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Using the generalized zeta-function method we discuss the influence of
a uniform magnetic field on the Casimir energy of a fermionic field sub-
mitted to a general boundary condition which interpolates continuously
periodic and antiperiodic ones. After computing the relevant fermionic de-
terminant we show that the Casimir effect can be enhanced by the external
magnetic field, in agreement to the known results established in the liter-
ature. We also compute the corresponding Casimir pressure and present
the result graphically by sketching its behavior as a function of the mag-
netic field and the parameter θ which defines the boundary condition. This
analytical result is a new one in the known literature.

PACS numbers: 11.10.–z, 03.70.+k

1. Introduction

The modification in the vacuum energy for quantum fields due to the
presence of boundary conditions (which constitute a mathematical model to
the actual physical interaction with some surrounding medium) is a problem
that has received growing attention since its discovery by Casimir in 1948 [1].

In 1975 Johnson [2] calculated for the first time the Casimir fermionic
effect in the MIT-bag model. The interest was related to the possibility
of giving description of the behavior of quarks in a hadron as well as the
processes which involved electrons in QED. By the end of the 90thies a better
description of this behavior was obtained when the boundary conditions were
imposed on a spherical surface [3].
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According to [4], we can think of the Casimir effect as the effect of non-
trivial space topology on vacuum fluctuations for any relativistic quantum
field. The non-trivial topology has as sources background fields, constraints
and boundary conditions. As it is also discussed in Ref. [4], vacuum fluctu-
ations of a charged quantum field are also affected by external fields.

The perturbation of Casimir energy by an external magnetic field was
firstly considered by Elizalde et al. [5] and Cougo-Pinto et al. [6]. The influ-
ence on the Casimir energy of the Dirac field was firstly studied for an an-
tiperiodic boundary condition by Cougo-Pinto et al. [7]. These authors, by
using Schwinger’s proper-time representation for the effective action, showed
that the Casimir effect can be enhanced by a magnetic field. The results for
a Dirichlet boundary condition as well as for a periodic boundary condition
can be seen in Ref. [4] and for a general condition interpolating periodic and
antiperiodic conditions through the summation of modes can be found in
Ref. [8].

On the other hand, Tort et al. present the modification of Casimir effect
submitted to a magnetic field and considering the MIT boundary conditions
[9, 10]. More recently the influence of an external magnetic field on the
complex scalar field as well as on the Casimir energy of the Dirac field was
considered by Ostrowski [11] who calculates these by direct solving the field
equations using the mode summation method and comparing the numerical
results with those obtained in [4]. Further discussions on Casimir effect can
be seen in [12, 13].

The modification on Casimir energy of the Dirac field due to a general
boundary condition which interpolates between the periodic and antiperiodic
conditions will be considered through an appropriately mathematical func-
tion with a parameter θ and calculated by using the zeta function method.
This procedure, through a mathematical point of view, is an interesting one
because it can be applied to a variety of situations and so, we can get a wider
approach of the particular mathematical technique used in this particular
case, namely the zeta function method.

Our objective is to obtain the results for the fermionic part in [4] in an an-
alytic way by using the generalized zeta function method. The relevance
of the zeta function method was considered in many references especially
in [14–16]. Here, we reconsider the boundary conditions assumed in [8], but
instead of computing the Casimir energy for the Dirac field as the energy
of the Dirac sea, we shall compute the corresponding fermionic determinant
through the generalized zeta function method (see Ref. [17] and for a review
of this method see Ref. [14] and references therein). The main advantage of
this method is to get the answer with a minimum of spurious terms. From
the Casimir energy we also calculate the Casimir pressure and we present
its graphical behavior. We present an analytical calculation as well as an
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analysis of the weak and strong field limits for the Casimir pressure. This
last calculation for the generalized boundary condition used here is a new
one in the literature.

The generalized boundary condition to be considered here is such that
the Dirac field suffers a phase shift, which we call θ, each time the variable
z is changed by an amount a:

ψ (x, y, z + a) = eıθ ψ (x, y, z) , (1)

ψ̄ (x, y, z + a) = e−ıθ ψ̄ (x, y, z) . (2)

For θ = π we recover the original antiperiodic boundary condition and with
θ = 0 we have a periodic boundary condition. For other values of θ, between
0 and π, we obtain interpolations from the usual periodic to antiperiodic
boundary conditions.

2. The Casimir energy via generalized zeta function method

Methods based on analytical extension, like the generalized zeta function
method, usually provide the final answer with a minimum of spurious terms
and as such they can be used in order to check results obtained by others
methods. In this sense, the purpose of this work is to re-obtain the results
quoted in Refs. [4, 7, 8] in the context of the zeta function method. Our
starting point is the Lagrangian density for Dirac field in the presence of an
external field Ae

µ (x), namely:

L = −ψ̄ (γ · Π +m)ψ , (3)

where Πµ is defined by Πµ = ı∂µ − eAµ. The vacuum energy for the Dirac
field we are interested in can be obtained from the vacuum-to-vacuum tran-
sition amplitude under the influence of a uniform magnetic field as well as
the boundary conditions under consideration, which is given by

〈0+|0−〉Aθ = N

∫

Cθ

Dψ̄Dψ exp

{

−ı
∫

d4xψ̄ (γ · Π +m− ıǫ)ψ

}

= N ′ det(γ · Π +m− ıǫ) , (4)

where N and N ′ are normalization constants such that 〈0+|0−〉A=0
θ = 1 and

the subscript Cθ in the integral means that the functional integration must
be over the Grassmann variables that satisfy the boundary conditions. The
convergence of integral (4) is guaranteed by the change m → m − ıǫ, with
ǫ > 0. Defining Wθ(A) by 〈0+|0−〉θ = eiWθ(A) we can write:
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Wθ(A) = −ıTr ln [(γ · Π +m)] + ıTr ln [(γ · P +m)] , (5)

since we are using the normalization condition Wθ(A = 0) = 0.
The connection between Wθ(A) and the vacuum energy is the following:

E(a,B) = −Wθ(A)

T
, (6)

where we are assured that the vacuum energy will depend on the parameter
a and the external magnetic field B. Now, we carry out the evaluation of
Wθ(A). We know that det (m± γ · Π ) is a Lorentz scalar and hence it is
independent of the sign of γ · Π , so that we can write [18]:

ln det (m+ γ · Π ) = 1
2Tr ln

(

m2 − (γ · Π )2
)

. (7)

This formula allows us to work with a second order formalism. On the other
hand, for a constant magnetic field it can be shown that:

− (γ · Π )2 = Π
2 − ıσµν

ΠµΠν = Π
2 − eBσ3 , (8)

where

σ3 =

(

σz 0
0 σz

)

,

and σz is the Pauli matrix in the z direction. Consequently, we get:

1
2Tr ln

(

m2 − (γ · Π )2
)

= 2trx

[

ln
(

m2 + Π
2 − eB

)

+ ln
(

m2 + Π
2 + eB

)]

,

where Tr means total trace (functional and over the Dirac indices) and trx

means only functional trace. Analogously, we have:

1
2Tr ln (m2 + P 2) = 2trx ln

(

m2 + P 2
)

= 2 ln det x

(

m2 + P 2
)

. (9)

Combining the last results, we can obtain

Wθ(A) = −ı
[

ln det x

(

m2 + Π
2 − eB

)

+ ln det x

(

m2 + Π
2 + eB

)]

+2ı ln det x

(

m2 + P 2
)

. (10)

Recalling that the zeta function prescription for the determinant of an op-
erator H is given by [14]:

detH = exp

{

−∂ζ(s = 0;H)

∂s

}

,
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with ζ(s;H) := TrH−s, we have:

Wθ [Ae] = ıζ ′
(

s = 0,m2 − ıǫ+ Π
2 − eB

)

+ ıζ ′
(

s = 0,m2 − ıǫ+ Π
2 + eB

)

−2ıζ ′
(

s = 0,m2 − ıǫ+ P 2
)

. (11)

It is convenient to work in the Euclidean spacetime. Performing the eu-
clideanization of Π

2 leads to:

Σ
2:= m2 + Π

2
E = m2 − ∂2

τ − ∂2
3 +

(

~p− e ~A
)2

⊥
, (12)

where subscript ⊥ means coordinates 1 and 2 (orthogonal to 3), while the
potential, Aµ = (0,−By, 0, 0) generates the uniform constant magnetic field,

Fµν =











0, if µ, ν = 0 ,

0, if µ, ν = 3 ,

B, if µ = 1, ν = 2 .

The eigenvalues of m2 + Π
2
E (let us call them β) that satisfy

(

m2 − ∂2
τ − ∂2

3 +
(

~p− e ~A
)2

⊥

)

χ = βχ , (13)

with the boundary conditions under consideration, are given by

βk0,l,n = m2 + k2
0 +

(

θ + 2πl

a

)2

+ (2n+ 1) eB , (14)

where n = 0, 1, . . . and ℓ is an integer. Then, the relevant zeta functions
are:

ζ (s,H1) =
eBATE

2π

∞
∑

l=−∞

∞
∑

n=0

∞
∫

−∞

dk0

2π
[f(θ)+2neB]−s , (15)

ζ (s,H2) =
eBATE

2π

∞
∑

l=−∞

∞
∑

n=0

∞
∫

−∞

dk0

2π
[f(θ)+2 (n+ 1) eB]−s , (16)

2ζ (s,H0) = 2
AaTE

(2π)4

∞
∫

−∞

dk0d
3k
[

m2 + k2
0 + k2

1 + k2
2 + k2

3

]−s
, (17)

where f(θ) is

f(θ) = m2+k2
0+

(

θ + 2πl

a

)2

. (18)
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The factor eBA/(2π) present in Eqs. (15) and (16) takes into account the
Landau levels’ degeneracy. Using the definition of the Euler Gamma function
(see formula (8.312–2) in [19]) we get:

ζreg (s) := ζ (s,H1) + ζ (s,H2) − 2ζ (s,H0) , (19)

where

ζ (s,H1) =
1

Γ (s)
TE

eBA

(2π)2

∞
∑

l=−∞

∞
∑

n=0

∞
∫

−∞

dk0

∞
∫

0

dξξs−1

×{exp [−ξ (f(θ) + 2neB)]} , (20)

ζ (s,H2) =
1

Γ (s)
TE

eBA

(2π)2

∞
∑

l=−∞

∞
∑

n=0

∞
∫

−∞

dk0

∞
∫

0

dξξs−1

×{exp [−ξ (f(θ) + 2 (n+ 1) eB)]} , (21)

and

−2ζ (s,H0) = − 1

Γ (s)

2TEAa

(2π)4

∞
∫

−∞

dk0d
3k

∞
∫

0

dξξs−1

× exp
[

−ξ
(

m2 + k2
0 + k2

1 + k2
2 + k2

3

)]

. (22)

Next, we evaluate only the two first terms in (19)

TE

Γ (s)

eBA

(2π)2

∞
∑

l=−∞

∞
∫

−∞

dk0

∞
∫

0

dξξs−1 exp [−ξf(θ)]

×
∞
∑

n=0

{exp (−2neBξ) + exp [−2(n+ 1)eBξ]} . (23)

Taking into account the formula for geometrical series, we rewrite

∞
∑

n=0

[exp (−2neBξ) + exp (−2(n+ 1)eBξ)] = coth (eBξ) . (24)

With the help of Poisson summation rule, we recast the sum in ℓ as

∞
∑

l=−∞

exp

[

−ξ
(

θ + 2πl

a

)2
]

=

∞
∑

r=−∞

∞
∫

−∞

exp

[

2πirx− ξ

(

θ + 2πx

a

)2
]

dx .

(25)
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Using the last two equations and integrating over k0, Eq. (23) becomes:

1

Γ (s)

eBATE

(2π)2
√
π

∞
∑

r=−∞

∞
∫

0

dξξs− 3

2 coth (eBξ)

×
∞
∫

−∞

dx exp

[

2πirx− ξ

(

m2 +

(

θ + 2πx

a

)2
)]

. (26)

Now, using that

∞
∫

−∞

dx exp

[

2πirx− ξ

(

θ + 2πx

a

)2
]

=
a

2
√
πξ

exp

(

−irθ −
(ra

2

)2 1

ξ

)

,

the Eq. (26) becomes

1

Γ (s)

TEAa

2 (2π)2

∞
∑

r=−∞

exp (−irθ)
∞
∫

0

dξξs−3 exp

(

−m2ξ −
(ra

2

)2 1

ξ

)

+
1

Γ (s)

eBTEAa

2 (2π)2

∞
∑

r=−∞

exp (−irθ)
∞
∫

0

dξξs−2L (eBξ)

× exp

(

−m2ξ −
(ra

2

)2 1

ξ

)

, (27)

where L (x) = coth (x) − 1/x is the Langevin function. The r = 0 term in
the first sum of expression (27) exactly cancels the last term in Eq. (17).
Using the integral representation for the modified Bessel function of second
kind (see formula (8.432–6) in [19]) and performing the integration over ξ

and making the change of variable ξ = a2/σ ⇒ dξ = − (a/σ)2 dσ in the
second integral in the Eq. (27), we obtain

ζreg (s) =
1

Γ (s)

TEAa

(2π)2

{

2

(

2m

a

)2−s ∞
∑

r=1

1

r2−s
K2−s (mra) cos (rθ)

+
eB

2a2−2s

∞
∑

r=−∞

exp (−irθ)
∞
∫

0

dσ

σ−s
L

(

eBa2

σ

)

× exp

(

−
(r

2

)2
σ − (am)2

σ

)}

. (28)
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In order to evaluate ζ ′reg (0) we use the fact that if ζreg (s) = F (s)/Γ (s),
with F being a function which is analytic at s = 0, then ζ ′reg (0) = F (0).
Grouping all the previous results, or more precisely, using equations (6),
(11), (19) and taking the result for ζ ′reg (0), we finally obtain the Casimir
energy density:

E (a,B)

A
≡ 1

ATE
ζ ′reg (0) =

2 (am)2

π2a3

∞
∑

r=1

1

r2
K2 (amr) cos (rθ)

+
eB

8π2a

∞
∑

r=−∞

exp (−irθ)
∞
∫

0

dσL

(

eBa2

σ

)

× exp

(

−r
2σ

4
− (am)2

σ

)

. (29)

Now, observe that the contribution coming from the last term on the right
hand side of Eq. (29) if we put r = 0, namely,

eBA

8π2a

∞
∫

0

dσL

(

eBa2

σ

)

exp

(

−(am)2

σ

)

,

which may be written as

(Aa)
eB

8π2

∞
∫

0

dξL (eBξ) exp
(

−m2ξ
)

,

then it is proportional to the volume Aa. Hence, it gives rise to a uniform
energy density per unit volume (independent of parameter a) and does not
have to be taken into account in the Casimir energy. Thus the final result is

E (a,B)

A
=

2 (am)2

π2a3

∞
∑

r=1

1

r2
K2 (amr) cos (rθ) +

eB

4π2a

∞
∑

r=1

cos (rθ)

×
∞
∫

0

dσL

(

eBa2

σ

)

exp

(

−r
2σ

4
− (am)2

σ

)

. (30)

This is our main result, since it gives the Casimir energy density for a variety
of situations interpolating continuously periodic and antiperiodic boundary
conditions for the Dirac field in the presence of a uniform magnetic field.

To verify the consistence of our expression, equation (30), we now take
the limits for θ = 0 and θ = π, i.e., the periodic and antiperiodic cases,
respectively.
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For the periodic situation the result is achieved when we put θ = 0 in
the above equation:

Epdc (a,B)

A
=

2 (am)2

π2a3

∞
∑

r=1

1

r2
K2 (amr) +

eB

4π2a

∞
∑

r=1

∞
∫

0

dσL

(

eBa2

σ

)

× exp

(

−
(r

2

)2
σ − (am)2

σ

)

, (31)

while the antiperiodic one is given by (θ = π)

Eapd (a,B)

A
= −2 (am)2

π2a3

∞
∑

r=1

(−1)r+1

r2
K2 (amr) − eB

4π2a

∞
∑

r=1

(−1)r+1

×
∞
∫

0

dσL

(

eBa2

σ

)

exp

(

−
(r

2

)2
σ − (am)2

σ

)

. (32)

We call attention to the fact that the part independent of external magnetic
field in (32) gives the expected result in the limit of zero mass, i.e.,

E
A

= −ξ π2

720a3
, (33)

with ξ = 7 × 4. For the second term we follow the analysis established
in [4] which shows that the external magnetic field increases the fermionic
Casimir energy due to the presence of a quadrature which is strictly positive,
decreases monotonically as r increases and goes to zero as r → ∞.

Our results given by equations (30), (31) and (32) are in perfect agree-
ment with Refs. [4, 7, 8]. Particularly, in Ref. [7] a numerical analysis for
the antiperiodic condition shows that for the electron field constrained in a
typical Casimir cavity, the enhancement in the Casimir energy is far from
being detectable in laboratory. However, for different geometries and field
configurations the situation can change. Besides, an analogous effect will
occur in QCD and despite of the fact that quarks are much heavier than
electrons, the dimensions involved are much smaller so that the effect may
become significant.

In the next section, we are interested in the derivation of the Casimir
pressure as well as in analyzing its behavior, so in order to achieve this, we
get to starting point Eq. (30) for the Casimir density energy.
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3. The Casimir pressure

Now, from the expression of density energy in (30) we can obtain the
corresponding Casimir pressure

P = − ∂

∂a

(E (a,B)

A

)

, (34)

taking into account that

L

(

eBa2

σ

)

= coth

(

eBa2

σ

)

−
(

eBa2

σ

)−1

, (35)

K2 (amr) =
1

2

(amr

2

)2
∞
∫

0

dηη−3 exp

(

−η − (amr)2

4η

)

. (36)

Carrying out the derivations we have

∂

∂a
L

(

eBa2

σ

)

= −
(

2eBa2

σ

)

csch2

(

eBa2

σ

)

+

(

eBa2

2σ

)−1

, (37)

and observing the relation (8.486.12) in Ref. [19] we get

a
∂

∂a
K2 (amr) → z

∂

∂z
K2 (z) = −2K2 (z) − zK1 (z) , (38)

where z = amr, and so we can write the Casimir pressure as

P (a,m,B) =
2 (am)2

π2a4

∞
∑

r=1

cos (rθ)

r2
(3K2 (amr) + (amr)K1 (amr))

+
eB

4π2a2

∞
∑

r=1

cos (rθ)

∞
∫

0

dσ

[(

1 +
2 (am)2

σ

)

L

(

eBa2

σ

)

+

(

2eBa2

σ

)

csch2

(

eBa2

σ

)

−
(

eBa2

2σ

)−1
]

× exp

(

−r
2σ

4
− (am)2

σ

)

. (39)

The Eq. (39) gives our final result for the Casimir pressure of the Dirac
field in the presence of the external magnetic field B. The r.h.s. of the
equation (39) has two terms, the first one is independent of the magnetic
field B and comes from the contribution of the first term in the r.h.s. of
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(30) while the second one is magnetic field dependent. The behavior of the
Casimir pressure in (39) is determined by the same quadrature as in Eq. (30).

Figures 1 and 2 give a comparison of graphical plots for the external
magnetic dependent condition in the Casimir pressure taken for two values
of θ according to the Eq. (39). All the figures were obtained by using the
MAPLEr program.

16

120

12

80

8

40

0
4

B

20

Fig. 1. Casimir pressure versus magnetic field (in gauss) for the periodic case given

by the Eq. (39). The parameter a is taken as 1µm.
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Fig. 2. Casimir pressure versus magnetic field (in gauss) for the antiperiodic case

given by the Eq. (39). The parameter a is taken as 1µm.
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theta

32,521,51

1
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0
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-1

Fig. 3. The Casimir pressure versus θ. A graphical plot compares B-dependent

and B-independent parts in Eq. (39). The magnetic field B is taken to be 1 gauss

and we are assuming am = 1.
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Fig. 4. Casimir pressure versus the magnetic field B and the θ parameter as given

by Eq. (39). B varying from 0.01 to 20 gauss and the θ parameter varying from 0

to π. The separation between the plates was taken as a = 1µm.

Starting from expression (39) we can study the weak field and zero mass
limits as well as the opposite situation, that is, the strong field limit for
am≪ 1 and am≫ 1. We start with the weak field limit, where
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eB

4π2a2

(

1 +
2 (am)2

σ

)

L

(

eBa2

σ

)

=

(

1 +
2 (am)2

σ

)

σ

4π2a4





cosh
(

eBa2

σ

)

sinh
(

eBa2

σ

)/(

eBa2

σ

) − 1



→ 0 ,

and

eB

4π2a2

(

(

2eBa2

σ

)

csch2

(

eBa2

σ

)

−
(

eBa2

2σ

)−1
)

=
σ

2π2a5















1

sinh2
(

eBa2

σ

)

/

(

eBa2

σ

)2
− 1















→ 0 .

In this limit the Casimir pressure becomes

P (a,m) =
2 (am)2

π2a4

∞
∑

r=1

cos (rθ)

r2
(3K2 (amr) + (amr)K1 (amr)) . (40)

We can immediately write the form for Eq. (40) when m→ ∞

P (a,m→ ∞) =
6(am)2

π2a4

∞
∑

r=1

√

π

2amr
cos (rθ)

[

1

r2
+

45

8amr3
+
am

3r

]

× exp (−amr) , (41)

where we take the asymptotic form for Bessel functions given by [19]

lim
z→∞

Kν (z) ∼
√

π

2z
exp (−z)

[

n−1
∑

k=0

(2z)−k Γ
(

ν + k + 1
2

)

k!Γ
(

ν − k + 1
2

)

]

. (42)

Now, we can obtain the expression for P in the zero mass limit. To reach
this we need the expression of Kn (z) for small arguments [19]

Kn (z)|z→0 ∼ 1

2

n−1
∑

k=0

(−1)k
(n− k − 1)!

k! (z/2)n−2k
.

So we get

K2 (amr)|m→0 ∼ 1

2

(

1
(

amr
2

)2 − 1
(

amr
2

)

)

and K1 (amr)|m→0 ∼ 1

amr
.
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Using these results we obtain the equation (40) in the form

P (a,m) =

∞
∑

r=1

[

12

π2a4

cos (rθ)

r4
− 6am

π2a4

cos (rθ)

r3
+

2 (am)2

π2a4

cos (rθ)

r2

]

, (43)

and taking the limit m → 0 we have

lim
m→0

P (a,m) ≡ P (a) =
12

π2a4

∞
∑

r=1

cos (rθ)

r4
. (44)

In the particular case for θ = π, i.e., cos (rθ) = (−1)r, the Eq. (44) leads to

P (a) =
12

π2a4

∞
∑

r=1

(−1)r

r4
=

12

π2a4

(

1 − 1

8

)

ζ (4) = ξ
π2

240a4
,

which is the usual result [4] with the factor ξ = (7 × 4). Now we take again
the Eq. (39) to analyze the strong field limit. In this situation the second
term in (39) is dominated by the exponential function with its maximum
value exp (−amr) at σ = 2m/r. Further, we obtain

lim
B→∞

L

(

eBa2

σ

)

= lim
B→∞

[

coth

(

eBa2

σ

)

−
(

eBa2

σ

)−1
]

= 1 −
(

eBa2

σ

)−1

,

and

lim
B→∞

(

2 (eBa)2

σ

)

csch2

(

eBa2

σ

)

= 0 ,

and carrying out the change of variable η = r2σ/4 the second term becomes

eB

π2a2

∞
∑

r=1

cos (rθ)

r2

∞
∫

0

dη

(

1 +
(amr)2

2η

)

exp

(

−η − (amr)2

4η

)

− 1

π2a4

∞
∑

r=1

cos (rθ)

r2

∞
∫

0

dη

(

2 (am)2 +
12η

r2

)

exp

(

−η − (amr)2

4η

)

. (45)

Taking into account the integral representation for the modified Bessel func-
tion of second kind (see formula (8.432−6) in [19]) and noting thatK−ν (z) =
Kν (z), we can rewrite (45) as

eB

π2a2

∞
∑

r=1

cos (rθ)

r2

(

(amr)K1 (amr) + (amr)2K0 (amr)
)

−2 (am)2

π2a4

∞
∑

r=1

cos (rθ)

r2
(3K2 (amr) + (am)K1 (amr)) . (46)
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The second term of Eq. (46) cancels the first terms of (39), so we are left
with the following expression in the strong field limit

P (a,m,B) =
eBm

π2a

∞
∑

r=1

cos (rθ)

r
(K1 (amr) + (amr)K0 (amr)) . (47)

If we consider the relation (8.486.17) in [19], the Eq. (47) takes the form

P (a,m,B) =
eBm

π2a

∞
∑

r=1

cos (rθ)

r
((amr)K2 (amr) −K1 (amr)) . (48)

For θ = π (antiperiodic case), Eq. (48) becomes

P (a,m,B) =
eBm

π2a

∞
∑

r=1

(−1)r

r
((amr)K2 (amr) −K1 (amr)) . (49)

We come back to Eq. (48) to evaluate its limits for am≪ 1 and am≫ 1 in
the situation of strong magnetic fields. Following [4], the strong magnetic
field regime in these cases is described, respectively, by |B| ≫

(

φ0/a
2
)

and

|B| ≪
(

φ0/a
2
)

(2πa/λc). Firstly, we consider the limit am ≪ 1 into the
Eq. (48), so the Bessel functions reduce to

K1 (amr) ∼ (amr)−1 and K2 (amr) ∼ 2 (amr)−2 − (amr)−1 ,

and using the relation (42) we obtain

P (a,m,B) =
eB

π2a2

∞
∑

r=1

cos (rθ)

r2
− eBm

π2a

∞
∑

r=1

cos (rθ)

r
. (50)

Now we analyze the second limit (am≫ 1) and by taking

K1 (amr) = K2 (amr) ∼
√

π

2amr
exp (−amr) ,

the Casimir pressure in this situation becomes

P (a,m,B) ∼ eB

√

m3

2aπ3

∞
∑

r=1

cos (rθ)

r1/2
exp (−amr)

−eB
( m

2π3a3

)1/2
∞
∑

r=1

cos (rθ)

r3/2
exp (−amr) . (51)
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The particular forms for equations (50) and (51), when θ = π, are given by

P (a,m,B) = − eB

2π2a2
ζ (2) − eBm

π2a
ζ (1) , (52)

and

P (a,m,B) ∼ −2eBa
( m

2πa

)3/2
exp (−amr) , (53)

respectively. So, we can conclude that the uniform magnetic field leads to the
enhancement both of the Casimir density energy and the Casimir pressure.
Nevertheless, the results are still far from detectable in the laboratory for
typical values of the order of parameter am.

4. Conclusions

We have calculated the Casimir energy for a fermionic field under the
influence of an uniform magnetic field using the generalized zeta function
method and considering a generalized boundary condition which interpolates
continuously periodic and antiperiodic conditions. This procedure allows us
to get results with a minimum of spurious terms. Also, the use of a method
other than the mode summation and Schwinger’s proper time is another way
to confirm the results found in the literature [4, 7, 8].

Next, we consider the Casimir energy expression in order to evaluate the
corresponding pressure and by doing this we determined the weak field as
well as strong field limits. Using the MAPLEr program, we have been able
to show a graphical sketch of the Casimir pressure behavior in Eq. (39) as
a function of the magnetic field B and the θ parameter. In particular, we
exhibited the behavior for the part dependent of magnetic field when the θ
parameter takes the values 0 and π, respectively. In particular, the graphical
sketch of the antiperiodic case shows that the Casimir pressure is enhanced
by the presence of the external magnetic field.

As a next step in this development we consider, the possibility of re-
obtaining the results in [9] for the Casimir energy for the Dirac field under
MIT boundary conditions by using the generalized zeta function method.
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