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The Hamiltonian describing possible interactions of the Reggeized glu-
ons in the leading logarithmic approximation (LLA) of the multicolor QCD
has the properties of conformal invariance, holomorphic separability and
duality. It coincides with the Hamiltonian of the integrable Heisenberg
model with the spins being the Möbius group generators. With the use of
the Baxter–Sklyanin representation we calculate intercepts of the colorless
states constructed from three and four Reggeized gluons and anomalous di-
mensions of the corresponding high twist operators. The integrability prop-
erties of the BFKL equation at a finite temperature are reviewed. Maximal
transcendentality is used to construct anomalous dimensions of twist-2 op-
erators up to 4 loops. It is shown that the asymptotic Bethe Ansatz in the
4-loop approximation is not in an agreement with predictions of the BFKL
equation in N = 4 SUSY.

PACS numbers: 11.55.Jy, 12.38.Cy, 11.15.Pg, 11.25.Tg

1. Introduction

1.1. BFKL equation

The scattering amplitude A(s, t) at high energies 2E =
√
s and fixed

momentum transfers q =
√
−t in QCD and other gauge theories in the

leading logarithmic approximation (LLA) αs ln s ∼ 1 can be obtained from
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the solution of the BFKL equation [1]. The next-to-leading corrections to its
kernel were also calculated in QCD and in supersymmetric models [2]. The
BFKL equation is used for the description of structure functions for the deep-
inelastic lepton–hadron scattering together with the DGLAP equation [3]
(see the reviews [4]). In the impact parameter space −→ρ the BFKL equation
has the Schrödinger-like form [4]

E f(−→ρ1,−→ρ2) = H12 f(−→ρ1,−→ρ2) , (1)

where in LLA the eigenvalue E of the ground state is related to the intercept
∆ of the Pomeron as follows

∆ = −g
2Nc

8π2
E (2)

and the Hamiltonian is given below in the holomorphically separable form:

H12 = h12 + h∗12 ,

h12 = ln(p1p2) +
1

p1
(ln ρ12)p1 +

1

p2
(ln ρ12)p2 + 2γ . (3)

Here γ = −ψ(1) is the Euler constant. We introduced the complex compo-
nents of the gluon coordinates ρk = xk + iyk, ρ

∗
k (ρ12 = ρ1 − ρ2) and their

canonically conjugated momenta pk, p
∗
k.

In LLA the BFKL equation is invariant under the Möbius group trans-
formations [4]

ρk → a ρk + b

c ρk + d
, (4)

where a, b, c, d are arbitrary complex parameters. Its solutions belong to
the principal series of unitary representations of the Möbius group. For this
series the conformal weights

m = 1/2 + iν + n/2 , m̃ = 1/2 + iν − n/2 , (5)

are expressed in terms of the anomalous dimension γ = 1+2iν of the twist-2
operators Omf,m(−→ρ0) (with real ν) and their integer conformal spin n. The
conformal weights are related to the eigenvalues

M2fm, em = m(m− 1)fm, em , M∗2fm, em = m̃(m̃− 1)fm, em , (6)

of the Casimir operators M2 and M∗2 of the Möbius group (for the Pomeron
the number of Reggeons is n = 2)

M2 =

(
n∑

k=1

Ma
k

)2

=
∑

r<s

2Ma
r M

a
s = −

∑

r<s

ρ2
rs∂r∂s , M

∗2 = (M2)∗ . (7)
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Here Ma
k are the group generators

M3
k = ρk∂k , M+

k = ∂k , M−
k = −ρ2

k∂k (8)

and ∂k = ∂/(∂ρk).
The eigenfunctions and eigenvalues of the BFKL Hamiltonian are given

below [5]:

fm, em(−→ρ1,−→ρ2;−→ρ0) =

(
ρ12

ρ10 ρ20

)m( ρ∗12
ρ∗10 ρ

∗
20

)em

, (9)

Em, em = 4Re

(
ψ

(
1

2
+ iν +

|n|
2

))
− 4ψ(1) . (10)

The minimum ofEm, em is obtained for ν = n = 0 and equals

minEm, em = −8 ln 2 . (11)

Therefore, the total cross-section in LLA grows rather rapidly

σt ∼ g4s∆ , ∆ =
g2

π2
Nc ln 2 (12)

and exceeds the Froissart limit σt ≤ ln2 s.
In the next-to-leading approximation [2] the value of the intercept,

obtained with the use of the BML procedure, is significantly smaller ∆ ≈
0.2 [6]. A self-consistent approach to the construction of the unitary
S-matrix at high energies in the perturbative QCD should be based on
the use of the effective action for Reggeized gluon interactions [7]. But we
consider below a more simple method related to the solution of the Bartels,
Kwiecinski and Praszalowicz (BKP) equations for the composite states of n
Reggeized gluons [8].

1.2. Multi-Reggeon states in the multi-color QCD

The Bartels–Kwiecinski–Praszalowicz equation [8] for the n-gluon com-
posite states is given below

Em, em ψm, em = H ψm, em , H =
∑

1≤r<l≤n

Hrl
T a

r T
a
l

(−Nc)
. (13)

Here T a
r implies the gauge group generator acting on the color index of the

gluon r. The wave functions and energies are enumerated by the confor-
mal weights m and m̃ for the corresponding representations of the Möbius
group. The intercepts ∆m, em entering in the asymptotic contribution to the
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total cross-section σt ∼ s∆ from the corresponding Feynman diagrams are
proportional to Em, em

∆m, em = −g
2Nc

8π2
Em, em . (14)

In a particular case of the Odderon [9], being a composite state of three
Reggeized gluons with the charge parity C = −1 and signature Pj = −1,
the color factor coincides with the known completely symmetric tensor dabc.

To simplify the structure of the equation for colorless composite states
in a general case of n Reggeized gluons we consider the multi-color limit
Nc → ∞ [4]. It is remarkable that the Hamiltonian H in the multicolor
QCD apart from the Möbius invariance has the property of the holomorphic
separability [10]:

H =
1

2
(h+ h∗), [h, h∗] = 0 , (15)

where the holomorphic and anti-holomorphic contributions

h =

n∑

k=1

hk,k+1 , h
∗ =

n∑

k=1

h∗k,k+1 (16)

are expressed in terms of the BFKL Hamiltonians h12 [10].
Owing to the holomorphic separability of H, the wave function fm, em has

the property of the holomorphic factorization [10]:

fm, em(−→ρ1 , . . . ,−→ρn;−→ρ0) =
∑

r,l

cr,l f
r
m(ρ1 , . . . , ρn; ρ0) f

l
em(ρ∗1 , . . . , ρ

∗
n; ρ∗0) , (17)

where r and l enumerate the degenerate solutions of the Schrödinger equa-
tions in the holomorphic and anti-holomorphic sub-spaces:

ǫm fm = h fm , ǫ em f em = h∗ f em , Em, em =
1

2
(ǫm + ǫ em) . (18)

Similarly to the case of two-dimensional conformal field theories, the coeffi-
cients cr,l are fixed by the single-valuedness condition for the wave function
fm, em(−→ρ1 ,−→ρ2, . . . ,−→ρn;−→ρ0) in the two-dimensional −→ρ -space. Note that in these
conformal models the holomorphic factorization of the Green functions is
a consequence of the invariance of the operator algebra under the infinitely
dimensional Virasoro group [11].

The holomorphic Hamiltonian commutes with the differential opera-
tor [12]

A = ρ12ρ23 . . . ρn1 p1p2 . . . pn . (19)
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Furthermore, [13], one can construct many mutually commuting integrals of
motion

qr =
∑

i1<i2<...<ir

ρi1i2 ρi2i3 . . . ρiri1 pi1 pi2 . . . pir , [qr, h] = 0 . (20)

In particular, qn is equal to A and q2 is proportional to M2.

The generating function for these integrals of motion coincides with the
transfer matrix T (u) for the XXX model [13, 14]:

T (u) = Tr (L1(u)L2(u) . . . Ln(u)) =
n∑

r=0

un−r qr , (21)

where the L-operators are

Lk(u) =

(
u+ ρk pk pk

−ρ2
k pk u− ρk pk

)
=

(
u 0
0 u

)
+

(
1

−ρk

) (
ρk 1

)
pk .

The transfer matrix is the trace of the monodromy matrix t(u) :

T (u) = Tr (t(u)) , t(u) = L1(u)L2(u) . . . Ln(u) . (22)

It can be verified that t(u) satisfies theYang–Baxter (YB) equation [13,14]

ts1

r′
1

(u) ts2

r′
2

(v) l
r′
1
r′
2

r1r2
(v − u) = ls1s2

s′
1
s′
2

(v − u) t
s′
2

r2
(v) t

s′
1

r1
(u) , (23)

where l(w) is the L-operator for the well-known Heisenberg spin model

ls1s2

s′
1
s′
2

(w) = w δs1

s′
1

δs2

s′
2

+ i δs1

s′
2

δs2

s′
1

. (24)

Really the BKP Hamiltonian coincides with the local Hamiltonian of the
Heisenberg spin model, in which spins are generators of the Möbius group [15].
The general method of solving such models was suggested by Sklyanin [16].

The integrability is closely related to the duality symmetry of the Reggei-
zed gluon interactions [17]. Using the results of Ref. [12] the equation for
Odderon was solved approximately [18]. A new Odderon solution with
a larger intercept was constructed in Ref. [19]. The integrability appears
also in the problem of finding the anomalous dimensions for local opera-
tors for N = 4 SUSY [20]. This model is assumed to be equivalent to the
superstring theory on the 10-dimensional anti-de-Sitter space [21].
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2. Baxter–Sklyanin representation

2.1. Sklyanin Ansatz

Thus, the problem of finding solutions of the Schrödinger equation for
the Reggeized gluon interaction is reduced to the search of a representation
for the monodromy matrix satisfying the Yang–Baxter bilinear relations [13].
It is convenient to work in the conjugated space [15], where the monodromy
matrix is parametrized as follows,

t̃(u) = L̃n(u) . . . L̃1(u) =

(
A(u) B(u)
C(u) D(u)

)
, (25)

where L̃k(u) is given below

L̃k(u) =

(
u+ pkρk0 −pkρ

2
k0

pkρ
2
k0 u− pkρk0

)
. (26)

The pseudo-vacuum state annihilated by the operators C(u) and C∗(u)
has the form [15]

Ψ (0)(−→ρ1,−→ρ2, . . . ,−→ρn;−→ρ0) =

n∏

k=1

1

|ρk0|4
. (27)

To construct the n-Reggeon states with physical values of conformal
weights m, m̃ in the framework of the Bethe Ansatz one can use the Baxter–
Sklyanin approach [14, 16]. To begin with, we should introduce the Baxter
function satisfying the equation (see [15, 22, 23])

Λ(n)(λ; ~µ)Q (λ;m, ~µ) = (λ+ i)nQ (λ+ i;m, ~µ) + (λ− i)nQ (λ− i;m, ~µ) ,
(28)

where Λ(n)(λ) is the eigenvalue of the monodromy matrix

Λ(n)(λ; ~µ) =
n∑

k=0

(−i)k µk λ
n−k ,

µ0 = 2 , µ1 = 0 , µ2 = m(m− 1) . (29)

Here we assume [22], that the eigenvalues µk = ik qk of integrals of motion
are real.

The eigenfunctions of the holomorphic Schrödinger equation can be ex-
pressed through the Baxter function Q(λ) using the Sklyanin Ansatz [16]:

f(ρ1, ρ2 , . . . , ρn; ρ0) = Q(λ̂1; m, ~µ)

×Q(λ̂2; m, ~µ) . . . Q(λ̂n−1;m, ~µ)Ψ (0) , (30)
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where λ̂r are the operator zeroes of the matrix element B(u) of the mon-
odromy matrix:

B(u) = −P
n−1∏

r=1

(u− λ̂r) , P =
n∑

k=1

pk . (31)

2.2. Holomorphic factorization and quantization

In Ref. [22] a unitary transformation of the wave function for the com-
posite state of n Reggeized gluons was constructed for the transition from
the coordinate representation to Baxter–Sklyanin one in which the operators

λ̂r are diagonal (see also [23]). As a consequence of the single-valuedness
condition for its kernel the arguments of the Baxter functions Q(λ) and
Q(λ∗) in the holomorphic and anti-holomorphic sub-spaces are quantized
(see [22, 23]):

λ = σ + i
N

2
, λ∗ = σ − i

N

2
, (32)

where σ and N are real and integer numbers, respectively.
In Ref. [22] a general method of solving the Baxter equation for the

n-Reggeon composite state was proposed and the wave functions and inter-
cepts of the composite states of three and four Reggeons were calculated.
It turns out [22] that there is a set of independent Baxter functions Q(t)

(t = 0, 1, . . . , n − 1) having multiple poles simultaneously in the upper and
lower half-λ planes in the points λ = ik (k = 0,±1,±2, . . .). Using all
these functions one can construct the normalizable total Baxter function
Qm, em, ~µ

(−→
λ
)

without poles at σ = 0 [22],

Qm, em, ~µ

(−→
λ
)

=
∑

t,l

Ct,lQ
(t) (λ; m, ~µ) Q(l)

(
λ∗; m̃, ~µs

)
, (33)

by adjusting for this purpose the coefficients Ct,l.
The total energy Em, em can be expressed in terms of the Baxter function

(see Ref. [22]):

E = i lim
λ,λ∗→i

∂

∂λ

∂

∂λ∗
ln
[
(λ− i)n−1(λ∗ − i)n−1 |λ|2 n Qm, em, ~µ

(−→
λ
)]

. (34)

Since the function Qm, em, ~µ

(−→
λ
)

is a bilinear combination of the Baxter

functions Q(t)(λ) and Q(l)(λ∗) (t , l = 1, 2, . . . , n), the holomorphic energies
for all solutions Q(t) should be the same. This leads to a quantization of the
integrals of motion qk [22].
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Let us rewrite the Baxter equation for the n Reggeon composite state in
a real form introducing the new variable x ≡ −iλ:

Ω(x, ~µ)Q(x, ~µ) = (x+ 1)nQ(x+ 1, ~µ) + (x− 1)nQ(x− 1, ~µ) , (35)

where

Ω(x, ~µ) =
n∑

k=0

(−1)k µk x
n−k (36)

and
µ0 = 2 , µ1 = 0 , µ2 = m(m− 1) ,

assuming that the eigenvalues of the integrals of motion µk (k > 2) are real
numbers.

2.3. Meromorphic solutions of the Baxter equation

To solve the Baxter equation we introduce a set of the auxiliary functions
for r = 1, 2, . . . , n− 1 [22]

fr(x, ~µ) =
∞∑

l=0

[
ãl(~µ)

(x− l)r
+

b̃l(~µ)

(x− l)r−1
+ . . . +

g̃l(~µ)

x− l

]
, (37)

where the coefficients ãl, . . . , g̃l satisfy recurrent relations obtained by in-
serting fr instead of Q(x) in the Baxter equation, but with other initial
conditions

ã0 = 1, b̃0 = . . . = g̃0 = 0 . (38)

Note that all functions fr(x, ~µ) are expressed in terms of a subset of pole
residues ãl, . . . , z̃l for fn−1(x, ~µ) and therefore they can be obtained from it.

There are n “minimal” independent solutions Q(t)(x, ~µ) (t = 0, 1, 2, . . . ,
n− 1) of the Baxter equation having t-order poles at positive integer x and
(n−1−t)-order poles at negative integer x [22]:

Q(t)(x, ~µ)=

t∑

r=1

C(t)
r (~µ) fr(x, ~µ)+β(t)(~µ)

n−1−t∑

r=1

C(n−1−t)
r ( ~µs)fr(−x, ~µs) , (39)

where the meromorphic functions fr(x, ~µ) were defined above and µs
r =

(−1)rµr. Such form of the solution is related to the invariance of the Baxter
equation under the substitution x→ −x , ~µ→ ~µs.

The coefficients C
(t)
r (~µ) , C

(n−1−t)
r ( ~µs) and βt(~µ) are obtained imposing

the validity of the Baxter equation at x→ ∞:

lim
x→∞

xn−2 Q(t)(x, ~µ) = 0 .
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This leads to a system of n− 2 linear equations for the coefficients C
(t)
r . We

normalize Q(t)(x, ~µ) by choosing

C
(t)
t (~µ) = C

(n−1−t)
n−1−t (~µ) = 1 . (40)

It is important to notice that three subsequent solutions Q(r) for r =
1, 2, . . . , n− 2 are linearly dependent [22]:
[
δ(r)(~µ) + π cot(πx)

]
Q(r)(x, ~µ) = Q(r+1)(x, ~µ) + α(r)(~µ)Q(r−1)(x, ~µ) . (41)

Indeed, the left and right-hand sides satisfy the Baxter equation every-
where including x → ∞ and have the same singularities. Therefore, due to
the uniqueness of the ‘minimal’ solutions the quantity π cot(πx)Q(r)(x, ~µ)
can be expressed as a linear combination of Q(r−1)(x, ~µ), Q(r)(x, ~µ) and
Q(r+1)(x, ~µ). Furthermore, the coefficient in front of Q(r+1)(x, ~µ) is cho-
sen to be 1 taking into account our normalization of Q(r)(x, ~µ).

The Baxter function in the total ~x-space is a bilinear combination of
holomorphic and anti-holomorphic functions Q(r). Therefore, the holomor-
phic energy expressed in terms of the residues a0 = 1, b0, a1, b1 of the poles
closest to zero,

ǫ =
b1
a1

+ n = b0 −
µn−1

µn
, (42)

should be the same for all solutions ǫ(0) = ǫ(1) = . . . = ǫ(n). It leads to
a quantization of the integrals of motion µk and the energy E [22].

The total energy of the composite state of n Reggeons is the sum of the
holomorphic and anti-holomorphic energies:

Em, em = ǫm(~µ) + ǫ em(~µs∗) . (43)

It can be obtained from the Schrödinger equation for the wave function φm, em

in the Baxter–Sklyanin representation in the limit λ, λ∗ → i [22]. We can
obtain the analogous expression

Em, em = ǫm(~µs) + ǫ em(~µ∗) (44)

by taking instead another limit λ, λ∗ → −i. These two expressions for
the energies were derived from the Schrödinger equation with the hermitian
Hamiltonian [22]. Therefore, they should coincide for the quantized values
of ~µ:

ǫm(~µ) + ǫ em(~µs∗) = ǫm(~µs) + ǫ em(~µ∗) . (45)

It gives an additional constraint on the spectrum of the integrals of motion.
One of the possible solutions of this constraint is that ~µ should be real or
pure imaginary. Note, however, that provided the wave function Q(~x) does
not contain all possible bilinear combinations of the Baxter functions Q(r)

and Q(s)∗, the quantization conditions can be not so restrictive.
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2.4. Anomalous dimensions and intercepts of Reggeons

The Q2-dependence of the inclusive probabilities ni(x, lnQ
2) to have

a parton i with the momentum fraction x inside a hadron with the large
momentum |−→p | → ∞ can be found from the DGLAP evolution equa-
tion [3]. The eigenvalues of its integral kernels describing the inclusive
parton transitions i → k coincide with the matrix elements γki

j (α) of the

anomalous dimension matrix for the twist-2 operators Oj with the Lorentz
spins j = 2, 3, . . . .

For example, in the case of the pure Yang–Mills theory with the gauge
group SU(Nc) we have only one multiplicatively renormalized operator. Sim-
ilarly, in the N = 4 supersymmetric gauge theory [21] there is one super-
multiplet of twist-2 operators [20]. Its anomalous dimension is singular at
the non-physical point ω = j − 1 → 0. In this limit one can calculate the
anomalous dimension in all orders of perturbation theory [5]

γω→0 =
αNc

πω
− Ψ ′′(1)

(
αNc

πω

)4

+ . . . (46)

from the eigenvalue of the integral kernel for the BFKL equation in LLA [1]
at n = 0:

ωBFKL =
αNc

π
[2Ψ(1) − Ψ(γ) − Ψ(1 − γ)] . (47)

Using next-to-leading corrections [2] it is possible also to predict the residues
of the poles ∼ αn/ωn−1.

One can find from the BFKL equation the anomalous dimensions of
higher twist operators by solving the eigenvalue equation near other singu-
lar points γ = −k (k = 1, 2, . . .). But it is more important to calculate
the anomalous dimensions for the so-called quasi-partonic operators (see
Ref. [25]) constructed from several gluonic or quark fields and responsible
for the unitarization of structure functions at high energies. The simplest
operator of such type is the product of the twist-2 gluon operators. In the
limit Nc → ∞ this operator is multiplicatively renormalized [24].

Let us return now to the high energy asymptotics of irreducible Feynman
diagrams in which each of n Reggeized gluons at Nc → ∞ interacts only with
two neighbors. In the Born approximation the corresponding Green function
is a product of free gluon propagators

∏n
r=1 ln |ρr − ρ′r|2. For small coupling

constants αs the full dimension for the operator related to the composite
state of n Reggeized gluons is approximately equal to the position of the
pole (m + m̃)/2 ≈ n/2 in the eigenvalue ω of the Schrödinger equation
ω(m, m̃;µ3, . . . , µn) (see [22]),

m+ m̃

2
=
n

2
− γ(n) , γ(n) = c(n) αsNc

ω
+O

([
αsNc

ω

]2
)
. (48)
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Here γ(n) is the anomalous dimension. This expression can be obtained also
from the equation for matrix elements of quasi-partonic operators [25] writ-
ten with a double-logarithmic accuracy [24]. In particular, for the Odderon
we obtain from the Baxter equation that c(3) = 0. Note, however, that for
the BLV solution [19] γ has the singularity at ω = 0. For n = 4 a pole
singularity indeed was found near (m+ m̃)/2 = 2 [22]. Moreover, in this
paper the anomalous dimensions γ3 and γ4 were calculated for arbitrary α/ω
(see [22]), which is important for finding multi-Reggeon contributions to the
deep-inelastic processes at small Bjorken’s variable x.

From the above quantization conditions one can calculate for m = m̃ =
1/2 the first roots for the Odderon numerically (see [22]):

µ1 = 0.205257506 . . . , µ2 = 2.3439211 . . . , µ3 = 8.32635 . . . (49)

with the corresponding energies

E1 = 0.49434 . . . , E2 = 5.16930 . . . , E3 = 7.70234 . . . (50)

in an agreement with Ref. [18]. The eigenvalues for this state were computed
as functions of m for 0 < m < 1 (see [22]). The energy decreases from
E = E1 at m = 1/2 in a monotonic way. Only m = 0, 1 and 1

2 are physical
values. For other m the curve describes the behavior of the anomalous
dimension for corresponding high-twist operators. The energy vanishes at
m = 0, 1 (n = ±1), which follows from its explicit expression given in
Ref. [22]

E(m,µ ≡ 0) =
π

sin(πm)
+ ψ(m) + ψ(1 −m) − 2ψ(1) .

Note that E(m,µ ≡ 0) describes an eigenvalue for which the function Q(1)

does not enter in the bilinear combination of the total wave function Qm, em,µ

and therefore here our general method of quantization does not work.
We obtain numerically at m→ 0

E(m)=2.152m−2.754m2+ . . . , µ1(m)=0.375
√
m−0.0228m+ . . . . (51)

The state with m = 1 and m̃ = 0 (or vice versa) is therefore the ground
state of the Odderon corresponding to |n| = 1. It has a vanishing energy for
ν → 0 and is situated below the eigenstates with m = m̃ = 1/2. Note, that
generally this solution is different from that found in Ref. [19] because for
it µ is non-zero. The first eigenstate with n = 2 was also investigated [22].
The energy proceeds to decrease. The eigenstate with |n| = 2 is absent on
this trajectory because µ is pure imaginary in this interval and vanishes only
at m = 1 and m = 2.
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Let us consider now the Baxter equation for the Quarteton (4 Reggeons
state) [22]. A new integral of motion µ4 = q4 appears here. The eigenvalues
µ and q4 are assumed to be real, which is compatible with a single-valuedness
of the wave function in the ~ρ-space. Following the general method presented
above one can search solutions of the Baxter equation for the Quarteton in
the form of a series of poles. Our quantization procedure gives for m = m̃ =
1/2 [22]

µ = 0 , q4 = 0.1535892 , E = −1.34832 ,

µ = 0.73833 , q4 = −0.3703 , E = 2.34105 .

One finds for the first eigenvalue with m = 0, m̃ = 1, corresponding to
|n| = 1

µ = 0 , q4 = 0.12167 , E = −2.0799 .

The state of the Quarteton with |n| = 1 has m = 0, m̃ = 1. Its energy is
lower than the energy of the above state with m = m̃ = 1

2 .

The eigenvalue with µ = 0 as a function of m for 0 < m < 1
2 was also

calculated (see [22]). Contrary to the Odderon case, the energy eigenvalue
does not vanish for m = 0. It decreases with m for 0 < m < 1

2 and takes
the value E = −2.0799 at m = 0.

The state with m = 3/2 (corresponding to n = 2, ν = 0) can be con-
sidered as a ground state for the Quarteton because for it the eigenvalue of
q4 is real. It has a large negative energy E = −5.863 lower then the energy
E = −5.545 of the BFKL Pomeron constructed from two Reggeized glu-
ons [22]. But to prove that this state is a physical ground state one should
construct a bilinear combination of the corresponding Baxter functions to
verify the normalizability of the corresponding solution.

2.5. BFKL Pomeron in the thermostat

In the experiments at RHIC one of the footprints of the quark-gluon
plasma is a decrease of the number of produced ψ-mesons due to breaking the
confining quark-anti-quark potential at large temperature T . Therefore, it is
interesting to investigate the properties of the BFKL Pomeron as a composite
state of two Reggeized gluons at a non-zero t-channel temperature [26].

The Green functions at a finite temperature should satisfy the additional
symmetry: they should be periodic under the shift of the Euclidean time
x4 → x4 + 1/T . It leads to the quantization of the corresponding Euclidean
energies El = 2πl T in the t-channel. After an analytic continuation of these
Green functions to the s-channel with the Regge kinematics s≫ T 2 ∼ −t >
0 one should impose on them the periodicity condition to the transformation
y → y+ 1/T of one of the transverse s-channel coordinates y. Respectively,
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the canonically conjugated momentum is quantized k
(l)
y = 2π l T . In this

cylinder-type topology it is convenient to introduce the rescaled variables ρ
and p:

ρ = x+ iy → 1

2π T
ρ , p(l) =

p
(l)
x − ip

(l)
y

2
→ π Tp(l) (52)

with the temperature constraints

0 < Imρ < 2π , Im p(l) =
l

2
, [p, ρ] = i . (53)

In this case the BFKL equation is modified, but the holomorphic sepa-
rability remains [26]

H12Ψ = Ψ , H12 = h12 + h∗12 , (54)

where the holomorphic Hamiltonian is

h12 =

2∑

r=1

[
Ω(qr) +

1

pr
G(ρ12) pr

]
. (55)

The kinetic energy for the Reggeized gluon is

Ω(q) =
πT

2λ
+

1

2
[ψ(1 + iq) + ψ(1 − iq) − 2ψ(1)] (56)

and the Green function for the cylinder topology is

G(ρ12) = −π T
2λ

+ ln
(
2 sinh

ρ12

2

)
. (57)

It turns out that the BFKL equation at a non-zero temperature can be
also solved. The reason is that one can find the conformal transformation

ρr = ln ρ′r , (58)

after which the Hamiltonian and the integral of motion take the form, cor-
responding to the zero temperature [26],

h12 = ln(p′1 p
′
2) +

1

p′1
log(ρ′12) p

′
1 +

1

p′2
log(ρ′12) p

′
2 − 2ψ(1) , (59)

A = −(ρ′12)
2 ∂

∂ρ′1

∂

∂ρ′2
. (60)
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To verify it one should use the following operator identity

1

2

[
ψ

(
1 + z

∂

∂z

)
+ ψ

(
−z ∂

∂z

)]
= ln z + ln

∂

∂z
. (61)

Moreover, for the case of n Reggeized gluons the Hamiltonian coincides
again with the local Hamiltonian of the integrable Heisenberg spin model,
but with the spins realizing another representation of the Möbius group
generators [26]:

Mk = ∂k , M+ = e−ρk ∂k , M− = −eρk ∂k . (62)

It is interesting that the eigenvalue equation for the integral of motion M2

in the Pomeron case coincides for t = 0 with the Baxter equation for the
above Heisenberg spin model [26].

3. Maximal transcendentality and anomalous dimensions

3.1. Anomalous dimensions of twist-2 operators

The anomalous dimension of twist-2 operators in N = 4 SUSY in one-
loop approximation was calculated comparatively recently [20]. It turns
out that it is proportional to ψ(j − 1) − ψ(j). In Ref. [20] it was claimed
that in this model the evolution equations for the so-called quasi-partonic
operators [25] are integrable in LLA. Later the integrability for N = 4 SUSY
was generalized to other operators [27] and to higher loops [28].

The anomalous dimension for twist-2 operators was calculated in 2 loops
in Ref. [30] confirming the result obtained with the use of the maximal
transcendentality hypothesis [29].

The universal anomalous dimension for the twist-2 operators was found
with the use of the maximal transcendentality property in N = 4 SUSY up
to three loops [29–31]:

γ(j) = α̂γ1(j) + α̂2γ2(j) + α̂3γ3(j) + . . . , α̂ =
αsNc

4π
, (63)

where

γ1(j + 2) = −4S1(j) , (64)

γ2(j + 2)

8
= 2S1 (S2 + S−2) − 2S−2,1 + S3 + S−3 (65)

γ3(j + 2)

32
= −12 (S−3,1,1 + S−2,1,2 + S−2,2,1)

+ 6 (S−4,1 + S−3,2 + S−2,3) − 3S−5 − 2S3 S−2 − S5

− 2S2
1 (3S−3 + S3 − 2S−2,1) − S2 (S−3 + S3 − 2S−2,1)

+ 24S−2,1,1,1 − S1

(
8S−4 + S2

−2 + 4S2S−2 + 2S2
2

)

−S1 (3S4 − 12S−3,1 − 10S−2,2 + 16S−2,1,1) . (66)
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The harmonic sums are defined in a recursive way below:

Sa(j) =

j∑

m=1

1

ma
, Sa,b,c,...(j) =

j∑

m=1

1

ma
Sb,c,...(m) ,

S−a(j) =

j∑

m=1

(−1)m

ma
, S−a,b,...(j) =

j∑

m=1

(−1)m

ma
Sb,···(m) ,

S−a,b,c···(j) = (−1)jS−a,b,...(j) + S−a,b,···(∞)
(
1 − (−1)j

)
. (67)

During the last years there was a great progress in the investigation
of the N = 4 SYM theory in a framework of the AdS/CFT correspon-
dence [32]. This model at a strong-coupling regime, αsNc → ∞, is equivalent
to a classical supergravity in the anti-de Sitter space AdS5×S5. In particu-
lar, a very interesting prediction [33] was obtained for the large-j behavior
of the anomalous dimension of twist-2 operators

γ(j) = a(z) ln j , z =
αsNc

π
(68)

in the strong coupling regime:

lim
z→∞

a = −
(
αsNc

π

)1/2

+ . . . . (69)

Note that in our normalization γ(j) contains the extra factor −1/2 in com-
parison with that in Ref. [33].

On the other hand, with the use of the asymptotic behavior of the two-
loop anomalous dimension γ2 one can suggest a resummation procedure
based on the solution of the following algebraic equation constructed from
two first terms of the small-αs expansion of the coefficient a [30]:

αsNc

π
= −ã+

π2

12
ã2 . (70)

Using this equation the following large-αs behavior of ã can be obtained:

lim
αs→

ã ≈ −1.1632

(
αsNc

π

)1/2

+ . . . , (71)

in a rather good agreement with the above result based on the AdS/CFT
correspondence. Moreover, the small-ã expansion of the solution of this
equation,

ã = −αsNc

π
+
π2

12

(
αsNc

π

)2

− 1

72
π4

(
αsNc

π

)3

+ . . . , (72)
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also coincides with a good accuracy with exact calculations up to three
loops [31]:

a = −αsNc

π
+
π2

12

(
αsNc

π

)2

− 11

720
π4

(
αsNc

π

)3

+ . . . . (73)

The anomalous dimension should be zero for j = 2 due to the energy-
momentum conservation. It is natural to consider the slope b = γ′(2) of
the anomalous dimension in this point. To resum the perturbation theory
for this quantity one can use the same procedure as above. Namely, it is
possible to write the following algebraic equation [30]:

π2

6

αsNc

π
= −b̃+

1

2
b̃2 . (74)

Its perturbative solution is

b̃ = −π
2

6

αsNc

π
+
π4

72

(
αsNc

π

)2

− 1

432
π6

(
αsNc

π

)3

+ . . . . (75)

Again this expansion is in a rather good agreement with the exact result up
to three loops [31]:

b = −π
2

6

αsNc

π
+
π4

72

(
αsNc

π

)2

− 1

540
π6

(
αsNc

π

)3

+ . . . . (76)

Therefore, one can attempt to estimate the strong coupling behavior of b
from the above resummation:

lim
αs→∞

b̃ =
π√
3

√
αsNc

π
. (77)

It should be compared with the exact result obtained from AdS/CFT cor-
respondence [31]:

lim
αs→∞

b =
π

2

√
αsNc

π
. (78)

It is important also that the behavior of the anomalous dimension near
the singularity at ω = j − 1 → 0 is in an agreement with the prediction of
the BFKL equation in the next-to-leading logarithmic approximation [29]:

lim
ω→0

γ(j) =
4

ω

αsNc

π
+ 0

(
αsNc

π

)2

+
32ζ(3)

ω2

(
αsNc

π

)3

+ . . . . (79)
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3.2. Beisert–Eden–Staudacher equation

Using the integrability and maximal transcendentality the integral equa-
tion for the anomalous dimension at large j was constructed in all orders of
perturbation theory [34, 35]. Its asymptotic behavior in this region is given
below:

lim
j→∞

γ(j)=−1

2
γK ln j , γ=8g2σ(0)=4g

√
2f(0) , g=

√
αsNc

2π
. (80)

Here γK is the so-called cusp anomalous dimension. It is expressed through
the solution of the Eden–Staudacher (ES) equation,

ǫ f(x) =
t

et − 1


J1(x)

x
−

∞∫

0

dx′K(x, x′) f(x′)


 , (81)

K(x, y) =
J1(x)J0(y) − J1(y)J0(x)

x− y
, ǫ =

1

g
√

2
(82)

as follows

γK = 4 g
√

2 f(0) . (83)

Using the Mellin transformation

f(x) =

i∞∫

−i∞

d j

2π i
ex jφ(j) , lim

j→∞
φ(j) =

γK

4g
√

2 j
, (84)

one can present φ(j) as the sum [37]

φ(j) =

∞∑

n=1

φn,ǫ(j) (δn,1 − an,ǫ) , γK = 4g2(1 − a1,ǫ) , (85)

where

φn,ǫ(j) =
∞∑

s=1

(√
(j + s ǫ)2 + 1 + j + sǫ

)−n

√
(j + sǫ)2 + 1

. (86)

The coefficients an,ǫ satisfy the set of linear algebraic equations [37]

an,ǫ =

∞∑

n′=1

Kn,n′(ǫ)
(
δn′,1 − an′,ǫ

)
, (87)
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where the kernel is given by the perturbative expansion

Kn,n′(ǫ) =

∞∑

R=0

(−1)R
ζ(2R+ n+ n′)

(2ǫ)2R+n+n′ SR
n,n′ . (88)

The coefficients SR
n,n′

SR
n,n′ = 2n

(2R + n+ n′ − 1)! (2R + n+ n′)!

R! (R + n)! (R+ n′)! (R + n+ n′)!
, (89)

are integer numbers. As a result, the anomalous dimension has the property
of the maximal transcendentality in all loops:

γK(ǫ) = 8
∞∑

k=1

(
− 1

4ǫ2

)k∑

[st]

c[st]

∏

r

ζ(sr) ,
∑

t

st = 2k − 2 , (90)

with the integer coefficients c[st] expressed as sums of products of SR
n,n′ [37].

It turns out that the solution of the ES equation does not have a con-
sistent asymptotics at large coupling constants [37] in accordance with the
fact that the correct equation should include effects of the so-called dressing
phase. The necessity of these corrections was understood in the direct four-
loop calculations [38]. Beisert, Eden and Staudacher (BES) calculated the
dressing phase and constructed a new equation for γK [35]. Its perturbative
expansion is different from the perturbative expansion of the BS equation
only by the change of the sign in the terms, in which the zeta-functions
with odd integer arguments appear two times modulo 4. It is possible to
derive from this equation the following asymptotics of the cusp anomalous
dimension at large coupling constants [37, 39]:

lim
αsNc→∞

γK = 2

(
αsNc

π

)1/
2 (91)

in agreement with the AdS/CFT prediction [33].

3.3. Anomalous dimension in 4 loops

To calculate the anomalous dimension of the twist-2 operators in 4 loops
one can apply the integrability approach based on the asymptotic Bethe
Ansatz [28]. The corresponding equations for the Bethe roots uk are given
below:

(
x+

k

x−k

)2

=

j−2∏

r=1

x−k − x+
r

x+
k − x−r

1 − g2/x+
k x

−
r

1 − g2/x−k x
+
r

exp (2 i θ(uk, ur)) . (92)
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Here we used the notations

x±k =
u±k
2

+

√
(u±k )2

4
− g2 , u± = u± i

2
(93)

and the dressing phase expansion [35]

θ(uk, uj) = 4ζ(3) g6(q2(uk) q3(uj) − q3(uk)q2(uj)) + . . . , (94)

where q2 and q3 are integrals of motion. The solution for u±k allows to find
the anomalous dimensions

γ(g,M) = 2g2
M∑

k=1

(
i

x+
k

− i

x−k

)
. (95)

In particular for four loops one can obtain [40]

γ4

256
= 4S−7 + 6S7 + 2(S−3,1,3 + S−3,2,2 + S−3,3,1 + S−2,4,1)

+ . . .

− 80S1,1,−4,1 − ζ(3)S1(S3 − S−3 + 2S−2,1) , (96)

where the harmonic sums depend on j−2 and dots mean the omitted terms
(their number exceeds 200). All these terms satisfy the maximal transcen-
dentality property. The last term appears from the dressing phase.

It turns out that after the analytic continuation of this expression in
the complex j-plane we obtain from two first terms the pole ∼ 1/ω7 for
ω = j − 1 → 0, which does not agree with the singularity in this point
predicted in 4 loops from the BFKL equation:

lim
j→1

γ4(j) = − 32

ω4

(
32ζ3 +

π4

9
ω

)
+ . . . . (97)

It means, that the asymptotic Bethe Ansatz should be modified starting from
4 loops. Namely, one should take into account the wrapping effects [40].

The interesting results were obtained also for the scattering amplitudes
at N = 4 SUSY for particles on the mass shell [41]. These amplitudes were
used in Ref. [42] for the construction of higher loop corrections to the BFKL
kernel in this model. It was shown [42] that the BDS anzatz [41] does not
satisfy correct factorization properties in the multi-Regge kinematics.
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