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Parton distribution functions are non-perturbative inputs necessary to
calculate cross-sections for scattering processes involving hadrons in the
initial state. They are obtained by fitting theoretical predictions to various
sets of experimental measurements, many of which come from Deep Inelas-
tic Scattering experiments. Among those, the experiments at the HERA
electron–proton collider have played a crucial role, from the beginning of
the data-taking, with the surprising observation of the strong rise of the
structure function F2 at low Bjorken x in 1993, to its end, with the direct
measurement of the structure function FL in 2008. This paper presents an
overview of HERA measurements which constrain most the proton struc-
ture, and of our current knowledge of parton distribution functions (pdf)
in the proton. The impact of the current pdf uncertainties on predictions
for cross-sections at the LHC collider is also discussed.

PACS numbers: 12.38.–t

1. Deep Inelastic Scattering

The scattering of a point-like probe (as a lepton) on a composite target
(as a proton) has been used for long to underpin the target contents. In the
elastic regime lp → lp, the scattering, which proceeds mainly via photon
exchange as depicted in Fig. 1 (left), depends on the proton structure only
via the electric and magnetic form factors of the proton. Elastic scatter-
ing dominates the lp cross-section when the virtuality Q2 of the exchanged
photon is small. At larger Q2, the proton usually breaks up (inelastic
regime) and the cross-section is expressed in terms of structure functions, see
e.g. [1] for a general introduction.
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Fig. 1. (left) Generic diagram for neutral current electron–proton scattering, and

definition of four-momenta used in the text. The exchanged boson can also be a Z

boson. (right) The DIS process viewed in the Breit frame.

1.1. General formalism

The kinematics of the Deep Inelastic Scattering (DIS) process is fully
characterized by two variables, usually taken amongst the Lorentz invariant
x, Q2 and y, defined as:

Q2 = −q2 , x =
Q2

2(P · q) , y =
(P · q)
(P · k) , (1)

where P , k and q denote, respectively, the four-momenta of the incoming pro-
ton, of the incoming lepton, and of the exchanged boson (see Fig. 1). These
variables are related via Q2 = Sxy, where S is the square of the lepton–
nucleon centre-of-mass energy. It is also useful to introduce the squared
invariant mass W 2 of the final state X, i.e. the centre-of-mass energy in the
γp system. The Neutral Current (NC) DIS differential cross-section can be
written from the product of the leptonic current Lµν , fully calculable, with
the hadronic current Wµν . The latter can be decomposed along the three
tensors which satisfy the requirements of current conservation. This leads
to the introduction of three structure functions F2, FL and F3, and to the
expression

d2σ±NC

dxdQ2
=

2πα2

xQ4

[

Y+F2 ∓ Y−xF3 − y2FL

]

(2)

for the e±p cross-section, with Y± = 1 ± (1 − y)2 (see e.g. [2] in these
proceedings). Alternatively, this expression can be obtained by considering
the contributions to Wµν of the exchange of a boson with a definite helicity
λ = +1,−1, 0. This is most easily seen by considering the DIS process in
the “Breit frame”.

The Breit frame is defined by 2x~P + ~q = ~0, and the z-axis is taken to be
the direction of the photon, see Fig. 1 (right). In the partonic interpretation
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of DIS, the hit quark “bounces back” on the photon in this frame, the outcom-
ing quark having the same energy as the incoming quark. Writing the four-
vectors of the proton and of the photon, respectively, P = (Ep, 0, 0,−Ep)
and q = (Eγ , 0, 0, qz), one gets Ep = qz/2x. From the relations:

(2xP + q)2 = −Q2 + 4x(P.q) = Q2

= (2xEp + Eγ)2 = (qz + Eγ)2

and from Q2 = −q2 = q2z−E2
γ = (qz−Eγ)(qz+Eγ), one deduces that Eγ = 0:

in the Breit frame, the photon carries zero energy. Looking now from the
lepton side: the incoming and outcoming electrons have the same energy Ee

since Eγ = 0. They have an opposite pz and, from pz(ein) = pz(eout)+Q, one
deduces that pz(ein) = Q/2. The product (P · k) = S/2 = Q2/(2xy) can be
written as (1/2x)(EeQ+Q2/2), from which one obtains Ee = Q(2−y)/(2y).
Combined with pz(ein) = Q/2, this leads to cosα = y/(2 − y), where the
angle α is defined in Fig. 1.

The probability amplitudes for ep scattering can then be written using

d
1/2
1/2,1/2(α) = cos α

2 and d
1/2
1/2,−1/2(α) = sin α

2 . For example, for a transverse

boson with Jz = +1, the scattering is possible only if the projection of
the spin of the incoming (outcoming) electron on the z-axis is 1/2 (−1/2).
For a right-handed (left-handed) electron, these two conditions both occur
with a probability amplitude cos α

2 (sin α
2 ), such that the DIS cross-section

involving a Jz = +1 boson is proportional to
(

cos2 α
2

)2
+

(

sin2 α
2

)2
. One

then obtains the following y-dependences for the various terms entering the
DIS cross-section:

• For transverse bosons:
(

cos2 α
2

)2
+

(

sin2 α
2

)2 ∝ (1 − y)2 + 1 .

• For longitudinal bosons: 2
(

cos α
2 sin α

2

)2 ∝ 2(1 − y). This gives us the
important result that the contribution of longitudinal photons vanishes
at y = 1.

• At highQ2, the exchange of a Z boson contributes significantly, leading
to a parity-violating term: ∝ y(2 − y).

Putting all the pieces together:

dσ±NC ∼
[

(1 − y)2 + 1
]

FT + 2(1 − y)FL ∓
[

1 − (1 − y)2
]

xF3 , (3)

where the structure functions FT, FL and xF3 contain the dependence on the
nucleon structure, for, respectively, the (parity-conserving) contribution due
to transverse bosons, to longitudinal bosons, and the parity-violating term.
Defining F2 = FT + FL, the sum of the first two terms can be rewritten as
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Y+F2 − y2FL, and one recovers Eq. (2). The reduced cross-section σ̃± for
e±p scattering is then defined as:

σ̃± =
dσ±NC

dxdQ2

xQ4

2πα2

1

Y+
= F2 ∓

Y−
Y+

xF3 −
y2

Y+
FL . (4)

A similar expression, with similar structure functions, can be written for
Charged-Current (CC) DIS, where a W boson is exchanged instead of a γ
or Z, leading to a neutrino in the final state.

1.2. Partonic interpretation of NC DIS

In the quark–parton model (QPM), the ep cross-section is written as an
incoherent sum of probabilities of scattering from single free quarks. Writing
down the cross-section for eq scattering1, dσeq/dy = 2πα2/Q4e2q

[

1+(1−y)2
]

,
denoting by qi(x) the probability to find a quark qi in the proton, with mo-
mentum fraction x, and identifying with Eq. (2), one obtains:

F2 =
∑

i

e2qi
x [qi(x) + q̄i(x)] .

Under the simplifying assumption that only the u and d flavors contribute,
NC DIS in lepton–proton collisions gives information on 4(u + ū)+
(d + d̄). In lepton–deuterium collisions2, another combination is measured,
∼ u + d + ū + d̄, such that having both lp and ld measurements allows to
“separate” the flavors. The structure function xF3 is driven by the differ-
ence σ(e+p) − σ(e−p) and can be written as xF3 ∼

∑

i cix [qi(x) − q̄i(x)],
where the ci depend on the gauge quantum numbers of the partons qi. It
contains a term due to γZ interference, proportional to the product of axial
couplings aeaq, and a term from pure Z exchange, proportional to aeveaqvq.
In the “QCD improved parton model”, qi(x) is to be replaced by the parton
density function (pdf) qi(x,Q

2) and these two simple expressions for F2 and
xF3 hold at leading order (LO) only. Beyond LO, they can be written as
convolutions of pdfs with calculable coefficient functions.

Considering γq → q in the Breit frame, one sees that helicity conservation
together with the fact that quarks have spin 1/2 requires that the photon
be transverse (see Fig. 2). Hence FL is zero at leading order. A non-zero

1 The variable y is related to the scattering angle θ∗ of the lepton in the eq centre-
of-mass frame via y = (1 − cos θ∗)/2, with y = 0 (y = 1) corresponding to forward
(backward) scattering. The two factors (1 and (1−y)2) in dσeq/dy correspond to the
two configurations, where the lepton and the quark have the same or the opposite
helicity.

2 Use is made here of the isospin symmetry relating a density qn in the neutron to that,
qp, in the proton, i.e. un = dp ≡ d, dn = up ≡ u.



Determination of Parton Distribution Functions . . . 2099

FL appears at next-to-leading order (NLO), when the final state consists
of qg, as may happen when the scattered quark radiates a gluon, or when
the incoming quark has a non-zero transverse momentum, as can happen
when the interacting quark comes from a gluon splitting g → qq̄. Hence: at
NLO, FL is given by a convolution involving the “quark singlet”

∑

(q + q̄)
(contribution from q → qg) and the gluon density (contribution from g →
qq̄); away from the “valence” region, FL is roughly proportional to the gluon
density; and FL is sensitive to the kT of quarks produced in g → qq̄.

Fig. 2. Illustration of the fact that FL is zero at LO due to the spin 1/2 of the

quarks. Non-zero contributions appear beyond LO.

As illustrated in Fig. 3, the Charged Current DIS e+p cross-section goes
as (1−y)2xD+xŪ , while the CC e−p cross-section goes as (1−y)2xD̄+xU ,
with U = u+c and D = d+s+b. This allows to write a “partonic” expression
for the CC structure functions and this shows that:

• the total CC cross-section is much larger in e−p collisions than in e+p,
because U is larger than D at not too small x, and because the e+p
cross-section is reduced by the angular factor (1 − y)2.

• CC DIS brings important information to separate the up and down
quark pdfs.

Fig. 3. The different “angular dependences” of CC DIS, depending on the angular

momentum Jz of the system.

Neutrino DIS is very similar to CC ep DIS. But because of the very weak
cross-sections, experiments used a heavy target, e.g. lead (CCFR) or iron
(NuTeV), which are nearly isoscalar target (i.e. the number of protons is
nearly equal to the number of neutrons). When both νN and ν̄N measure-
ments are available, the sum of νN and ν̄N cross-sections gives access to the
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“CC F2” structure function, ∼ x(U+D+Ū+D̄), and their difference gives in-
formation on the CC parity-violating structure function, ∼ x(U−Ū+D−D̄).
However, the νN data need to be corrected to an isoscalar target, and for
nuclear effects (the fact that a density xf(x) in a nuclei differs from xf(x) in
the proton). Both corrections appear to be not trivial and model dependent.

2. The HERA collider and experiments

The HERA machine is situated at DESY in Hamburg, Germany. From
1992 until the end of June 2007, it collided 27.6 GeV electrons (or positrons)

with 920 GeV protons, leading to a centre-of-mass energy
√
S = 318 GeV.

The kinematic domain explored by the two colliding experiments, H1 and
ZEUS, is shown in Fig. 4. Compared to fixed target experiments, HERA
provides access to much larger values of Q2 (up to ∼ 105 GeV2), and to much
smaller values of x (down to ∼ 10−6, with most of the low x domain, down
to ∼ 10−5, still in the perturbative region with Q2 above 1 GeV2). During
a first phase of the data-taking (1992− 2000), called “HERA-I”, both exper-
iments collected ∼ 130 pb−1 of unpolarised data, consisting mainly of e+p
data. The second phase, “HERA-II”, started in 2003 after a significant lu-
minosity upgrade, and ended on June 30th, 2007. The experiments collected
about 500 pb−1 of e+p and e−p polarized data, with a typical lepton beam
polarization of 30–40%. The last three months of data taking were dedicated
to a “low energy” run, with a much lower proton beam energy, in view of
providing a direct measurement of the longitudinal structure function FL.
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Fig. 4. The kinematic plane in (x,Q2) accessed by the HERA experiments, and by

previous fixed target experiments.
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Both the H1 and the ZEUS detectors are asymmetric, reflecting the
beam energies asymmetry. By convention, the incoming proton beam de-
fines the positive z-direction, such that a large polar angle for the scattered
electron, θe ∼ π, corresponds to a very small deflection. In most of the
kinematic plane, both the scattered lepton and the hadronic final state can
be detected in the main detector, such that the kinematics of the reac-
tion is overconstrained. Several methods can be used to reconstruct x, Q2

and y, based on the measurement of the scattered lepton only, on that of the
hadronic final state only, or on both. The angular acceptance of the main
detector limits however the measurements down to Q2 ∼ 1.5–2 GeV2, and
going lower in Q2 requires special techniques or a dedicated apparatus, as
will be seen later.

Fig. 5 (left) shows the spread which existed in parameterizations of F2,
prior to the first HERA data. The first HERA results, presented in 1993,
were based on 30 nb−1 of data taken in 1992 and showed a surprising [3],
strong rise of F2 towards low x. Extrapolation from pre-HERA data indi-
cated a “flattish” F2 at low x — and that was also what came out from
Regge-like arguments. However, it was known [4] that in QCD, the gluon
distribution should rise at low x, for Q2 high enough. Approximate solutions
of the DGLAP equation indicated indeed that a “flat” gluon distribution at
a “starting” scale evolves into a rising distribution at higher scales. What
was unknown was “where”, in x and in Q2, the rise should start. The “start-
ing scale” Q2

0, i.e. the scale down to which perturbative QCD was taken to

Fig. 5. The first F2 measurements at HERA are shown on the right. The left

plot shows the spread of the theoretical predictions which were consistent with

pre-HERA data.
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hold, was believed to be a few GeV2. And the evolution between this Q2
0

and Q2 = 15–20 GeV2 is not long enough to generate a rising gluon from
a flattish distribution. Such a rise could only be obtained:

• from a steep input gluon, which could be expected due e.g. to large
ln(1/x) terms (resummed in the BFKL evolution equation);

• from pure DGLAP and a flattish gluon, but at a much lower starting
scale Q2

0.

With the full HERA-I statistics, the statistical precision of these low x and
low Q2 measurements could be reduced below 1%, with a systematic error
of about 2%.

With increasing luminosity, an important statistics was accumulated over
the whole kinematic domain. Fig. 6 shows an overview of HERA F2 mea-
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surements, together with data points from fixed target experiments. One
notes the very strong scaling violations observed at low x, which indi-
cate a large gluon density (at leading order within the DGLAP formalism,
∂F2/∂ lnQ2 ∝ αsg). At high x the scaling violations are negative: high x
quarks split into a gluon and a lower x quark. The curves overlaid are the
result of QCD fits (see later) based on the DGLAP equation. The data show
an excellent agreement with DGLAP, over five orders of magnitude in Q2

and four orders of magnitude in x.
At very high Q2, the NC cross-sections are sensitive to the Z-exchange,

resulting in σNC(e−p) 6= σNC(e+p) as was seen in Sec. 1. The NC cross-
sections have been measured at high Q2 both in e+p and in e−p collisions,
as shown in Fig. 7. The contribution of Z exchange is clearly visible for
Q2 above about 103 GeV2, with the γ–Z interference being constructive
(destructive) in e−p ( e+p) collisions. The difference between both mea-
surements gives access to the parity violating structure function xF3, see
Eq. (3) and Fig. 7 (right), which is a direct measure of the valence quark
distributions.
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Fig. 7. Left — the NC DIS cross-section as a function of Q2 for several values of

x, measured in e+p (blue symbols) and in e−p (red symbols) collisions. The SM

predictions are overlaid, as the full and dashed curves, respectively. Right — the

extracted structure function xF3.

Measurements of charged current DIS provide important constraints
on the flavor separation, which are missing from the measurement of F2

(∼ 4U + D) alone. Indeed, σ+
CC goes as (1 − y)2xD + xŪ and probes

mainly the d density, while σ−CC goes as (1− y)2xD̄+xU and probes mainly
the u density. Examples of HERA CC measurements are shown in Fig. 8.
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Although the statistics of HERA-I measurements is limited, the precision
reaches ∼ 15% for x ∼ 0.1. With the polarized lepton beams that were
available at HERA-II, the measurements, shown in Fig. 8 (right), checked
the linear dependence of the cross-section on the lepton polarization Pe,
σCC(e±) ∝ (1 ± Pe), as predicted in the Standard Model in which right-
handed charged currents do not exist.
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Fig. 8. Left — the CC DIS cross-section measured in e+p collisions. The overlaid

curves show how these measurements disentangle the contributions from up and

down quarks [5, 7]. Right — dependence of the CC cross-section on the lepton

beam polarization [8].

The charm and beauty contents of the proton have also been measured
by the HERA experiments. This can be done via exclusive measurements
(exploiting e.g. the D∗ → D0πslow → Kππ decay chain, or the b → µX
decays), or via semi-inclusive measurements, using silicon vertex devices
around the interaction points. Fig. 9 (left) shows the F bb

2 measured by the
H1 experiment. As the inclusive F2, it shows large scaling violations at
low x. In Fig. 9 (right), the charm fraction in the proton is shown to be
about 25% independently of Q2, while the beauty fraction increases rapidly
with Q2, reaching ∼ 3% at high Q2.

As mentioned already, extending the F2 measurements down to very
low Q2 requires dedicated techniques or detectors. From Q2 = 2E0

eEe(1 +
cos θe) one sees that, to go down to low Q2, one needs to access large angles
θe, or to lower the incoming electron energy E0

e . Large polar angles can
be accessed via:
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Fig. 9. The measured F bb
2 (left) and the fractions of charm and beauty in the proton

(right) [9].

• a dedicated apparatus, as the ZEUS Beam Pipe Tracker (BPT), which
consisted of a silicon strip tracking detector and an electromagnetic
calorimeter very close to the beam pipe;

• shifting the interaction vertex in the forward direction. Two short runs
were taken with such a setting, where the nominal interaction point
was shifted by 70 cm;

• exploiting QED Compton events: when the lepton is scattered at
a large angle θe, it may still lead to an observable electron (i.e. within
the detector acceptance) if it radiates a photon.

Alternatively, initial state radiation events can be used as a way to lower
the incoming electron energy, E0

e → E0
e − Eγ .

All these methods have been exploited at HERA. Fig. 10 shows examples
of measurements at lowest Q2. In Fig. 10 (left), one notes the good agree-
ment with fixed target data, and that F2 continues to rise at low x, even
at the lowest Q2. Figure 10 (right) shows low Q2 measurements obtained
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Fig. 10. Examples of low Q2 measurements at HERA: using QED Compton events,

using a dedicated detector and from special runs where the interaction vertex was

shifted [10].

using the ZEUS BPT, together with results of the shifted vertex runs. As
required by the conservation of the electromagnetic current, F2 ∝ Q2 as Q2

goes to zero.

3. Determination of parton density functions: QCD fits

3.1. Introduction and generalities

The determination of parton density functions (pdfs) from fits of the
DGLAP theory to data from all relevant experiments (so-called “QCD fits”)
is carried out by two groups mainly, resulting in the “MRST/MSTW” and
the “CTEQ” series. A fit is defined in particular by:

• The order of the fit. Most of the fits are performed at NLO. Leading
order fits are still of interest, e.g. for Monte Carlo simulations. With
the recent, full calculation of the DIS cross-section at NNLO, first
NNLO fits are becoming available. For fits performed beyond LO, one
needs to choose the renormalization scheme, usually taken to be the
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MS scheme. One also needs to choose the factorization and renor-
malization scales, µF and µR, which will be used in the theoretical
calculation. For DIS, a common choice is to take µ2

F = µ2
R = Q2.

• The treatment of heavy flavors (HF) — here the case of the charm
quark is taken as an example. In the “zero-mass variable flavor number
scheme” (ZM-VFNS), the charm density is set to zero below Q2 ∼ 4m2

c .
Above this threshold, the charm is generated by gluon splitting and
is treated as massless. The drawback of this approach is that it ig-
nores charm mass effects in the threshold region. In contrast, in the
“fixed-flavor number scheme” (FFNS), there is no pdf for the charm
and bottom, i.e. there are only three active flavors. For W 2 above
the production threshold, the DIS production of charm proceeds via
photon–gluon fusion, γg → cc̄. The drawback of this treatment is
that the calculations involve terms in ln(Q2/m2

c) which become large
at high Q2 and would need to be resummed. The “state-of-the-art”
approach, called “general-mass variable flavor number scheme”, some-
how interpolates between the ZM-VFNS and the FFNS. It is not easy
to implement, especially at NNLO. To illustrate the importance of
HF treatment in QCD fits, note that the main difference between the
CTEQ 6.1 and CTEQ 6.5 fits, for which the predictions for W produc-
tion at the LHC differ by ∼ 8%, was precisely an improved treatment
of heavy flavors in CTEQ 6.5 [11] (see Sec. 3.3).

• Which datasets and which data points are included in the fit. DIS
measurements at very low x, where DGLAP may break down, may be
cut away from the fits. The same holds for data points at very low
W 2, which are likely to be affected by large higher twists effects, and
for points at very high x, for which one may need a resummation of
ln(1 − x) terms.

• The starting scale Q2
0 of the fit. It should not be too high, in order to

keep as much data as possible, but should be high enough to remain in
the perturbative domain. Typical values for Q2

0 range between 1 GeV2

and a few GeV2.

• Which is the set of pdfs that we want to parameterize at the starting
scale of the fit. One does not fit the eleven quark and gluon distribu-
tions since the data do not contain enough information to disentangle
them all. Instead, well-defined combinations of parton pdfs are fitted.
In addition to the gluon density, at least two quark distributions are
needed (because F2 is the sum of a singlet and a non-singlet terms,
which evolve differently). For example, one can choose to parameter-
ize g, uval = u − ū and dval = d − d̄, the total sea distribution Σ q̄,
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and d̄ − ū. An alternative choice, used e.g. in [5], uses g, U = u + c,
D = d + s, Ū and D̄. Once this “flavor decomposition” is chosen,
one needs to choose the parameterization, i.e. which function will be
used to parameterize xf(x) at the starting scale Q2

0. For example,
xf(x) = Axα(1 − x)β(1 + p0x + p1

√
x + . . .) can be used. The pa-

rameterization should be flexible enough to allow for a good fit, but
should still avoid unstable fits and secondary minima. One should also
keep in mind that in some cases, the choice of the parameterization
“hides” some assumptions. For example, the common “valence-like”
choice xd̄ − xū = Axα(1 − x)β assumes that x(d̄ − ū) goes to zero as
x→ 0. So far, we have no experimental data to confirm or infirm this
assumption.

• Some assumptions are often needed, to supplement the lack of sen-
sitivity of the fitted data. For example, if the fit does not include
measurements which are sensitive to s− s̄, one will assume that s = s̄.

• Usually, “sum rules” are imposed in the fits, which allow the number
of free parameters to be reduced. The “number sum rules” read as:

1
∫

0

u(x) − ū(x)dx = 2 ,

1
∫

0

d(x) − d̄(x)dx = 1 ,

1
∫

0

q(x) − q̄(x)dx = 0 for q = s, c, b .

And the “momentum sum rule”,

1
∫

0

x [g(x) + Σ (q(x) + q̄(x))] dx = 1

helps fix the gluon normalization, and connects the low x and high x
behaviors of the gluon density.

Once this framework is defined, use is made of the DGLAP equations to
obtain xf(x,Q2) at any Q2 from the parameterized xf(x,Q2

0). This allows
to calculate the theoretical cross-sections of the processes of interest (DIS,
Drell–Yan lepton production, jet production, . . . ) and the parameters can
be fitted to the data.



Determination of Parton Distribution Functions . . . 2109

3.2. QCD fits to DIS data

The combination ∼ 4xU + xD, where xU (xD) denotes the pdf of up-
like (down-like) quarks, is well constrained at low and medium Bjorken x
via Neutral Current DIS; the scaling violations of F2, i.e. its logarithmic
dependence on the four-momentum transfer squared Q2, give access to the
gluon density at low and medium x; additional constraints from Charged
Current DIS allow some separation between U and D to be made, although
with a limited precision. As a result, QCD fits to HERA data alone give
access to all parton distribution functions in the proton. Examples [5, 12]
are illustrated in figure 11. The three fits displayed in this figure are in
reasonable agreement, within their respective uncertainties. It is interesting
however to note that there are differences which are not embedded in the
quoted uncertainties. This holds in particular for the valence distributions.
The differences between the “H1 fit” and the “ZEUS fit” are mainly due
to: a different treatment of heavy quarks; different parameterizations at the
starting scale of the fit; and different data included in the fit (the H1 fit
uses CC DIS data to perform the flavor separation, while in the ZEUS fit,
this separation is brought mainly by fixed-target (BCDMS, NMC and E665)
µd data complementing the µp measurements). These three ingredients are
part of the definition of any fit, and the uncertainties of the fits obviously
do not account for variations around these choices.
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Fig. 11. Distributions of valence quarks densities xuv and xdv, of the gluon density

xg and of the density of sea quarks xS obtained from various QCD fits.

In [12], the main fit (which includes, in addition to ZEUS data, µp and
µd data, the NMC data for F d

2 /F
p
2 and CCFR data on xF3) was compared

to a similar fit based on ZEUS data alone. This comparison showed that
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the gluon and sea densities are mainly determined by the HERA data for
x below ∼ 0.1. However, adding fixed target data reduces the uncertainties
on the valence distributions by a factor of about two, compared to what is
obtained from HERA data alone. In particular, a reasonable determination
of dval requires deuterium data, which are more constraining than HERA
high Q2 charged-current data.

The precision on the gluon density obtained from the ZEUS data alone
was shown to improve [13] when jet data from DIS and photoproduction
are added in the fit. HERA jet data do not bring strong constraints on the
gluon density at high x, due to the limited statistics (constraints at high
x are brought by Tevatron jet data). But they are useful for medium x,
since HERA jet cross-sections have small systematic uncertainties (typically
5%). Fig. 12 (left) shows cross-sections of inclusive jet production in DIS,
as measured by ZEUS. Fig. 12 (right) shows that the inclusion of these data
in the fit reduces the uncertainty of the gluon density by a factor of ∼ 2 in
the mid-x region, x = 0.01–0.4. It is also interesting to note that both fits
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with and without the jet data lead to the same shape for the gluon density,
indicating that there is no tension between the jet and the inclusive DIS
data.

3.3. Global QCD fits

Global QCD fits usually include, in addition to inclusive DIS data: the
Tevatron jet data (which constrain the gluon density at high x), the Drell–
Yan measurements pN → µµ (which constrain the quark densities at high
x and the difference xd̄ − xū), the production of muon pairs in neutrino-
nucleon scattering (νµs → µc → µµX and c.c., which constrain the s and
s̄ densities), and the rapidity-binned charge asymmetry of W production at
Tevatron (which brings constraints on the d/u ratio at medium x). Recent

fits also include HERA jet data and the HERA measurements of F cc̄
2 and F bb̄

2 .
This leads to typically ∼ 3000 data points in the fits. The latest MSTW07
fit [15] also includes Tevatron Run II data and the CDF Run II W lepton
asymmetry measurements. The latest Tevatron jet data tend to slightly
lower the gluon density at high x, but, within uncertainties, it is consistent
with previous fits. Typically in global fits: the sea densities come from
HERA F2 measurements, the sensitivity on the gluon density at low x is
given by F2 scaling violations measured at HERA, the quark and gluon
densities at high x are constrained by Tevatron jet data, and the flavor
separation is obtained from fixed target data.

Let us illustrate how non-DIS data can bring specific constraints in QCD
fits with the example of Drell–Yan measurements. In global fits, d̄ = ū was
a “natural” assumption until the NA51 experiment at CERN reported that
d̄ > ū at x = 0.18 (some hints had been previously reported by the NMC
experiment). This was followed-up by the E866 experiment at Fermilab,
which measures di-muon production in pp and pd collisions in a fixed target
experiment with Ebeam = 800 GeV. Let x1 and x2 be the Bjorken x variables
of the partons involved in the hard subprocess, from the beam and the target
nucleon, respectively. Kinematics imposes x1 > x2, and, in the phase space
where x1 ≫ x2, one has:

σpp ∝ 4

9
u(x1)ū(x2) +

1

9
d(x1)d̄(x2) , σpn ∝ 4

9
u(x1)d̄(x2) +

1

9
d(x1)ū(x2)

such that:

σpd

2σpp
∼ 1

2

1 + 1
4

d(x1)
u(x1)

1 + 1
4

d(x1)
u(x1)

d̄(x2)
ū(x2)

[

1 +
d̄(x2)

ū(x2)

]

.

In the relevant domain of x1, the ratio d(x1)/u(x1) is quite well known,
such that the ratio σpd/2σpp gives access to the ratio d̄/ū at low x. Fig. 13
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shows the measurement of the E866 experiment [14], which extends down to
x2 ∼ 0.03. Note the spread of the theoretical predictions before these data
were included in the fits. The ratio d̄/ū as extracted by E866 is shown in
Fig. 13 (right), and clearly demonstrates that d̄ > ū at low x.

Fig. 13. The ratio σpd/2σpp measured by the E866 experiment (left), and the ratio

d̄/ū extracted from this measurement (right).

The remainder of this paragraph describes some recent updates of global
fits.

An important update of the CTEQ global fits [11] comes from the treat-
ment of heavy quarks in a general mass variable flavor number scheme, where
mass effects are accounted for both in the kinematics and in the Wilson co-
efficients. The resulting CTEQ 6.5 pdfs mainly differ from the previous
CTEQ 6.1 fit by larger u and d distributions in the region x ∼ 10−3, for
a wide range in Q2. This is illustrated in Fig. 14. This results in a ∼ 7%
increase of the predicted W and Z cross-sections at the LHC, compared to
previous estimates.

The recent inclusion of the final NuTev dimuon data in global fits, in
addition to the previously used CCFR data, allows the strange content of the
nucleon to be studied in more details [15, 16]. While previous fits assumed
that s + s̄ was a constant fraction of the “non-strange sea” ū + d̄ at the
starting scale, recent fits give more freedom to s + s̄ at high x, and yield
indeed an improved χ2: the shape of the symmetric strange sea seems to be
independent of that of the non-strange sea. Figure 15 shows that s + s̄ is
smaller than (ū + d̄)/2, especially at large x (i.e. low W 2), which could be
an effect of the strange quark mass. Note that relaxing the assumption on
s+ s̄ in the fits results in a larger uncertainty on these pdfs, which feeds into
that of ū and d̄. As a result, the uncertainty on low x antiquarks roughly
doubles in the MSTW07 fit, compared to MRST2004.
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Fig. 14. Ratio of the CTEQ 6.5 u density to that of CTEQ 6.1, at a scaleQ = 5 GeV

(from [11]).
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Besides these exclusive dimuon data, inclusive cross-sections from neu-
trino DIS experiments also bring significant constraints on pdfs. Discrepan-
cies between the NuTeV and the older CCFR structure function measure-
ments at high x are now understood by both groups, and the NuTeV data set
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is believed to be more reliable. However, CHORUS measurements recently
published (obtained with a lead rather than an iron target) also disagree with
the NuTeV data at high x. As a result, the latest MSTW07 fit includes the
NuTeV and CHORUS data (which replace the CCFR measurements) only
for x < 0.5. These NuTeV and CHORUS data were analyzed together with
the latest Drell–Yan measurements from E866 in [17], in a global fit similar
to those performed by the CTEQ Collaboration. This fit yields a d/u ratio
which flattens out significantly at high x. A tension is observed at high x:
the NuTeV data pull the valence distributions upward (which pulls against
the BCDMS and NMC data), while the E866 measurements prefer lower
valence distributions at high x. This tension is actually amplified by the
nuclear corrections applied to the NuTeV data.

Finally, a first global fit allowing for an “intrinsic charm” component has
been carried out in [18]. The existing data have little sensitivity to such
a component because it would manifest itself at too large x. As a result, an
intrinsic charm component carrying a few percent of the proton momentum
is not excluded by the current data. This would enhance drastically e.g. the
production of a charged Higgs boson (cs̄ → H+) at the LHC.

3.4. QCD fits and the description of low x and low Q2 data

An intriguing feature of several QCD fits is that, while at low Q2 the
density of sea quarks continues to rise with decreasing x, the gluon density
becomes suppressed. In the fit performed by the ZEUS Collaboration [12],
the gluon density even becomes negative3 for Q2 ∼ 1 GeV2, see Fig. 16 (left).
Problematically, this leads to negative values for the longitudinal structure
function FL at low x. The same feature is observed in the MRST/MSTW
fits, where the parameterization of the gluon density at the starting scale
can accommodate a negative density at low x: the fits yield a negative FL at
low x, for Q2 below 2–3 GeV2. This may indicate that the approximations
done in the NLO QCD calculations are not valid anymore in this low x
domain.

If we are not sure of the theoretical framework that should be used at low
x, a drastic approach could be to cut out the low x data in the fits. This was
tried by the MRST group: a cut x > xmin was made more and more severe,
until fits were stable — which was obtained for xmin ∼ 5.10−3! These fits
do not describe the HERA data at low x, and give very different predictions
from “standard fits”, for many observables at the LHC. Hence, one needs to
better understand and overcome the limitations of our calculations at low x.

3 Note that, for Q2 down to 1 GeV2, the fit still describes the rise of F2 at low x as
shown in Fig. 16 (right), even though the gluon density is negative: the approximation
∂F2/∂Q2

∝ αsxg(x,Q2) is not valid at NLO!
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shown for different values of Q2. Right — compilation of F2 measurements at

low Q2.

We know that NLO DGLAP predictions at low x and Q2 could be wrong
due to:

• Large terms in αs ln(1/x), which can spoil the convergence of the per-
turbative expansion. Going to NNLO may cure the problem; or it
could be that a full resummation of these ln(1/x) is necessary for a re-
liable theoretical prediction. A complete set of NNLO parton distri-
bution functions has recently been obtained by the MSTW group [19],
together with their uncertainties. At NNLO, the gluon density at
low x and low Q2 is still negative (even more negative than the NLO
gluon). However, this is compensated by positive terms in the O(α3

S)
coefficient function for FL. The result is that FL at NNLO is positive.
Recently, a global fit based on a calculation where the ln(1/x) terms
are resummed (NLL BFKL resummation) has been carried out [20].
The resulting predictions for FL are also positive, and quite different
from the NNLO predictions.

• Unitarization (saturation) effects which may tame the low x rise of
F2, due e.g. to gluon recombinations which could make the evolution
equations non-linear.
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Experimentally, other observables than F2 are needed to get hints of what
is the right approach: the longitudinal structure function FL, the slopes of
F2, and, possibly, the study of exclusive final states [21].

The longitudinal structure function FL: FL is more directly related
to the gluon density than is F2, hence it is a good experimental observable
to study the importance of the ln(1/x) terms. Since the DIS cross-sections
d2σ/dxdQ2 are proportional to F2 − y2FL/Y+ (see Eq. (4)), a direct mea-
surement of FL requires d2σ/dxdQ2 to be measured at two different values
of y, such that the contributions of F2 and FL can be disentangled. Since
Q2 = xyS, this means having measurements at two (or more) different

centre-of-mass energies
√
S. The last three months of data taking at HERA

have been dedicated to a “low energy” run, where the proton energy was set
to 460 and 575 GeV. The low-energy cross-section measurements, combined
with the high energy data, yield, in a given (x,Q2) bin, a measurement of
σ ∼ F2−y2/(1+(1−y)2)FL at two different values of y = Q2/xs. Hence, this
allows the two structure functions F2 and FL to be disentangled directly, and
provides a first, direct measurement of FL. Brand new, preliminary measure-
ments [22] from the H1 experiment are shown in Fig. 17. Confronting these
measurements with the theoretical predictions will hopefully tell us whether
the NNLO expansion is enough for a reliable prediction of the longitudinal
structure function.

Fig. 17. The reduced cross-section measured at different y values and its linear

dependence on y2/Y+ in the so-called Rosenbluth plot (left), and the extracted

values for the longitudinal structure function FL (right).

The “slopes of F2” and the low Q2 — high Q2 transition region:
In the double-asymptotic limit, DGLAP predicts that F2(x,Q

2) is close

to x−λ(Q2). A power-behavior is also predicted by the BFKL evolution
equation, with λ ∼ 0.3 − 0.5. Experimentally, one can thus extract
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λ(x,Q2) =

(

∂F2

∂ lnx

)

Q2

and look for a decrease of λ with decreasing x, which may sign a breakdown
of the theory due to saturation effects. As shown in Fig. 18 (left), no evidence
for such a decrease is observed in the data [23]. This figure shows that the

Fig. 18. Left — the derivative of F2 w.r.t. lnx as a function of x, in various Q2

bins, is seen to be independent of x within the errors. The resulting λ(Q2) is shown

as a function of Q2 on the right plot [23].

data can indeed be parameterized by F2(x,Q
2) = c(Q2)x−λ(Q2). Figure 18

(right) shows the Q2 dependence of this λ(Q2). For Q2 > 2–3 GeV2, λ(Q2)
depends logarithmically on Q2 and c is constant to a good approximation,
as expected from the DGLAP equations. For Q2 below ∼ 1 GeV2, λ(Q2)
deviates from a ln(Q2) behavior, and tends to a value consistent with Regge
theory (αPom(0) − 1 ∼ 0.08). This can be interpreted as a “confinement
transition” from partonic degrees of freedom to hadronic degrees of freedom,
at a scale of about 0.3 fm. It is interesting to note that dipole models provide
a good description of the low Q2–high Q2 transition region, and of Fig. 18
(right) in particular. In the model of Golec-Biernat and Wüstoff, when the
size of the qq̄ dipole ∼ 1/Q is large compared to the separation of gluons

in the target, R0 ∼ 1/
√

xg(x), the dipole–proton cross-section saturates to
a value σ0, in such a way that the cross-section exhibits a “geometric scaling”
property:

σ = σ0(1 − exp(−1/τ))
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which involves one variable only, τ = Q2R2
0(x). This property is indeed

borne out by the low x data. While this is not a proof of saturation, this
shows that the low x HERA data have many of the attributes of a saturated
system. More details can be found in [24].

3.5. Uncertainties on parton densities

A lot of work has been done over the past ∼ 5 years to assess rigorously
the uncertainties on parton densities extracted from QCD fits [25]. Most of
the groups now use the same definition of the χ2 which is minimized in the
fit:

χ2 =
∑

i

(di −
∑

k βk,isk − ti)
2

α2
i

+
∑

k

s2k ,

where di denote the measurements, ti the corresponding theoretical predic-
tions, k labels the sources of systematic uncertainties, βk,i is the amount of
change of di when the source k (for example an energy scale) is shifted by
1σ (sk = 1). Moving coherently the data points by βk,isk causes a “penalty
term” s2k in the χ2 function. The total uncorrelated uncertainty affecting the
measurement i is given by α2

i = σ2
i,stat +σ2

i,uncorr.. However, this common χ2

definition can be used in different ways:

• in the so-called “offset method”: the parameters sk are set to zero in
the central fit — i.e., the central fit is performed without taking into
account the correlated systematic errors. Then, for each source of
systematic error, sk is set to ±1 and the fit is redone. The uncertainty
of a given quantity (e.g. a parton density) is calculated by adding in
quadrature all differences to the quantity obtained in the central fit;

• in the “Hessian method”: the sk are not fixed, but are parameters of
the fit. Technically, they are obtained analytically (the χ2 is quadratic
in sk, hence ∂χ2/∂sk = 0 leads to a simple matrix equation for the
sk). This means that the central fit is not performed to the “raw
data”, but instead, to the data shifted by the optimal setting for the
systematic shifts. The error bands on a given quantity are obtained
from ∆χ2 = T 2 with T = 1 or larger.

The offset method gives fitted theoretical predictions which are as close as
possible to the “raw” data points. It does not use the full statistical power of
the fit to correct the data for the best estimate of the systematic shifts, since
it distrusts that systematic uncertainties are Gaussian distributed. The off-
set method thus appears to be more conservative than the Hessian method.
It usually results in larger uncertainties than what is obtained from the Hes-
sian method, when the criterium ∆χ2 = 1 is used to get the error bands.
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With the Hessian method, model uncertainties (e.g. varying αs, Q
2
0, . . . ) are

often larger than the fit uncertainties. This is because each “model choice”
can result in different values of the systematic shifts — i.e., when changing
the “model”, one does not fit the same data points.

The general trend of pdf uncertainties is that: the u quark is much
better known than the d quark; the sea and the gluon are well known at
medium x; at high x, the sea and the gluon are poorly known and the
valence quarks are reasonably constrained. One should keep in mind that
the uncertainties given by the pdf sets do not include additional uncertainties
due to: the choice of datasets and cuts applied to the data; the choice of the
parameterization; choices done in the “theory”, e.g. the treatment of heavy
flavors. To illustrate this, Fig. 19 (from [26]) shows the relative uncertainty

Fig. 19. The uncertainties on the gluon density at Q2 = 5 GeV2 from the fits of

MRST, CTEQ and Alekhin (from [26]).
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on the gluon density obtained from several fits. The big differences in the
shape of these error bands were traced to be due to the parameterization
choice: the MRST group chose to allow the gluon density to become negative
at low x, while in the CTEQ parameterization, the gluon has a valence-like
shape at the starting scale, hence has a very small absolute error, all the
uncertainty at higher Q2 being due to the evolution driven by the higher x
gluon, which is well determined.

4. The future: LHC — and beyond

In the near future, the final analyses of the full HERA datasets will
reduce further the current uncertainties on the proton structure. The “com-
bined H1 and ZEUS dataset”, resulting from a model-independent averag-
ing of the cross-section measurements, is also very promising [27]. And of
course, the LHC proton–proton collider should enter in operation in 2008.
With a nominal centre-of-mass energy

√
S = 14 TeV and a luminosity of

1034 cm−2s−1, it presents a huge potential for discovering physics beyond
the Standard Model.

The current uncertainty on LHC W and Z production due to parton
density functions is of ∼ 5–8%, i.e. the production of electroweak bosons
is not precise enough yet, to be used as a luminosity monitor. Our cur-
rent knowledge of the pdfs would also limit the precision with which the
LHC experiments could measure the W mass. Indeed, at central rapidity,
W production at LHC involves quarks with x = MW /

√
S ∼ 7×10−3, which

is far away from the “valence region” where quarks are rather well known.
However, data of Z production at LHC should allow the pdf uncertainties of
W production to be reduced significantly. Measurements of asymmetries in
W production will also bring, for the first time, constraints on the valence
quarks at low x.

As shown in Fig. 20 for the example of gg → H, the cross-sections suffer
at most a ∼ 10% uncertainty because of pdfs. Hence, the Higgs discovery
potential is not much affected by pdf uncertainties. Furthermore, as studied
recently in [29], these pdf uncertainties should be further reduced via the
correlation of the Higgs production cross-section with Z or tt̄ cross-section,
depending on the Higgs mass. Similarly, it is unlikely that pdf uncertainties
would jeopardize the discovery of a new heavy Z ′ or W ′ boson. However,
if such a new boson is observed with a mass of 5–6 TeV, the uncertainty
on the “partonic luminosity” (currently ∼ 40%) would limit the precision
with which one would measure the couplings of this new boson. Examples
of cases where the uncertainties of the gluon density at high x would reduce
considerably the discovery potential for new physics were given in [30], where
an extra-dimensional model was used, which would predict deviations in the
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Fig. 20. The CTEQ, MRST and Alekhin pdf uncertainty bands for the NLO cross-

section for gg → H at the LHC (left) and at the Tevatron (right). The insets show

the spread of the predictions, when the cross-sections are normalized to CTEQ6M

taken as reference [28].

dijet mass spectrum at high masses. However, the impact of experimental
systematic errors, especially that of the jet energy scale, was not taken into
account in this analysis. At high masses, the uncertainty due to the energy
scale may be even larger than that due to the gluon density, such that the
reduction of the discovery potential may not be as dramatic as given in [30].
Conversely, jet data at the LHC may not reduce significantly the uncertainty
of the gluon density at high x. For jets with 1 TeV (2 TeV) of transverse
momentum, in the rapidity range 1 < η < 2, the pdf uncertainty on the
inclusive jet cross-section is of about 15% (25%). In the same kinematic
domain, the experimental uncertainty is of 30% (50%) if the jet energy scale
is understood within 5%. Fits performed using LHC jet pseudo-data indicate
that, to decrease significantly the uncertainty of the gluon density at high x,
one should control the jet energy scale at the percent level, which will be
quite challenging [31].

Further progress in our understanding of proton structure may also come
from the theory side. For example, a better understanding of prompt pho-
ton production may allow the corresponding data to be (re-)included in
global fits, bringing constraints on the gluon density (qg → qγ). Existing
data on the diffractive production of vector mesons, like the J/ψ, could also
constrain the low x gluon density in principle: naively, since a two-gluon sys-
tem is exchanged in the diffractive regime, the cross-section should present
a quadratic dependence on the gluon density. This simple picture is however
not valid beyond the leading order, and the precise calculation of diffractive
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J/ψ production requires “skewed” pdfs to be introduced. Predictions do
exist for “next-to-leading order”, but they are not yet as “solid” as DGLAP
predictions. Once this is better understood, the inclusion of HERA diffrac-
tive J/ψ photoproduction data should bring significant constraints on the
gluon density in the range of x ∼ 10−4–10−3.

Finally, on the experimental side, there are several projects, not yet
approved, which would bring new information on the nucleon structure. Let
us mention:

• The upgrade of the accelerator complex at JLab [32]: fixed-target DIS
with a 12 GeV beam, at a large luminosity of 1038 cm−2s−1 would
allow x values as large as 0.8 to be accessed, and the ratio d/u to be
much better constrained at high x.

• The future Electron Ion Collider [33], where polarized electrons would
collide with heavy ions or polarized protons, has a very rich programme
on low x physics, QCD at high densities, hard diffraction, polarized
pdfs, etc.

• The LHeC project [34]: the LHC proton (or ion) beam would be
brought in collision with a lepton beam. In a “ring–ring” design, the
lepton beam energy would be limited to 70 GeV leading to

√
S =

1.4 TeV, but the ep luminosity could reach 1033 cm−2s−1. A larger√
S of ∼ 2 TeV could be achieved in a “linac–ring” design, at the price

of a reduced luminosity.

I wish to thank Roberto Fiore and Christophe Royon for organizing this
very interesting school and for giving me the opportunity to take part in
it. I am very grateful to W.K. Tung and R. Thorne for their help with the
preparation of this talk.
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