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Predictions for the spin dependent structure function g1 of the nucleon
are presented. We use an unified approach incorporating the LO DGLAP
evolution and the resummation of double logarithmic terms ln2(x). We
show, that the singular input parametrisation as x → 0 can be a substitute
of the ln2(x) resummation. An impact of the ‘more running’ coupling is
discussed. We determine the contribution to the Bjorken sum rule solving
the evolution equation for the truncated moment of gNS

1 . A comparison
with the re-analysed HERMES and COMPASS data is given.

PACS numbers: 12.38.Bx

1. Introduction

Experimental data confirm (at least for Q2 > 1 GeV2) the theoreti-
cal predictions of an increase of the nucleon structure functions at small
values of the Bjorken x. The low-x behaviour of both spin averaged and
spin dependent structure functions is controlled by the double logarithmic
terms (αs ln2(x))n [1–3]. In an unpolarised case, this singular PQCD be-
haviour is however overridden by the leading Regge contribution present in
the input parametrisation [4]. The situation is quite different in the spin-
dependent case, where the double logarithmic effects are very important.
The resummation of the ln2(x) terms at low-x goes beyond the standard LO
and NLO PQCD evolution of the parton densities. Double logarithmic con-
tributions become essential for x ∼ 0.01, where there is little experimental
data. Determination of the sum rules and the nucleon spin decomposition
among partons requires knowledge of the structure functions over the entire
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region of the variable x ∈ (0; 1). Therefore the small-x behaviour of the
spin dependent parton distributions is a topic of the intensive theoretical in-
vestigations. Standard approach describing structure functions is based on
the DGLAP-Q2 evolution equation via two-step convolution: of the initial
parton densities and splitting functions and then of the evolved parton dis-
tributions and the coefficient functions. Because there is no way to calculate
the initial parton densities, which have a nonperturbative origin, they must
be put ‘by hand’. Different parametrisations of the initial gluon and quark
densities known in literature e.g. [5,6] are singular when x → 0. This choice
enables to study DIS phenomena within DGLAP approach not only for the
large-x region but for the small-x one as well. Singular terms ∼ x−λ can be
a substitute of the double logarithmic ln2(x) resummation, which is absent
in the standard DGLAP scenario. This problem has been widely discussed
and argued in [7]. Also important is the problem of the αs dependence of
the QCD evolution. Following [8] we take into account the running coupling
effects not via αs(Q

2) but with use of the more running αs(Q
2/x). This

approach is better justified at small values of x, whereas for large x ∼ 1
leads to the usual DGLAP coupling αs(Q

2). It seems to be reasonable to
study an impact of the double logarithmic and running coupling effects on
theoretical predictions for spin structure functions.

In this paper we present the unified approach, in which the familiar Q2

evolution is extended by the ln2(x) resummation. In our analysis we use so-
called unintegrated parton distributions and solve the combined LO DGLAP
+ ln2(x) evolution equation with help of the Chebyshev polynomial tech-
nique. We take into account the ‘very running’ coupling effects at small-x
and discuss the role, they play. We also show that the singular input
parametrisation of the parton distributions can be some kind of substitution
for the double logarithmic terms, missing in the standard DGLAP approx-
imation. Our theoretical predictions for the spin dependent structure func-
tion g1 are compared with recently re-analysed HERMES and COMPASS
data.

The content of this paper is as follows. In Section 2 we recall the uni-
fied approach incorporating DGLAP evolution of structure functions and
the double logarithmic αn

s ln2n(x) terms, which are essential in the small-x
region. Section 3 is devoted to the impact of running coupling effects on
the g1 results in the small-x region. In Section 4 we show that the singular
initial parton densities ∼ x−λ can mimic the resummation of double loga-
rithmic terms ln2(x). Using this fact, in Section 5 we solve the evolution
equation for the truncated moments themselves and obtain contribution to
the Bjorken sum rule. We also present numerical predictions for the struc-
ture function g1 and compare them to re-analysed HERMES and COMPASS
data. Finally, in Section 6 we summarise our results.
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2. Unified ln2(x)+LO DGLAP approach

The structure functions of the nucleon can be expressed in terms of
the parton distributions. These depend on two kinematic variables: the
Bjorken x and Q2 = −q2 with q being the four-momentum transfer in the
deep-inelastic lepton–nucleon scattering (DIS). The scaling variable is de-
fined as x = Q2/(2pq), where p is the nucleon four-momentum. The strong
interactions between quarks and gluons cause the changes in the parton
densities. For medium and large-x, the evolution with Q2 of the parton
distributions is well described by the standard Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) equations [9–12]. This approach which effectively
sums up the leading ln(Q2) terms is, however, incomplete at small-x, where
another large logarithm — ln(1/x) becomes essential and which leading pow-
ers αn

s ln2n(x) needs to be resummed. The double logarithmic terms ln2(x)
come from the ladder diagrams with quark and gluon exchanges along the
chain. Treating both potentially large logarithms ln(Q2) and ln(1/x) on
equal footing, the authors of [14–16] obtained equations which incorporate
DGLAP evolution and ln2(x) terms as well. The double logarithmic effects
go beyond the standard LO and even NLO Q2 evolution of the spin de-
pendent parton distributions and significantly modify the Regge pole model
expectations for the structure functions. Theoretical analyses of the small-x
behaviour of the polarised structure functions [17] predict that resummation
of the double logarithmic terms (αs ln2(x))n leads to the singular form as
x → 0:

gNS,S
1 (x,Q2) ∼ x−λNS,S , (2.1)

where λNS ≈ 0.4, λS ≈ 0.8 and gNS,S
1 denotes nonsinglet or singlet part

of the polarised structure function of the proton. For larger but still low
x ∈ (10−5; 10−2), g1 is less steep with the slope λ ≈ 0.2–0.3 for the nonsinglet
part [1]. This power-like behaviour x−λ remains significantly steeper than
the DGLAP solution in absence of the singular input parametrisations of
parton densities

gDGLAP
1 (x → 0) ∼ exp

√

ln(1/x) ln ln(Q2/Λ2
QCD) . (2.2)

The unified equation, which includes the LO DGLAP evolution and ln2(x)
terms resummation reads:

f(x,Q2) = f0(x) +

Q2
∫

Q2
0

dk′2

k′2

αs

2π
∆P ⊗ f

(
x, k′2

)

︸ ︷︷ ︸

DGLAP
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+
4

3

1∫

x

dz

z

Q2/z∫

Q2

dk′2

k′2

αs

2π
f

(x

z
, k′2

)

︸ ︷︷ ︸

LN2(X) LADDER

+ Bremsstrahlung corrections
︸ ︷︷ ︸

LN2(X) NONLADDER

, (2.3)

where ⊗ abbreviates a Mellin convolution over x

(∆P ⊗ f) (x,Q2) =

1∫

x

dy

y
∆P

(
x

y

)

f(y,Q2) , (2.4)

∆P denote the polarised version of the splitting function P and f is the un-
integrated distribution, related to the ordinary polarised parton distribution
∆p(x,Q2) via

f(x,Q2) =
∂∆p(x,Q2)

∂ ln(Q2)
. (2.5)

The double logarithmic terms come from ladder-type graphs as well as from
the nonladder ones which represent radiative corrections [2,18–20]. In a case
of the nonsiglet polarised structure functions the contribution of nonladder
diagrams is negligible. However, for the singlet spin dependent structure
functions, besides the ladder graphs, one has to include Bremsstrahlung
corrections [3], which are important. The full evolution equations for non-
singlet and singlet unintegrated parton distributions within DGLAP+ ln2 x
approach have been presented in [14,15]. This forms the basis of our analysis
in the next section, where we discuss the modified running coupling effects
at small-x.

3. Running coupling αs in the small-x region

DGLAP formalism uses the following prescription for the running cou-
pling (in the lowest order):

αs = αs(Q
2) =

12π

(33 − 2Nf ) ln Q2

Λ2
QCD

, (3.1)

where Nf is the number of active quark flavours and ΛQCD ≈ 200 MeV is
the QCD cut-off parameter. It has, however, been argued that in the small-x
region Eq. (3.1) should be rearranged into the following form [8]:

αs = αs(Q
2/z) , (3.2)
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with z being the longitudinal momentum fraction of a parent parton, carried
by a next generation parton. In this way αs becomes ‘very running’ i.e. runs
in each ladder rung depending on the gluon virtuality. This prescription
of αs, widely discussed also in [21, 22], has been used e.g. in [1, 23] within
double logarithmic effect ln2(x) resummation. Here, we study an impact of
the different αs parametrisation on the polarised parton densities. Because

αs(Q
2/z) ≤ αs(Q

2) , (3.3)

in the case of the ‘very running’ αs (3.2), the growth of the parton distribu-
tions in the low-x region is damped. A scale of the damping for nonsinglet
and singlet (gluons) distributions is shown in Figs. 1–2, where we plot the
ratio

R =
∆p(αs(Q

2))

∆p(αs(Q2/z))
(3.4)

as a function of x. Here, ∆p denotes the nonsinglet (valence) ∆qNS and the
gluon ∆G distribution function, respectively. One can see, that the differ-
ence becomes essential at x ∼ 0.01 and the impact of the running coupling
effects for the singlet case is larger than for the nonsinglet one. Double loga-
rithmic resummation additionally amplifies the split between results in com-
parison to the pure DGLAP approach. At very small x = 10−5 we find the
ratio (3.4) about 2 for the nonsinglet polarised distribution and above 6 for
the polarised gluons. Our estimations of R (3.4) show that for the small val-
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Fig. 1. The ratio (3.4) for the polarised nonsinglet quark distribution ∆qNS =

∆u − ∆d as a function of x at Q2 = 10 GeV2. Solid: unified DGLAP+ln2(x)

approach, dotted: DGLAP alone.
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Fig. 2. The ratio (3.4) for the polarised gluon distribution ∆G as a function of x at

Q2 = 10 GeV2. Solid: unified DGLAP+ln2(x) approach, dotted: DGLAP alone.

ues of Bjorken parameter x ≤ 10−2 the coupling αs(Q
2) should be replaced

by αs(Q
2/z). In standard DGLAP analysis, where rather large-x region is

considered, this modification converts into αs(Q
2) (z∼1). Parametrisation

of the coupling αs is not the only crucial point in the low-x analysis of
structure functions. Another problem are initial parton distributions at low
Q2

0 ∼ 1 GeV2, which enter into the evolution equations. The behaviour of
the quark and gluon distributions at very small-x is mainly generated by
the double logarithmic ln2(x) effects. Therefore singular as x → 0 inputs
∼ x−a1 seem to be needless in PQCD analysis, unless one does not con-
sider ln2(x) terms. Within standard DGLAP approach, parametrisations in
a form ∼ x−a1 can be regarded as a substitute of the missing double loga-
rithmic effects resummation. In the next section we discuss this problem in
detail.

4. Singular input parametrisations as an ersatz of the double

logarithmic terms ln2(x) resummation

According to the philosophy of DGLAP approach, structure functions
of the nucleon are a convolution of the coefficient functions and the evolved
parton distributions. In this formalism, the polarised structure function
g1(x,Q2) for the proton is given by [13]

gp
1

(
x,Q2

)
=

1

2

〈
e2

〉 [

CNS ⊗ ∆qNS
(
x,Q2

)

+CS ⊗ ∆qS
(
x,Q2

)
+ 2Nf CG ⊗ ∆G

(
x,Q2

) ]

, (4.1)
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where

〈
e2

〉
=

1

Nf

Nf∑

i=1

e2
i . (4.2)

Here, ei denotes the electric charge of the i quark–flavour, ∆qNS, ∆qS, ∆G
are, respectively, the nonsinglet and singlet quark and the gluon polarised
densities (helicity distributions). The coefficient functions Ci are computed
to a given order in αs. PQCD evolution equations for the quarks and gluons
distribution functions need the nonperturbative input quantities at some
initial scale Q2

0. These input parametrisations, fitted to the experimental
data, together with the suitable PQCD framework provide a satisfactory
agreement of theory and measurements. The standard theoretical investi-
gation of deep-inelastic scattering structure functions based on the DGLAP
approach concerned originally the region of large-x and large-Q2. In this
way the parton evolution with respect to Q2 is taken into account, whereas
the evolution with respect to Bjorken x is neglected. In the small-x region,
logarithms of x become also important and therefore must be taken into
account. Assuming singular as x → 0 initial parton distributions ∼ x−a1

(a1 > 0), one can obtain within standard DGLAP approach a substitute of
the double logarithmic ln2(x) resummation, which is essential at low x ≪ 1.
However, if we take into account the double logarithmic terms via the suit-
able kernel of the evolution equations, we do not need to use the ‘artificial
support’ in a form of the singular initial parametrisations. An impact of the
input parton distributions on the final (after evolution) results is large. This
is shown in Fig. 3, where we plot the LO DGLAP evolution from Q2

0 = 1
GeV2 to Q2 = 10 GeV2 of the nonsinglet polarised structure function ∆qNS.
We test different input parametrisations of the general form:

∆qNS
(
x,Q2

0

)
∼ x−a1(1 − x) a2 . (4.3)

There is no doubt, that the small-x behaviour of the parton densities is
dominated just by the x−a1 term, which survives the QCD evolution when
a1 > 0. Hence appropriate choice of the initial conditions must be consis-
tent with used theoretical treatment. Thus there are two possible scenarios.
Either we consider the unified evolution equations with two parts of the ker-
nel: the standard DGLAP one and the other one — generating ln2(x) terms.
Then the input distributions are assumed to be nonsingular as x → 0. In
this case the small-x behaviour of the structure functions is totally governed
by the evolution. Or we use the pure DGLAP analysis together with the
singular parametrisations, which mimic the missing at low-x resummation
of the leading logarithms. In Fig. 4 we plot the logarithm of the polarised
nonsinglet and gluon distributions evaluated at Q2 = 10 GeV2 within uni-
fied DGLAP+ ln2(x) approach as a function of ln(1/x). We can estimate
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the effective slopes of the presented curves λ(x,Q2), defined as:

λp

(
x,Q2

)
=

∂ ln
[
∆p(x,Q2)

]

∂ ln
(

1
x

) . (4.4)
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Fig. 3. The LO DGLAP evolution from Q2
0 = 1 GeV2 to Q2 = 10 GeV2 of the

nonsinglet polarised structure function ∆qNS as a function of x. Different input

parametrisations (4.3). Solid: a1 = 0, a2 = 3; dashed: a1 = 0.2, a2 = 3; dashed–

dotted: a1 = 0, a2 = 1; dotted: a1 = 0.5, a2 = 3.

Here, ∆p denotes again, respectively, the nonsinglet quark and gluon helic-
ity distributions (∆qNS, ∆G). From the plots we find, namely, λNS ≈ 0.2
and λG ≈ 0.6. Hence the ‘ersatz’ input ∼ x−λ, which is able to repro-
duce the double logarithmic ln2(x) resummation in the small-x region x ∈
(10−4 ; 10−2) should have a form:

∆qNS ∼ x−0.2 (4.5)

for the nonsinglet part and
∆G ∼ x−0.6 (4.6)

for the gluons, respectively. As one can see, the behaviours (4.5), (4.6) are
less steep than their asymptotic limits as x → 0:

∆qNS(x → 0) ∼ gNS
1 (x → 0) ∼ x−0.4 (4.7)

and
∆G(x → 0) ∼ gS

1 (x → 0) ∼ x−0.8 . (4.8)
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Fig. 4. The logarithm of the polarised quark nonsinglet (solid) and gluon (dotted)

distributions evaluated at Q2 = 10 GeV2 within unified DGLAP+ ln2(x) approach

as a function of ln(1/x). An illustration of the slope λ, defined in (4.4).

The results (4.7), (4.8) were obtained in [15] via estimation of the anomalous
dimensions and also in [17] — within IREE (infrared evolution equation)
formalism.

In conclusion, the power-like behaviour x−λ of the quark and gluon po-
larised distribution functions, generated by the resummation of the double
logarithmic terms ln2(x), can be also obtained via the singular factors in
the initial parton distributions. Finally, let us shortly discuss the possible
values of a1 in the leading term of the initial parton densities. The choice
of the value of a1 in the input parametrisations (4.3), which controls the
singular small-x behaviour, depends on the evolution length (Q2 − Q2

0). If
one assumes a very low input scale Q2

0 . 1 GeV2, then already the smaller
value of a1 = 0.2 in the nonsinglet case can ‘mimic’ the ln2(x) effects. In
contrast, for longer Q2

0 ≈ 4 GeV2, what denotes the shorter evolution, one
should use more singular input with a1 ≈ 0.4 for the nonsinglet case. Sim-
ilar (or even more singular) input parametrisations of the spin-dependent
parton distributions have been assumed e.g. in [5, 6, 32]. In the next sec-
tion we shall compare our theoretical predictions based on either the unified
DGLAP+ ln2(x) approach or the DGLAP analysis alone together with the
singular inputs, with experimental data.
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5. Comparison with experimental data

In this section we shall present our results obtained using the unified
DGLAP+ ln2(x) approach (2.3) with ‘very running’ αs (3.2). We shall also
apply an alternative scenario, described in the previous section, in which the
pure DGLAP analysis is accompanied by the singular input parton densities
at the low scale Q2

0 = 1 GeV2. In this latter approach we shall compute
i.e. the truncated Mellin moments of structure functions using directly the
evolution equations for truncated moments, derived recently in [24]. Let us
recall now some basic formulas concerning this approach.

The evolution equations for the truncated moments of the parton densi-
ties have the form:

dq̄n

(
x0, Q

2
)

d ln Q2
=

αs

(
Q2

)

2π

(
P ′ ⊗ q̄n

) (
x0, Q

2
)

, (5.1)

P ′(n, z) = zn P (z) , (5.2)

where P (z) is the well-known splitting function from the DGLAP equa-
tion. q̄n(x0, Q

2) denotes the nth Mellin moment of the distribution function
q(x,Q2) truncated at x0:

q̄n

(
x0, Q

2
)

=

1∫

x0

dxxn−1 q
(
x,Q2

)
. (5.3)

This formula is obviously valid also in the spin-dependent case where one
replaces q by ∆q, q̄n by ∆q̄n and P by ∆P i.e. the unpolarised quantities
by their ‘polarised’ versions. It is particularly interesting to note that the
evolution equation for the nth truncated moment has the same form as that
for the parton density function itself with the modified splitting function
P ′ (5.2). The truncated moments approach refers directly to the physical
values — moments (rather than to the parton distributions), what enables
one to use a wide range of deep-inelastic scattering data in terms of smaller
number of parameters. In this way, no assumptions on the shape of parton
distributions are needed. Using the evolution equations for the truncated
moments one can also avoid uncertainties from the unmeasurable very small
x → 0 region. Eq. (5.1) does not account for the double logarithmic ln2(x)
terms resummation, what can be mimiced by the appropriate input, as it
was described in the previous section. This is the motivation that we use
the equations for the truncated moments in the studies presented here.

In order to compare theoretical predictions with experimental data over
the kinematic range explored one should generalize the results to the small-
Q2 < 1 GeV2 region. Thus, one can use the prescription introduced in [25]
and applied in the studies [14, 15, 26, 27], valid for arbitrary Q2:
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Q2 → Q2 + Q2
0 , (5.4)

and

x → x̄ =

(
Q2 + Q2

0

)

(2pq)
. (5.5)

After this rearrangement the structure function g1 can be extrapolated to
the low-Q2 region (for fixed 2pq) including the point Q2 = 0, although
perturbative Q2-power and higher twist corrections may also play a role in
this region [28]. Taking into account the small-Q2 corrections is particularly
important when one studies recent COMPASS measurements obtained for
very small 4× 10−5 < x < 2.5× 10−2 at simultaneously very low Q2 ≪
1 GeV2 [29]. We use in our analysis input parametrisations of polarised
parton densities at the initial scale Q2

0 = 1 GeV2 in a simple general form:

∆q
(
x,Q2

0

)
= η x−a1 (1 − x)a2 , (5.6)

where η is a normalization factor. The exponent −a1 controls the behaviour
of ∆q in the small-x region and the factor (1 − x)a2 ensures the vanishing
of the parton density as x → 1. The singular part x−a1 , where a1 > 0, can
mimic the resummation of the leading logarithms ln2 x.

Figs. 5–8 and Table I contain our numerical results. Fig. 5 shows the
spin dependent structure function for proton gp

1

gp
1

(
x,Q2

0

)
=

1

2
〈e2〉

[
∆qS

(
x,Q2

)
+ ∆qNS

(
x,Q2

)]
(5.7)

as a function of x, compared with HERMES data [30]. Here, 〈e2〉 is given
by (4.2). We obtain our results solving the unified evolution Eqs. (2.3),(2.5)
with ‘flat’ parametrisations ∼ (1 − x)a2 of the parton densities. We present
plots for different values of the parameter a2: 3, 2, 1 and for a negative and
positive parametrisation of gluons. In Fig. 6 we plot gN

1

gN
1 =

1

2
(gp

1 + gn
1 ) =

gd
1

1 − 3
2ωD

(5.8)

as a function of x together with COMPASS data [31]. Here, gp
1 , gn

1 and gd
1

denotes the polarised structure function of proton, neutron and deuteron,
respectively, and ωD ≈ 0.05 is the D-state admixture to the deuteron wave
function. Results are shown for different contributions of gluons to the
proton’s spin at initial scale Q2

0, namely ∆G(Q2
0) = −0.25, 0, 0.25, 0.5, 0.75,

where

∆G
(
Q2

)
=

1∫

0

dx ∆G
(
x,Q2

)
. (5.9)
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Fig. 5. The spin dependent structure function for proton gp

1
versus x, compared

with HERMES data. Q2 is the measured mean value 〈Q2〉 at each x. Plots for

different input parametrisations of the valence quarks ∼ (1−x)a2 from up to bottom

at x = 0.01: a2 = 3, a2 = 2, a2 = 1. Solid (dotted) line corresponds to the positive

(negative) solutions for polarised gluons ∆G. Error bars represent the statistical

uncertainties.
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Fig. 6. gN
1 = (gp

1
+ gn

1 )/2 versus x, compared with COMPASS data. Q2 is the

measured mean value 〈Q2〉 at each x. Results shown for five different contributions

of gluons ∆G to the proton’s spin: (from up to bottom) −0.25, 0, 0.25, 0.5, 0.75.

Error bars represent the statistical uncertainties.
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Fig. 7. The polarised structure function g1 for the proton versus x at Q2 = 10

GeV2. Results shown for five different contributions of gluons ∆G to the proton’s

spin: (from up to bottom) −0.25, 0, 0.25, 0.5, 0.75.
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Fig. 8. Integral of the spin dependent nonsinglet structure function gNS
1 = gp

1
− gn

1

over the range 10−5 ≤ x ≤ 1 as a function of the low-x limit of integration. Q2 = 10

GeV2. The comparison for different a1 in the input parametrisation ∼ x−a1(1−x)3

at Q2
0 = 1 GeV2. Plots (from up to bottom): a1 = 0, 0.2, 0.4, 0.8.
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In Table I we collect the integrals of gN
1 and gNS

1 over the range of x from
COMPASS and HERMES experiments.

TABLE I

Comparison of integrals of gN
1 = (gp

1
+ gn

1 )/2 and gNS
1 with COMPASS (C) and

HERMES (H) data. gN
1 results for both gluon scenarios: 1∆G < 0 and 2∆G > 0

are shown. For gNS
1 the result incorporating ln2 resummationa is compared with

LO DGLAP solutions for singular input parametrisations ∼ x−a1(1 − x)3 with a1:
b0.1 ÷ 0.2, c0.4.

Q2 x1 x2

∫
x2

x1

dx g1 Experiment

0.049041 0.051 C

N 10 0.004 0.7 ±0.003 (stat.)

0.048712 ±0.005 (syst.)

0.1766a 0.1479 H

±0.0055 (stat.)

NS 5 0.021 0.9 0.1718b ±0.0142 (syst.)

±0.0055 (par.)

0.1486c ±0.0049 (evol.)

Our results for the function gN
1 as well as its first moment are in a very

good agreement with the experimental COMPASS data. There is certain
discrepancy between our predictions and HERMES data. This is particularly
visible for the contribution to the Bjorken sum rule

IBJS

(
x1, x2, Q

2
)

=

x2∫

x1

dxgNS
1

(
x,Q2

)
x2∫

x1

dx
[
gp
1

(
x,Q2

)
− gn

1

(
x,Q2

)]
(5.10)

shown in Table I. Some ansatz (input parametrisation) must be adopted in
two degrees of evolution. Values of g1 measurements in the two or three
Q2 bins for each x must be evolved to their mean Q2 and then averaged.
Also, the evaluation of the first moment of the structure function g1 requires
the evolution of all measurements to a common Q2. In HERMES analysis
this is done by using a fitted parametrisation [5], which increases as x → 0:
gNS
1 ∼ x−0.8. COMPASS Group have used several fits [5, 6, 32] which have

been averaged. The discrepancy between our results and HERMES data
reflects the fact that the fit used by HERMES collaboration is significantly
different from ours (5.6) with a1 = 0.0. Note also that very close to the
HERMES value for IBJS is our result obtained within LO DGLAP approach
with use of the singular input parametrisation gNS

1 (Q2
0) ∼ x−0.4. This makes
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the contribution from the small-x region 0 < x < 0.021 more significant
— at level of 30% of the total BJS compared to our estimation based on
the unified DGLAP+ ln2(x) theoretical analysis, which gives about 17%.
Furthermore, it can be seen from Table I that LO DGLAP evolution with
the appropriate input ∼ x−a1 (a1 > 0) for a given region of x can reproduce
the result of the DGLAP+ ln2(x) approach. In this way, a suitably chosen
initial parton density can compensate missing low-x effects in QCD analysis.

We would like also to pay special attention to the evolution equation
for truncated moments of the parton distributions. Fig. 8 illustrates the
truncated contribution to the Bjorken sum as a function of the truncation
point x. Solving the equation for moments (5.1), (5.2) we test different input
parametrisations and find the small-x contribution IBJS(0, 0.01, 10) (5.10)
being between about 6% for the flat input ∼ (1 − x)3 and about 60% for
the very steep one ∼ x−0.8(1 − x)3. The problem of the low-x part of the
Bjorken sum we have also discussed in [23, 33].

Finally, let us discuss the dependence of the polarised nucleon structure
functions on the gluon distribution ∆g. From Figs. 5–6 and Table I one can
see that the predictions for gp

1 and gN
1 ∼ gd

1 (5.8) in the available experimen-
tally x-region (x > 0.003) are compatible with the data independently of
the assumed gluon function. Large experimental uncertainties for low-x do
not allow one to discriminate between different, in particular positive and
negative polarised gluon densities. In Fig. 7 we compare the proton struc-
ture function gp

1 at Q2 = 10 GeV for different fractions of the nucleon spin
carried by gluons at the initial scale Q2

0. Note, that gp
1 essentially depends

on the gluon distribution only for very low-x — not before x ≈ 0.01. Our
parametrisations of ∆G (5.9) reflect the latest experimental determinations
of the gluon polarisation at COMPASS [34], RHIC [35] and STAR [36]. The
shape of ∆G(x,Q2) is poorly known and the present experimental data sup-
port both positive and negative distributions, resulting in small | ∆G |≈ 0.2
to 0.3 (COMPASS) or large ∆G = −0.56 ± 2.16 (RHIC), ∆G = −0.45 to
0.7 (STAR). It is possible that a significant contribution to ∆G comes from
low-x. A knowledge of the small-x behaviour of ∆G(x,Q2) would provide
a constraint on the shape and the sign of the gluon component. We hope
future measurements at RHIC over a wide range of x and Q2 will enable
precise determination of the gluon contribution to the nucleon spin.

6. Conclusions

In this paper we have presented results for the spin structure function g1

of the nucleon together with comparison with latest HERMES and COM-
PASS data. We have applied an approach that combines LO DGLAP Q2

evolution with the resummation of the double logarithmic terms ln2(x). This
unified framework goes beyond the standard LO and NLO PQCD evolution
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of the parton densities and becomes essential for x . 0.01. In our analysis,
we have focused on the taking into account the ‘very running’ coupling ef-
fects. For the small-x region the more justified is the use of αs = αs(Q

2/z)
instead of αs = αs(Q

2), with z being the longitudinal momentum fraction of
a parent parton, carried by a next generation. In this way αs becomes ‘very
running’ i.e. runs in each ladder rung depending on the gluon virtuality.
We have shown, that the impact of these running coupling effects becomes
important at x . 0.01 and significantly damp the results. The decreasing
factor at very small x = 10−5 can be about 1/2 for the nonsinglet and 1/6
for the singlet (gluon) distribution function in comparison to the standard
αs(Q

2) prescription.

In order to calculate the first moment of g1 over the available experimen-
tally x region, we have solved the direct evolution equations for truncated
moments of the parton densities. In this approach we have utilized the fact
that the resummation of the double logarithmic terms, missing in the stan-
dard DGLAP approximation, can be mimiced by singular input parametri-
sation of the parton distributions. The truncated moments approach refers
to the physical values — moments (rather than to the parton distributions),
what in future analyses could enable one to use a wide range of deep-inelastic
scattering data in terms of smaller number of parameters. In this way, no
assumptions on the shape of parton distributions are needed.

Our theoretical predictions for the polarised structure function g1 and its
first moment for the deuteron are in a very good agreement with COMPASS
data. There is certain discrepancy between our predictions and HERMES
data, particularly visible for the contribution to the Bjorken sum. This
reflects the fact that the fit used by HERMES collaboration is significantly
different from ours. It must be emphasized, that the final (after evolution)
results strongly depend on the input parton distributions assumed.

Finally, let us discuss the dependence of the polarised nucleon structure
functions on the gluon distribution ∆g. Large experimental uncertainties
in the low-x region do not allow one to discriminate between different po-
larised gluon densities. The shape of ∆G(x,Q2) is poorly known and the
present experimental data support both positive and negative gluon distri-
butions. A knowledge of the small-x behaviour of the gluon component and
possibly a significant contribution to ∆G from this region would enable to
resolve the nucleon spin puzzle. This is a challenge for future theoretical
and experimental efforts.

D.K. is grateful to Boris Ermolaev for detailed explanations of the run-
ning coupling constant problem and for interesting and inspiring discussions.
We would like to thank Beata Ziaja for the numerical code that was adapted
for our studies.
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