
Vol. 39 (2008) ACTA PHYSICA POLONICA B No 9

THE LUND MODEL, MULTIPLE SCATTERING,
AND FINAL STATES∗

Gösta Gustafson

Lund University

Box 117, 221 00 Lund, Sweden

(Received May 12, 2008)

In this talk I present a short review of string hadronization, parton
cascades, multiple scattering, final states, and underlying events.

PACS numbers: 12.38.Cy, 12.38.Lg, 13.60.–r, 13.85.–t

1. Introduction

In e+e− annihilation the total cross-section is determined by the electro-
weak interaction, while the strong interaction only is responsible for a small
correction of relative magnitude αs/π. To describe the final states it is,
however, necessary to include both the development of the initial perturba-
tive parton cascade and the subsequent soft hadronization process. At high
energies the number of gluons is too large for a description by fixed order
matrix elements, which makes it necessary to use approximation schemes
and modeling also in this perturbative phase.

For ep scattering and hadronic collisions the situation is much more com-
plicated, as also the total cross-section is affected by the strong interaction,
via the initial state gluon radiation. Although these emissions are perturba-
tive and describable by the DGLAP or BFKL evolutions, the input structure
functions are non-perturbative, and have to be fitted to experimental data.

At high energy the parton density in the proton becomes very large. In
pp or pp̄ collisions the unitarity constraint implies that there will be a large
number of (semi)hard parton–parton subcollisions in an average pp-collision.
To gain understanding of the final state properties it is therefore important
to have a clear picture of the multiple scattering events. We must also have
control over the subsequent final state radiation, the color structure of the
partonic state, and the final hadronization process.
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At HERA there are also indications of multiple collisions and saturation
effects in the parton evolution, but the true magnitude of these effects is still
under debate.

The outline of these lectures is as follows: Sec. 2 — The soft hadroniza-
tion, Sec. 3 — Initial and final state parton cascades, Sec. 4 — Multiple
scattering, Sec. 5 — Underlying events, Sec. 6 — Theoretical ideas, Sec. 7
— Conclusions.

2. Hadronization

In a hard process like e+e− annihilation there are two phases, a hard
perturbative phase described in terms of quarks and gluons, and a soft
non-perturbative phase where the energy of the partons is transformed into
hadrons. In a 2-jet event the parton state is a quark–antiquark pair plus
possibly some soft or collinear gluons. The hadron distribution is limited in
p⊥, and the central region is approximately boost invariant.

In the Lund String Hadronization model [1] it is assumed that the con-
fining color field behaves like the magnetic field in a superconductor. In
a superconductor of type II the magnetic field is compressed to a stringlike
structure, a vortex line, by the electron pair condensate in the groundstate.
In the same way we imagine that the color electric field is compressed to
a string by the gluon condensate in vacuum. We note that a homogeneous
electric or magnetic field is invariant under longitudinal boosts, which im-
plies that a vortexline or string with no transverse motion has a constant
energy per unit length, corresponding to a constant force. This string tension
for a QCD string is estimated to be about 1 GeV/fm. In the string model
we approximate the dynamics of the QCD string by that of the “massless
relativistic string”, which is a mathematical object with zero transverse ex-
tension. As this string cannot be quantized in 3+1 dimensions it must be
an approximation, but it seems that the transverse extension of the field
plays very little role in the hadronization process.

When a high energy qq̄ pair moves apart a string is spanned between
them. When the energy in this field is sufficiently large a new qq̄ pair can be
produced from the energy in the field. The field is canceled in between the
new pair, and the string is split in two pieces. This process can be repeated,
and the result is two jets of bound qq̄ systems. As the field is boost invariant,
this is also the case for the produced hadronic system. If the quarks are
massless they can be produced in a point and pulled apart. If they have
a mass µ and some transverse momentum k⊥, energy conservation implies

that they must classically be produced at a distance l =
√

µ2 + k2
⊥
/κ, where

κ denotes the string tension. Such a process can be viewed as a tunneling
process, which then gives the factorizing production probability
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2.1. Hadronization in 1 dimension

Massless quarks moving in a linear potential in one dimension move
along the lightcones. For a bound state formed by a quark and an antiquark
moving back and forth in its rest frame in a so called yo-yo mode, the
maximal extension is given by l = E/κ. In a boosted frame the motion
along the positive lightcone is extended by a Lorentz factor γ, while the
motion along the negative lightcone is shortened by a factor 1/γ, which
leaves the area spanned by the string in one period invariant.

The motion of a high energy pair q0 and q̄0 is shown in Fig. 1. The string
breaks repeatedly by the production of new pairs (qj, q̄j). The final result
is a number of yo-yo systems (mesons) moving away from each other. The
separation between any two production points is spacelike, and therefore
there is no time ordering for the production points. The result is boost-
invariant, and in another Lorentz frame it is not the meson formed by the
pair (qj, q̄j−1), which is produced first in time. We also note that the hadrons
can be ordered in “rank”, where two successive hadrons share the quark and
antiquark from a common breakup. This ordering agrees on average (but
not in every individual case) with the ordering in rapidity.
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Fig. 1. The hadronization of a high energy (q0, q̄0) system. The hadrons can be

ordered in “rank”, 1, 2, . . . j, . . . n. This ordering agrees on average, but not in

every case, with the ordering in rapidity.

In the Lund model the probability for a definite final state with n hadrons
of mass m is given by the expression

P ∝

∫ ∫

{

n
∏

i

Nd2pi δ
(2)
(

p2
i − m2

)

}

δ(2)

(

∑

i

pi − Ptot

)

exp(−bA) . (2)
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Here A is the color coherent space-time area indicated in Fig. 1 (in units of
the string tension κ), and b is a constant. The expression is a product of
a n-particle phase-space and an exponential representing a Wilson loop inte-
gral, with bA the imaginary part of the action. Thus the model contains two
fundamental parameters, N which determines the n-particle phase-space,
and b which specifies the strength of the string-breaking mechanism.

The simulation of states according to this distribution can be obtained
in an iterative way by first determining the momentum of the “last” hadron,
meaning the first in rank. When the remaining energy is large this hadron
takes a fraction z of the total lightcone momentum p+ given by the distri-
bution

dP

d z
= N

(1 − z)a

z
exp

(

−
bm2

z

)

. (3)

This process can be repeated, producing a jet of hadrons. In Eq. (3)
the parameters N , b, and a are related by the normalization constraint
∫

dz dP/dz = 1, and the two free parameters can be chosen as (N, b) from
Eq. (2) or as (a, b). Combinations of these parameters determine the mul-
tiplicity and the correlation between the produced particles. The height of
the central plateau is given by the ratio dn/dy ∼ (1 + a)/b, and for fixed
multiplicity a larger value for the product a ·b corresponds to a more narrow
distribution in z or in the difference yi−yi+1, and thus a stronger correlation
between the particles.

In real life there are a few extra complications:

1. Different quark species can be produced in the breakup: u, d, s, where
the s-quark is suppressed by about a factor 3 due to its larger mass.

2. The spins can be combined to give a pseudoscalar particle, a vector
meson. Higher spin states are estimated to contribute about 10%.

3. The string can also break by the production of a diquark–antidiquark
pair, giving rise to baryons and antibaryons.

4. The distribution in Eq. (3) is only true if the remaining system has
a large mass. At the end of the cascade this is no longer true, and the
distribution obtained in the MC is not exactly the one determined by
the model in Eq. (2). (This has in particular an effect on correlations
between the produced hadrons [2].)

Thus besides the two parameters (a and b in Eq. (3)), which determine
the gross features of the event, more extra parameters are needed if all details
are to be described. The large number of possibilities in each step make
analytic calculations impossible. The process is simulated in the Jetset MC,
which now is incorporated in the Pythia package [3].
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2.2. Gluon jets

In three dimensions the confining field implies extra degrees of freedom.
Any disturbance in the field can only propagate with the speed of light. If
one of the particles in a qq̄ pair is kicked, this can first be noticed by the
partner when it is reached by such a signal, and it must in the meantime
continue undisturbed. The energy stored in the field is no longer a function
of the distance between the endpoints, but depends on the motion of every
point on the string.

It is possible to have transverse excitations on the field. For a reaction
e+e− → qq̄g the simplest possibility for the confining field is to have a string
stretched between the quark and the gluon, and from the gluon to the an-
tiquark, as indicated in Fig. 2. The string is stretched from the quark to
the antiquark via the gluon, and the gluon acts as a transverse excitation
on the string. If the transverse extension of the field can be neglected, the
dynamics of the confining field can be approximated by the dynamics of the
massless relativistic string.

Fig. 2. The space-time development of a quark–antiquark–gluon event. The string

is stretched from the quark to the antiquark via the gluon, which moves like a point-

like kink carrying energy and momentum. The string breaks by the production of

new qq̄ pairs, and the final state contains three jets. Soft particles formed in be-

tween the jets get a boost by the transverse motion of the string.

The subsequent motion and breakup of the string is also illustrated in
Fig. 2. The result is three jets of hadrons in the directions of the three
original partons. The transverse motion of the strings gives a boost to
the soft particles, which implies that the hadrons are produced around two
hyperbolae in momentum space. Thus there are more soft particles between
the (anti)quark jet and the gluon jet, than between the quark and antiquark
jets. This result can be compared with the hadron distribution in a e+e− →
qq̄γ event, where the transverse string motion is in the direction opposite
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to the photon. Thus there will in this case be an enhancement of particles
between the quark and antiquark jets. This “string effect” was first observed
by the JADE Collaboration [4] at the PETRA storage ring, and was later
also observed at LEP.

Gluon radiation is singular for soft and collinear emissions. A very im-
portant feature of the string hadronization model is that it is infrared stable.
The motion of a soft transverse gluon is soon stopped by the tension in the
attached strings. In the subsequent string motion the gluon kink is split
into two corners, which do not carry energy or momentum and which are
connected by a straight string piece, as shown in Fig. 3(a). The energy in
the small sections close to the quark and the antiquark is not sufficient for
a hadron, and all breakups will occur in the central string piece, which is
stretched and breaks up in the same way as the straight string in Fig. 1.
The string motion with a collinear gluon is shown in Fig. 3(b), and also here
the effects of the gluon goes to zero in the collinear limit.

(b)

(a)

(c) q
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Fig. 3. (a) A soft transverse gluon will soon lose its energy. The kink on the string

is split in two corners and a straight string piece is stretched in a way similar to

a one-dimensional string. (b) Also for a collinear gluon the energy in the string

between the quark and the gluon is too small for a breakup of the string. (c) In

a state with many gluons the string is stretched from the quark to the antiquark via

the color-ordered gluons, in the figure from red to antired, from blue to antiblue etc.

The situation in Fig. 2 can be directly generalized to many gluons. The
string is here stretched from the quark via the color-ordered gluons till the
antiquark, as shown in Fig. 3(c).

The string hadronization model can be compared to the cluster fragmen-
tation implemented in the Herwig MC [5]. In this model the final gluons are
split into qq̄ pairs, which combine to colorless clusters. The clusters then
decay to two hadrons. However, fits to data have brought about some modi-
fications, which also give evidence in favor of stringlike dynamics. Thus high
mass clusters are allowed to decay in a stringlike manner, baryon–antibaryon
pairs have an angular correlation as if they are pulled apart by the string,
and the leading cluster is also not isotropic but oriented in the direction of
the string or cluster chain.
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3. Parton cascades

3.1. Timelike cascades

3.1.1. Single gluon emission

In e+e− annihilation the produced high energy quark and antiquark ini-
tiate a cascade of gluons. Although very important for the properties of the
final states, these emissions have a very small effect on the total hadronic
cross-section given by

σtot = σ0

(

1 +
αs

π
+ O

(

α2
s

)

)

. (4)

Here σ0 is the 0th order cross-section determined by electroweak dynamics.

The probability for the emission of a single (soft) gluon is given by

dN

dk2
⊥

d y
≈

4αs

3π

d k2
⊥

k2
⊥

d y . (5)

The gluon corresponds to dipole emission radiated coherently from the quark
and the antiquark forming a color dipole. The allowed phase-space is ap-
proximately determined by the constraint |y| < ln(Q/k⊥), where Q is the
cms energy of the virtual photon or Z-boson.

The cross-section for 3-jet events diverges for small k⊥, i.e. for soft and
collinear gluons. This divergence is compensated by virtual corrections to
the 2-jet cross-section, thus giving only the small first order correction to
the total cross-section in Eq. (4).

The Landau–Pomeranchuk formation time for a gluon is of the order
of 1/k⊥. This is relatively short for hard emissions and longer for gluons
with smaller k⊥. In case of several emissions the transverse momentum can
therefore also be interpreted as a time ordering of the gluon emissions. The
emission of the “first” gluon, meaning the one with largest k⊥, can then be
described with the help of a “Sudakov form factor”, S, which represents the
probability that no gluon is emitted with a larger k⊥:

1

σ0
dσhardest =

4αs

3π

d k2
⊥

k2
⊥

d y · S(k⊥) ,

S(k⊥) = exp






−

∫

k′

⊥
>k⊥

4αs

3π

d k′2
⊥

k′2
⊥

d y′






. (6)
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3.1.2. Two gluon emission

If a second gluon is much softer than the first, the emission probability
factorizes. The current relevant for the second emission is, however, modified
and includes a contribution from the first, harder, gluon. An important
property of the emission is due to the interference between opposite color
charges. If the first emission produces a red quark, a blue-antired gluon,
and an antiblue antiquark, then the red-antired charges radiate coherently
as a color dipole formed by the quark and the gluon. In the rest frame of this
dipole the distribution is also given by the expression in Eq. (5). In the same
way the blue and antiblue charges radiate coherently as a color dipole formed
by the gluon and the antiquark. (There is also a color-suppressed term
corresponding to a dipole spanned between the quark and the antiquark,
with relative weight −1/N2

c .)
In the overall cms the dipoles are boosted with a velocity v = cos(θ/2)

transversely to the direction of the dipole, where θ is the opening angle be-
tween the motion of the endpoints. The result is a suppression of secondary
emissions at larger opening angles. In many applications this coherence
effect is approximated by a sharp “angular ordering” cut θ′ < θ [6].

3.1.3. Dipole cascade model

The result in the previous section can be generalized, and the distribution
of a third, still softer, gluon is described by three dipoles. In the large
Nc limit all dipoles have different colors, and the gluon emission can be
formulated as a dipole cascade, where in each step one dipole is split into
two dipoles [7]. Each gluon is connected to two dipoles, and the final result
is therefore a chain of dipoles. We note that a dipole connects two gluons
which in the string hadronization model are connected by a piece of the
string. Thus the picture in Fig. 3(c) can also be interpreted as a picture
of the dipole cascade, and the color dipole chain joins very nicely onto the
string in the subsequent hadronization process. The evolution of this dipole
cascade is simulated in the Ariadne MC event generator [8], and the results
agree with data from LEP and PETRA to a very high accuracy (see e.g.

Ref. [9]).
Expressed in parton degrees of freedom a dipole split corresponds to

a 2 → 3 transition, taking into account the coherence between the color and
anticolor of the two parent partons. In the alternative formulations of the
cascade implemented in Herwig [5] and Pythia [3] this coherence is instead
taken into account by the angular ordering constraint described above.

The factorizing result described here is correct in the large Nc limit, and
for strongly ordered emissions. In reality the emissions are not strongly or-
dered. Harder gluons are not uncommon, and they have in addition a very
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strong effect on the properties of the final state. Some non-leading effects are
taken into account by including the non-singular corrections to the dipole
splitting in Eq. (5) (and the corresponding terms in a gluon–gluon dipole).
The hardest gluon is particular important, and it is therefore essential to
have this generated in accordance with the exact perturbative matrix ele-
ment. In view of these problems it may be surprising that the models are so
very successful in reproducing the experimental data. There are also many
studies of color-suppressed effects proportional to 1/N2

c , which could e.g.

give color singlet gluon systems which hadronize separated from the remain-
der. So far such effects appear to be small, and have not been confirmed
experimentally.

3.1.4. Final state

The evolution of the parton cascade is illustrated in Fig. 4. The triangle
in Fig. 4(a) represents the phase-space for the first gluon given by |y| <
ln(Q/k⊥). If the first gluon is determined by k⊥1 and y1 the phase-space
for the second gluon is increased. This increase is represented by the extra
fold in Fig. 4(b). In the same way each emission adds a fold to the phase-
space for the later (softer) gluons, and the final result is the multifaceted
surface in Fig. 4(c). This surface has a fractal structure; when studied with
increased resolution more gluons are resolved. The hadron multiplicity is
related to the length of the baseline, which for running coupling grows like
exp(2

√

α0 lnQ2 ), where 3αs(Q
2)/2π ≡ α0/ ln Q2.

L L L

-L/2 -L/2 -L/2L/2 L/2 L/2
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1
)Figure 1: (a) The phase space available for a gluon emitted by a high energy q�q system is atriangular region in the y-� plane. (b) If one gluon is emitted at (y1; �1) the phase space for asecond (softer) gluon is represented by the area of this folded surface. (c) Each emitted gluonincreases the phase space for the softer gluons. The total gluonic phase space can be describedby this multifaceted surface.which can be conveniently approximated byk� � k? exp(�y) < W (6)corresponding to a triangular region in the (y; � � log(k2?))-plane, cf �g 1a.The formula is besides the color factor the same as the one obtained in QED but in this casethere is a major change in the �nal state. Emitting a photon in QED does not change thecurrent but in QCD the emitted gluon is an octet and therefore the �nal state contains a color3 (the q), an �3 (the �q) and the 8-gluon. There is, however, the simpli�cation that instead offorming a complex charge system, the three �nal state partons form two independent dipoles,[5]. Thus if we consider the emission of two gluons, indexed 1 and 2, where k?1 � k?2, thecross section is factorisable intodP (q�q ! qg1g2�q) = dP (q�q! qg1�q)fdP (qg1 ! qg2g1) + dP (g1�q! g1g2�q)g (7)where all the terms dP on the right hand side have the form given in eq (4). This factorisationproperty is better than a few percent all over the phase space, [6]. We note in particular thatk? and y in the dipole emission terms are de�ned in the rest frame of the particular dipole,which for the softer gluons di�ers from the original cms.The DCM is then based upon the production of one dipole ! two dipoles ! three...etc, [7].Every time a new gluon is emitted the corresponding dipole is partitioned. Actually the �nalstate containing a set of dipoles has a strong similarity to the Lund String with a set of gluonexcitations dragging out a set of straight string segments (corresponding to the dipoles), cf �g2. As the masses of the dipoles quickly diminish, the corresponding gluons quickly becomesoft. A general rule in string fragmentation is that a gluon with less than a few GeV oftransverse momentum does no longer really produce any noticeable e�ects. Therefore addingto the cascade the use of Lund string fragmentation means that the whole process is infraredstable. 3

Fig. 4. (a) The phase-space for gluon emission in e+e− annihilation is a triangular

region in the (y, κ ≡ ln k2
⊥

)-plane. The height of the triangle is given by L = ln s.

(b) When one gluon is emitted at (y1, κ1) the phase-space for a second (softer)

gluon is represented by the area of this folded surface. (c) Each emitted gluon

increases the phase-space for softer gluons. The total phase-space is represented

by this multifaceted surface.
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This picture can be compared with the evolution in the Herwig MC. Here
the emissions are ordered in angle or rapidity, which means that the area
in Fig. 4(c) is covered “sideways”. Thus a soft gluon is often emitted before
a harder one, and the most important difference between the two formalisms
is caused by the effect of the recoils.

3.2. Spacelike cascades

In a high energy ep or pp collision the initial partons in a target proton
develop similar parton cascades. A projectile can interact with any of the
partons in the cascade, which implies that the total cross-section grows with
increasing collision energy. This implies that we have here two separate
problems: the total cross-section and the properties of the final states. Note
that the partons in the cascades have spacelike momenta, and only those
branches which interact with the projectile can come on shell and produce
real final state particles. A second complication is that the process depends
on two separate variables, Q2 and W 2, while in e+e− annihilation we have
only one scale Q2.

3.2.1. Cross-section

For large Q2 k⊥-ordered emissions dominate, and the variation of the
structure functions is determined by DGLAP evolution.

For small x and limited Q2, in the BFKL regime, also k⊥-non-ordered
emissions are important.

A formalism which interpolates between the DGLAP and BFKL regimes
was presented by Catani, Ciafaloni, Fiorani, and Marchesini, the CCFM
model [10]. This was reformulated and generalized in the Linked Dipole

Chain model, LDC [11]. The result is here that those initial state radiation
chains which have monotonously increasing k⊥ have the same weight as in
DGLAP. However, links in the initial radiation ladder where k⊥ is decreasing
are not excluded, but suppressed by a factor min(1, k2

⊥i/k
2
⊥i−1).

With a running coupling αs, ladder rungs with small k⊥ are favored.
For small x the dominating chains therefore first have a non-ordered BFKL-
type region with small k⊥, followed by an ordered DGLAP evolution, with
virtualities up towards Q2. This implies also that the structure functions
can be well fitted by DGLAP evolution, if the soft input for small Q2 has
a tail down to small x.

3.2.2. Final state properties

To find the final state, knowing what branch(es) interacted with the
projectile, we must first isolate the branches in the cascade leading to the
interacting twig, and after that add final state radiation in appropriate parts
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of phase-space. The separation between initial and final state radiation
depends on the formalism, and therefore the regions for final state radiation
is model dependent.

The “Soft radiation model”, also called the “Color Dipole Model”,
CDM [12], is a simple heuristic model where all gluons are treated as final
state radiation. This model can only describe the final state properties, and
not the cross-section. When a quark in a proton is hit by a virtual photon,
its color charge separates from the corresponding anticharge in the proton
remnant. This separation induces gluon radiation in the same way as the
color charge separation in an e+e− annihilation event. The most important
difference is that the remnant is not pointlike, and therefore the emission of
gluons with short wavelengths is suppressed. Although this model has less
support from perturbative QCD, it does give the best overall description of
the final states observed at HERA. Essential for this result seems to be that
the emissions are un-ordered in k⊥, in accordance with BFKL evolution.

4. Multiple scattering

4.1. Minijet cross-section

In collinear factorization the cross-section for a parton–parton subcolli-
sion in proton–proton scattering is given by

dσsubcoll

dp2
⊥

∼

∫

dx1dx2f
(

x1, p
2
⊥

)

f
(

x2, p
2
⊥

) dσ̂
(

ŝ = x1x2s, p
2
⊥

)

dp2
⊥

. (7)

(Note that one hard subcollision corresponds to 2 jets.) The partonic cross-
section dσ̂/dp2

⊥
behaves like 1/p4

⊥
for small p⊥, which means that a lower

cutoff, p⊥min, is needed. The total subcollision cross section is then propor-
tional to 1/p2

⊥min, and for pp-collisions this cross-section becomes equal to
the total cross-section for p⊥min ≈ 2.5 GeV at the Tevatron and ≈ 5 GeV
at LHC [13]. Fits to data give p⊥min ∼ 2 GeV at the Tevatron and slowly
growing with energy [14].

In k⊥-factorization there is a dynamic cutoff when the momentum ex-
change k⊥ is smaller than the virtuality of the two colliding partons, given
by k⊥1 and k⊥2 [15]. This approach gives a very similar effect. We con-
clude that at high energies the subcollision cross-section is much larger than
the total inelastic cross-section, which means that on average there must be
several hard subcollisions in one event. It was also early suggested that the
increase in σtot is driven by hard parton–parton subcollisions [16, 17].
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4.2. Experimental evidence for multiple collisions

4.2.1. Multijet events

Besides from independent multiple subcollisions, multijet events can also
originate from multiple bremsstrahlung from two colliding partons. If we
study 4-jet events the difference between these two types of events is that
in a double parton scattering the four jets balance each other pairwise
in the transverse momentum plane, while such a pairwise balance is not
present in the multiple bremsstrahlung events. The Axial Field Spectrome-
ter [18] at the ISR proton–proton collider studied an “imbalance parameter”
J = [(p⊥1 + p⊥2)

2 + (p⊥3 + p⊥4)
2]/2, and found that there is a significant

enhancement of events with small values of J , which thus showed a clear
evidence for multiple subcollisions.

Similar, but less clear, results for 4-jet events have been observed by the
CDF [19] and D0 [20] experiments at the Tevatron. A more clear signal
for multiple collisions at the Tevatron has instead been seen in events with
three jets + γ [21]. Evidence for multiple collisions has also been observed
in photoproduction by the ZEUS Collaboration [22] at HERA.

4.2.2. Correlations

An important question is whether the hard subcollisions are correlated,
or if a high p⊥ event just corresponds to two jets on top of a minimum bias
event. If the subcollisions are uncorrelated the probability, P (n), for having
n subcollisions should be described by a Poisson distribution. This implies
that

P (2) =
1

2
P (1)2 . (8)

Here the factor 1/2 is compensating for double counting. Expressed in the
cross-sections σn = P (n)σnd (where σnd is the inelastic non-diffractive cross-
section) this gives the relation σ2 = 1

2σ2
1/σnd. The experimental groups have

used the notation

σ2 =
1

2

σ2
1

σeff
, (9)

which means that σeff = σnd corresponds to uncorrelated subcollisions.
The experimental results on 4-jet events referred to above find, however,
that σeff is much smaller than σnd. Thus at ISR one finds (for jets with
p⊥ > 4 GeV) σeff ∼ 5 mb compared to σnd ∼ 30 mb, CDF finds for 4-jet
events (p⊥ > 25 GeV) and 3 jets+γ the results σeff ∼ 12 mb and ∼ 14 mb,
respectively, to be compared with σnd ∼ 50 mb. This means that if there is
one subcollision there is an enhanced probability to have also another one.
A possible interpretation is that in central collisions there are many hard
subcollisions, while there are fewer subcollisions in a peripheral collision.
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5. Underlying event and minimum bias

5.1. Pedestal effect

The observation that in events with a high p⊥ jet the underlying event
is enhanced, the so called pedestal effect, is also a sign of correlations be-
tween subcollisions. The UA1 Collaboration at the Spp̄S collider studied the
E⊥-distribution in η around a jet [23]. To avoid the recoiling jet they looked
in 180◦ in azimuth on the same side as the jet. The result is that for jets with
E⊥ > 5 GeV the background level away from the jet is roughly a factor two
above the level in minimum bias events. Similar results have been observed
in resolved photoproduction by the H1 Collaboration [24].

5.2. CDF analysis and the Pythia model

Rick Field has made very extensive studies of the underlying event at the
Tevatron (see e.g. Ref. [25]). He has here tuned the Pythia MC to fit CDF
data, and found tunes (e.g. tune A and tune DW) which give very good
fits to essentially all data. In particular he has looked at the E⊥-flow, the
charged particle density, and p⊥-spectra in angular regions perpendicular
to a high-p⊥ jet. One noticeable result is that the charged multiplicity in
this “transverse” region grows rapidly with the p⊥ of the trigger jet up to
p⊥(charged jet) ≈ 6 GeV, and then levels off for higher jet energies at twice
the density in minimum bias events. Also the charged particle spectrum has
a much higher tail out to large p⊥ in events with a high p⊥ jet, compared to
the distribution in minimum bias events. The multiple collisions have a very
important effect in the MC simulations, and the data cannot be reproduced
if they are not included.

The version of the Pythia MC used by Field is an implementation of
an early model by Sjöstrand and van Zijl [14]. In this model it is assumed
that high energy collisions are dominated by hard parton–parton subcolli-
sions, and also minimum bias events are assumed to have at least one such
subcollision. To be able to reproduce the observed 4-jets and the pedestal
effect, the parton distribution is assumed to have a more dense central re-
gion, described by a sum of two (three-dimensional) Gaussians. For fixed
impact parameter, b, the number of subcollisions is assumed to be given by
a Poisson distribution, with an average proportional to the overlap between
the parton distributions in the two colliding protons. Integrated over the
impact parameter this gives a distribution which actually can be well ap-
proximated by a geometric distribution, that is a distribution with much
larger fluctuations than a Poisson.

The Pythia model does not include diffraction, and describes only non-
diffractive inelastic collisions. Diffraction is related to the fluctuations via
the AGK cutting rules [26]. In QCD a single pomeron exchange can be
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represented by a gluon ladder. The diagram for double pomeron exchange
can be cut through zero, one and two of the exchanged pomerons, with
relative weights 1, −4, and 2. If we add the contributions to k cut pomerons
from diagrams with an arbitrary number of exchanged pomerons, then we get
for k > 1 with the weights in ref [26] a Poisson distribution. For fixed impact
parameter the assumptions in the Pythia model are thus in agreement with
the AGK rules.

5.3. Relation E⊥ − nch

Although Field’s tunes of the Pythia model give good fits to data, there
are still problems. The relation between transverse energy and hadron mul-
tiplicity is not what has been expected. In the AGK paper a cut pomeron
was expected to give a chain of hadrons between the remnants of the two
colliding hadrons, and two cut pomerons should give two such chains and
therefore doubled particle density. This is in contrast to the CDF data,
where E⊥ grows more than the multiplicity in multiple collision events.

The original AGK paper was published before QCD, and based on a mul-
tiperipheral model. However, also in QCD the DGLAP or BFKL dynam-
ics gives color-connected chains of gluons. In the hadronization process the
gluon exchange ought to give two triplet strings (or cluster chains) stretching
between the projectile remnants, and in the spirit of AGK two cut pomerons
should give four such triplet strings. Field’s tunes seem instead to indicate
some kind of color recombination which reduces the effective string length.
(Similar recombinations have been studied by Ingelman and coworkers [27].)

In the Pythia model used by Field different possibilities for the color
connection between the partons involved are studied. The most common
parton subcollisions are gg → gg, and as mentioned above this is expected
to give two strings between the projectile remnants. Initial state radiation
gives extra gluons, for which the color ordering agrees with the ordering in
rapidity. Therefore these emissions do not increase the total string length
very much, and as a consequence they increase E⊥ more than they increase
the hadron multiplicity.

From the experimental data it was noted in Ref. [14] that two subcol-
lisions could not give doubled multiplicity, as expected from four strings
as discussed above. It was therefore assumed that the second subcollision
could give a just single double string connecting the two outgoing gluons.
Another option was replacing the gluons by a qq̄ pair, connected by a single
triplet string. This reduces the multiplicity even further. A third possibility
was to assume that color rearrangement caused the scattered gluons to fit
in the color chains of the first collision, in such a way that the total string
length was increased as little as possible. This gives a minimal additional
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multiplicity, and in this case the multiple collisions have an effect on the
total E⊥ and multiplicity similar to the bremsstrahlung gluons (but the jets
are balanced pairwise in transverse momentum). The default assumption in
Ref. [14] was to give each of these possibilities the same probability, 1/3. In
Field’s successful tunes these ratios are changed, such that the last option
with color reconnection is chosen in 90% of the cases.

In a more recent study by Sjöstrand and Skands [13] a number of im-
provements have been added to the old Pythia model. The hope was that
with these modifications it would be possible to describe data without the
extreme color reconnections which have no real theoretical motivation in
QCD. Their result is, however, discouraging, as they were not able to tune
the new model to give the relation between p⊥ and multiplicity observed in
the data.

6. Theoretical ideas

6.1. Pomeron interactions

We have to conclude that something important is missing in our under-
standing of high energy collisions. Although, in the AGK paper, pomeron
interactions are assumed to give small contributions, pomeron vertices (see
e.g. [28]) and pomeron loops may be very important. As indicated in
Fig. 5(a), a pomeron loop can give a bump in the particle density if both
branches of the loop are cut, and a gap if the cut passes between the two
branches. It is also conceivable that such gaps and bumps have to be in-
cluded in a “renormalized” pomeron [29].

In QCD a pomeron is formed by two gluons in a color singlet. Two
pomeron exchange thus corresponds to four gluons in two singlet pairs. If
the pairs (1,2) and (3,4) form singlets, then gluon exchange can change
the system so that instead the pairs (1,3) and (2,4) form color singlets.
This corresponds to an effective 2IP → 2IP coupling (cf. Ref. [30]). A cut
with gluons 1 and 2 on one side and 3 and 4 on the other can then give
an isolated bump in the particle density, as illustrated in Fig. 5(b). This
type of pomeron interactions can also give a bound state [31], which gives
a pole in the angular momentum plane and an essential correction to the
normal cut from the exchange of two uncorrelated pomerons.

We conclude that there are still many open questions. More experi-
mental information is needed, and to gain insight into the dynamics it is
important to go beyond inclusive observables, and study observables related
to correlations and fluctuations.



2188 G. Gustafson

y

dn
dy(a)

1 2 3 4

(b)

Fig. 5. (a) A pomeron loop can be cut through 0, 1, or 2 of its two branches. This

can give gaps and bumps in the particle distribution. (b) Two pomerons can be

represented by four gluons in two color singlet pairs. Gluon exchange can switch

the pairs (1,2) (3,4) into the singlet pairs (1,3) (2,4). A cut as indicated in the

figure gives a localized bump in the rapidity distribution.

6.2. Dipole cascade models, saturation and pomeron loops

Multiple scattering and rescattering is more easily treated in transverse
coordinate space. In Mueller’s dipole cascade model [32, 33] a color dipole
formed by a qq̄ pair in a color singlet is split into two dipoles by gluon
emission. Each of these dipoles can split repeatedly into a cascade, see
Fig. 6(a). The probability per unit rapidity for a split is proportional to
ᾱ = Ncαs/π. When two dipole chains collide, gluon exchange between two
dipoles implies exchange of color and a recoupling of the chains, as shown
in Fig. 6(b). The probability for an interaction between two dipoles i and j,
fij, is proportional to α2

s = π2ᾱ2/N2
c , and is thus formally color suppressed

compared to the dipole splitting process.
In the eikonal approximation the total scattering probability is deter-

mined by the expression 1 −
∏

ij(1 − fij), which is always smaller than 1

and thus satisfies the constraints from unitarity. As seen in Fig. 7(a), mul-
tiple dipole–dipole interactions can imply that the color dipoles form closed
loops, which correspond to the pomeron loops in Fig. 5(a). Mueller’s model
includes those pomeron loops, which correspond to cuts in the particular
Lorentz frame used for the calculation, but not loops which are fully inside
one of the colliding cascades. This implies that the formalism is not Lorentz
frame independent, and different ways have been suggested to achieve a
frame independent formulation (see e.g. Refs. [34, 35]). However, so far no
explicitely frame independent formalism has been presented.
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Fig. 6. (a) The evolution of the dipole cascade. At each step, a dipole can split into

two new dipoles. (b) A symbolic picture of a γ∗γ∗ collision in y − r⊥-space. When

two colliding dipoles interact via gluon exchange the color connection between the

gluons is modified. The result is dipole chains stretched between the remnants of

the colliding systems.
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Fig. 7. (a) If more than one pair of dipoles interact it can result in dipole loops,

which correspond to pomeron loops. (b) Schematic picture of a dipole swing. If

the two dipoles a and b have the same color, they can be replaced by the dipoles c

and d. The result is a closed loop formed within an individual dipole cascade.

In one approach the evolution is expressed in terms of interacting dipoles.
This implies that the number of dipoles can be reduced, and the evolution of
the projectile cascade depends on the target. Besides the 1 → 2 dipole vertex
there should here also be a 2 → 1 vertex. In another approach the evolution
of the projectile is independent of the target, and the non-interacting dipoles
are eliminated afterwards. In this approach there is no need to reduce the
number of dipoles in the evolution.

Dipole swing

A model based on the latter approach is presented in Ref. [36]. In this
model pomeron loops can be formed with the help of a recoupling of the
dipole chains, a “dipole swing”. Just as the dipole–dipole scattering, the
pomeron loops in the cascades should be color suppressed. With a finite
number of colors we can have not only dipoles but also higher color multi-
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poles. Two charges and two anticharges with the same color may be bet-
ter approximated by two dipoles formed by nearby charge–anticharge pairs.
These pairs may be different from the initially generated dipoles, and the
result is a recoupling of the dipole chain, as seen in Fig. 7(b). The same
effect can also be obtained from gluon exchange, which is proportional to αs

and thus also color suppressed cf. to the dipole splitting proportional to ᾱ.
The swing does not result in a reduction of the number of dipoles, but

the saturation effect is obtained as the recoupled dipoles are smaller and
therefore have smaller cross-sections. Inserted in a MC the result is ap-
proximately frame independent, and the model describes well both the F2

structure function in DIS and the pp scattering cross section [36, 37], as
shown in Fig. 8. (For these results also energy conservation and a running
αs are very important.) We see here that the γ∗p cross-section satisfies ge-
ometric scaling. The pp cross-section is reduced by about a factor 4 cf. to
the one pomeron exchange at the Tevatron, and we also see that the result
of the model is the same when calculated in the cms as in the rest frame
of the target proton, if pomeron loops are included also in the evolution via
the dipole swing.
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Fig. 8. Results from the dipole cascade model in Refs. [36, 37]. Left: The γp

total cross-section plotted as a function of the scaling variable τ = Q2/Q2
s, where

Q2
s = Q2

0(x0/x)λ with Q0 = 1GeV, x0 = 3 × 10−4, λ = 0.29. Right: The total

pp scattering cross-section. Results are presented for evolution with and without

the dipole swing mechanism. The one pomeron result and the result obtained in

a frame where one of the protons is almost at rest are also shown.

Besides the total cross-sections it is also possible to calculate the proba-
bility to have pomeron loops formed by multiple collisions in a given frame,
or loops formed within the cascades. As examples we find at the Tevatron
in the cms on average 2.2 loops from multiple collisions and 0.65 loops in
each of the two cascades. In an asymmetric frame, where the total rapidity
range is divided in 4.5 + 10.5 units, we find instead 2 loops from multiple
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collisions, and 0.15 and 1.35 in the two cascades, respectively. In both cases
this gives in total 3.5 loops. At LHC we obtain in the same way in total
an average of 5 loops.

Using the eikonal approximation it is besides total cross-sections also
possible to calculate elastic scattering and diffractive excitation [38], but
so far it has not been possible to calculate exclusive final states. The aim
for the future is to bridge the gap between dipole cascades, AGK, and tra-
ditional MC generators, and construct an event generator fully compatible
with unitarity and the AGK cutting rules.

7. Conclusions

• Experimental data are well described by a hadronization model based
on a stringlike confining field, where gluons act as transverse excitations on
the string. An important feature of the string model is the infrared stability.

• Parton cascade models based on leading 1/Nc expansion work well
for timelike parton cascades in e+e− annihilation. (Why is there no color
reconnection?)

• Spacelike cascades are more complicated. There are two different prob-
lems: the cross-section and the final states. Non-k⊥-ordered cascades are not
fully understood.

• Multiple collisions are present in data, and the hard subcollisions are
correlated. The underlying event is different from a minimum bias event.

• Rick Field’s tunes of the Pythia MC fit Tevatron data well, but the
relation between transverse energy and multiplicity is not understood. This
may indicate some kind of color rearrangement, or a “renormalized pomeron”.

• Multiple collisions and unitarity constraints are easier treated in trans-
verse coordinate space. The dipole formalism can describe IP loops and
diffraction. The application of AGK cutting rules then implies the presence
of rapidity gaps.

• For the future we hope to be able to combine the dipole formalism
and traditional MC generators to obtain event generators which include
diffraction and are compatible with unitarity and AGK.
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