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The algorithm rotating the real spherical harmonics is presented. The
convenient and ready to use formulae for ℓ = 0, 1, 2, 3 are listed. The
rotation in R

3 space is determined by the rotation axis and the rotation
angle; the Euler angles are not used. The proposed algorithm consists of
three steps. (i) Express the real spherical harmonics as the linear com-
bination of canonical polynomials. (ii) Rotate the canonical polynomials.
(iii) Express the rotated canonical polynomials as the linear combination of
real spherical harmonics. Since the three step procedure can be treated as
a superposition of rotations, the searched rotation matrix for real spherical
harmonics is a product of three matrices. The explicit formulae of matrix
elements are given for ℓ = 0, 1, 2, 3, what corresponds to s, p, d, f atomic
orbitals.

PACS numbers: 31.15.Ar, 31.15.Fx, 71.15.Mb, 71.15.Dx

1. Introduction

In the previous paper [1] the algorithm rotating the complex spherical
harmonics was presented. The proposed algorithm has the following prop-
erties:

• It does not use the Euler angles [2–4].

• The rotation is determined by the rotation axis and one rotation angle [5].
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• For fixed angular momentum number, ℓ, the rotation matrix, Dℓ,
which rotates the complex spherical harmonic, is a product of three
matrices.

The main idea of the algorithm is to split the rotation into three steps:

1. Express the complex spherical harmonics as the linear combination of
canonical polynomials, matrix Bℓ.

2. Rotate the canonical polynomials, matrix Cℓ.

3. Express the rotated canonical polynomials as the linear combination
of complex spherical harmonics, matrix Aℓ.

It was shown in Ref. [1], that if Bℓ is invertible, then Bℓ = A
−1
ℓ , and the

searched rotation matrix Dℓ is a product:

Dℓ = A
−1
ℓ CℓAℓ . (1)

From the above, it follows that the matrix Cℓ depends only on the canonical
polynomials.

In the present paper, the three steps procedure, for real spherical har-
monics is applied. Let us denote (for fixed ℓ) the rotation matrix for real
spherical harmonics by D

r
ℓ. Further, let denote by A

r
ℓ the matrix expressing

the rotated canonical polynomials as the linear combination of real spherical
harmonics. Since the matrix Cℓ depends only on the canonical polynomials,
then:

D
r
ℓ = (Ar

ℓ)
−1

CℓA
r
ℓ . (2)

Since the matrix Cℓ was derived in Ref. [1] for ℓ = 0, 1, 2, 3, then the only
thing required to define the rotation matrices for real spherical harmonics is
the definition of matrix A

r
ℓ. In the present paper the matrix A

r
ℓ is derived

for ℓ = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

2. Definitions

According to the Condon–Shortley phase conventions [4,12], the complex
spherical harmonics are defined for |m| ≤ ℓ as:

Y m
ℓ (θ, ϕ) = Nm

ℓ P |m|
ℓ (cos(θ))eimϕ , (3)

where Nm
ℓ is a normalization factor:

Nm
ℓ = im+|m|

[

2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)!

]1/2

(4)
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and P |m|
ℓ (v) is an associated Legendre function defined by Rodrigues’ for-

mula [6, Eq. 22.11] valid for |v| ≤ 1 and m ≥ 0:

Pm
ℓ (v) =

(1 − v2)m/2

2ℓℓ!

dm+ℓ

dvm+ℓ
(v2 − 1)ℓ . (5)

Real spherical harmonic, Ym
ℓ (θ, ϕ), is defined [7] as a linear combination of

complex spherical harmonics:

Ym
ℓ (θ, ϕ) =



















1√
2
[Y −m

ℓ (θ, ϕ) + (−1)mY m
ℓ (θ, ϕ)] for m > 0 ,

Y m
ℓ (θ, ϕ) for m = 0 ,

i√
2
[Y m

ℓ (θ, ϕ) − (−1)mY −m
ℓ (θ, ϕ)] for m < 0 .

(6)

In Ref. [1] it was shown, that rℓY m
ℓ (θ, ϕ) for m ≥ 0 is a complex polynomial

of x, y, z:

rℓY m
ℓ (θ, ϕ) ≡ rℓY m

ℓ (x, y, z) = Nm
ℓ (x+ iy)m

⌊(ℓ−m)/2⌋
∑

k=0

γ
(m)
ℓ,k r

2kzℓ−2k−m , (7)

where (x, y, z) is a point in Cartesian coordinate system defined by the
point (r, θ, ϕ) in the spherical coordinate system, hence, relations hold: r2 =
x2 + y2 + z2, z = r cos(θ), y = r sin(θ) sin(ϕ) and x = r sin(θ) cos(ϕ). In

Eq. (7), the coefficient γ
(m)
ℓ,k is defined as

γ
(m)
ℓ,k = (−1)k2−ℓ

(

ℓ

k

)(

2ℓ− 2k

ℓ

)

(ℓ− 2k)!

(ℓ− 2k −m)!
(8)

and ⌊(ℓ−m)/2⌋ is the largest integer number less than (ℓ−m)/2. Multiplying
Eq. (6) by rℓ and substituting Eq. (7) we obtain the real polynomial of x, y, z:

rℓYm
ℓ (θ, ϕ) ≡ rℓYm

ℓ (x, y, z)

= rℓ



















1√
2
[Y −m

ℓ (x, y, z) + (−1)mY m
ℓ (x, y, z)] for m > 0 ,

Y m
ℓ (x, y, z) for m = 0 ,

i√
2
[Y m

ℓ (x, y, z) − (−1)mY −m
ℓ (x, y, z)] for m < 0 .

(9)

The function Ym
ℓ (x, y, z) is a Cartesian representation of the real spherical

harmonic. For example, for ℓ = 1 we get:

Y−1
1 (x, y, z) =

√

3/(4π)y/r ,

Y0
1 (x, y, z) =

√

3/(2π)z/r ,

Y1
1 (x, y, z) =

√

3/(4π)x/r .
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3. Rotation of real spherical harmonics in R
3

Let us introduce the sphere of any radius and the center located at the
origin of coordinate system, and denote by (θ, ϕ) and (θ′, ϕ′) two points
located on it. It was proved [2–4], that for complex spherical harmonics the
relation holds:

Y m
ℓ (θ, ϕ) =

ℓ
∑

M=−ℓ

d
(ℓ)
m,MYM

ℓ (θ′, ϕ′) . (10)

This relation means, that for fixed ℓ, the set of functions Sℓ = {Y m
ℓ (θ, ϕ)}

for m = −ℓ, . . . , ℓ is complete. By definition (6), real spherical harmonic,
Ym

ℓ (θ, ϕ) is a linear combination of two complex spherical harmonics Y m
ℓ (θ, ϕ)

and Y −m
ℓ (θ, ϕ) with the same angular momentum number ℓ. Thus, because

of completeness of set Sℓ, we have

Ym
ℓ (θ, ϕ) =

ℓ
∑

M=−ℓ

d̃
(ℓ)
m,MYM

ℓ (θ′, ϕ′) , (11)

where d̃
(ℓ)
m,M denotes the element of (searched) rotation matrix D

r
ℓ.

As was indicated in Section 1, the only required thing to define the

matrix D
r
ℓ = (Ar

ℓ)
−1CℓA

r
ℓ is to find the matrix A

r
ℓ. The elements ã

(ℓ)
k,m of

matrix A
r
ℓ are defined by the equation [1]:

Qk
ℓ (x, y, z) = rℓ

ℓ
∑

m=−ℓ

ã
(ℓ)
k,mYm

ℓ (x, y, z) . (12)

In this equation, the canonic polynomial, Qk
ℓ (x, y, z) for k = −ℓ, . . . , ℓ, is

represented as a linear combination of real spherical harmonics. Due to the

specific selection of Qk
ℓ (x, y, z), the elements ã

(ℓ)
k,m can be easily found from

the polynomial representation of Ym
ℓ (x, y, z), defined in Eq. (9). Since the

real spherical harmonic for ℓ = 0 is constant, then d̃
(0)
0,0 = 1. The results

obtained for ℓ = 1, 2, 3 are presented in the following subsections.

3.1. Expansion coefficient for ℓ = 1

Let recall the canonical polynomials Qk
1(x, y, z), for k = −1, 0, 1

Q−1
1 (x, y, z) = x , (13a)

Q0
1(x, y, z) = y , (13b)

Q1
1(x, y, z) = z . (13c)
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Then, based on Eqs. (7), (9) and (12) the matrix A
r
1 has the form:

A
r
1 =

√

4π

3





0 0 1
1 0 0

0 1/
√

2 0



 . (14)

The matrix A
r
1 is invertible.

3.2. Expansion coefficient for ℓ = 2

Let recall the canonical polynomials Qk
2(x, y, z), for k = −2,−1, 0, 1, 2:

Q−2
2 (x, y, z) = yz , (15a)

Q−1
2 (x, y, z) = xz , (15b)

Q0
2(x, y, z) = xy , (15c)

Q1
2(x, y, z) = x2 − y2 , (15d)

Q2
2(x, y, z) = 2z2 − x2 − y2 = 3z2 − r2 . (15e)

Then, based on Eqs. (7), (9) and (12), the matrix A
r
2 has the form:

A
r
2 =

√

4π

15













0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 2

0 0
√

6 0 0













. (16)

The matrix A
r
2 is invertible.

3.3. Expansion coefficient for ℓ = 3

Let recall the “general set” of canonical polynomials Qk
3(x, y, z), for

k = −3, . . . , 3

Q−3
3 (x, y, z) = x(4z2 − x2 − y2) , (17a)

Q−2
3 (x, y, z) = y(4z2 − x2 − y2) , (17b)

Q−1
3 (x, y, z) = z(2z2 − 3x2 − 3y2) , (17c)

Q0
3(x, y, z) = xyz , (17d)

Q1
3(x, y, z) = y(3x2 − y2) , (17e)

Q2
3(x, y, z) = x(x2 − 3y2) , (17f)

Q3
3(x, y, z) = z(x2 − y2) . (17g)
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Applying Eqs. (7), (9) and (12) it can be verified that the matrix A
r
3 has

the form:

A
r
3 = 4

√

2π

21





















0 0 0 0 1 0 0
0 0 1 0 0 0 0

0 0 0
√

3/2 0 0 0

0 1/
√

40 0 0 0 0 0
√

3/5 0 0 0 0 0 0

0 0 0 0 0 0
√

3/5

0 0 0 0 0 1/
√

10 0





















. (18)

The matrix A
r
3 is invertible.

4. Possible application

In Density Function Theory (DFT) [8,9] the fundamental equation is the
Kohn–Sham eigenproblem

ĤKSψµ = εµψµ . (19)

For molecular systems, this equation is often solved by Linear Combination
of Atomic Orbitals (LCAO), with ψµ(r) =

∑

j cµ,jχj(r), where χj(r) are
so called basis functions and cµ,j are the expansion coefficients. The LCAO
method transforms the Kohn–Sham functional eigenproblem, Eq. (19), to
the algebraic generalized eigenproblem Hc = εS, where the elements of
matrices H and S are given by

hj,k =

∫

R3

χ∗
j(r)Ĥksχk(r)dr , sj,k =

∫

R3

χ∗
j (r)χk(r)dr , (20)

where ∗ denotes conjugate complex. The main cost of LCAO method is:

• Evaluation of integrals hj,k and sj,k.

• Solution of generalized algebraic eigenproblem Hc = εS.

Often, the basis function χj(r) is represented as a product of the radial
part and the spherical part: χj(r) ≡ χj(r, θ, ϕ) = Rj(r)Uj(θ, ϕ). When
spherical part is a complex spherical harmonic, i.e. Uj(θ, ϕ) ≡ Y m

ℓ (θ, ϕ),
then matrices H and S are complex. When spherical part is a real spherical
harmonic, i.e. Uj(θ, ϕ) ≡ Ym

ℓ (θ, ϕ), then matrices H and S are real. Since
the solution cost of generalized eigenproblem is four times higher for the
complex matrices than for the real matrices [10, 11], it is desirable to apply
the real spherical harmonics to save the computational time.
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The evaluation of the matrix elements hj,k is a very complicated task.
Generally, the integrals hj,k can be classified as one-, two-, three- and four-
center integrals. The evaluation of these integrals can be substantially sim-
plified, when the rotations and translations of basis functions χj(r) are used.
Since the radial part of χj(r) does not change under rotations, then to rotate
χj(r) only the spherical part Ym

ℓ (θ, ϕ) must be rotated. When the spherical
part of χj(r) is represented by a real spherical harmonic, then the algorithm
described in the present paper might be useful.

5. Summary

The rotation of the real spherical harmonic was analyzed. The rotation
was defined by the rotation axis and the rotation angle. The real spherical
harmonic defined in the fixed coordinate system was expanded as a linear
combination of the real spherical harmonic in the rotated coordinate system.
The present manuscript heavily depends on the previous paper, where the
rotation of the complex spherical harmonics was considered. For both cases,
the rotation matrix is determined by two matrices. Since one matrix Cℓ is
the same for complex and real spherical harmonics, the only difference is in
the matrices Aℓ and A

r
ℓ, which were easily obtained. The present algorithm

might be useful in computational quantum chemistry.
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