 + 2

ǫ0
+

2

ǫ2
0

)

e−ǫ0 , (47)

where in the second equality we have kept only lowest order terms in e−ǫ0 .
To obtain limit l → 1 we observe that

Fk

(

ul
)

= Fk(u (1 − (l − 1)ǫ0) ≈ Fk(u) − (l − 1)ǫ0uF
′

k(u)

= Fk(u) − (l − 1)ǫ0Fk−1(u) . (48)

Consequently,

Θl −Θ1 ≈ 2F4(u)
(

1 − 1/l3
)

+ 2ǫ0F3(u)
(

1 − 1/l2
)

+ ǫ20F2(u) (1 − 1/l)

+(l − 1)[2ǫ0F3(u) + 2ǫ20F2(u) + ǫ20F1(u)]

≈ (l − 1)[6F4(u) + 6ǫ0F3(u) + 3ǫ20F2(u) + ǫ30F1(u)] , (49)

and thus

Φ1 = −Θ1 +
Θl −Θ1

l − 1
= 8F4(u) + 8ǫ0F3(u) + 4ǫ20F2(u) + ǫ30F1(u) . (50)

To evaluate Ω we also expand the integrand in powers of e−z

Ω =
∞

∑

n=1

∞
∫

ǫ0

z3dze−nz = 6F4(u) + 6ǫ0F3(u) + 3ǫ20F2(u) + ǫ30F1(u) . (51)
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To obtain ω we simply observe that

ω =

∞
∫

ǫ0

z2dz log(1 − e−z) = Θ1 (52)

and, consequently,

Φ1 = Ω − ω . (53)
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