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We study effects of the running of the coupling in QCD at small
Bjorken-x and in particular the ones related to gluon saturation. After
introducing the steps taken to the derivation of the next to leading or-
der nonlinear evolution equation, we discuss the infrared sensitivity of the
Pomeron intercept, the energy dependence of the saturation momentum
and the appearance of geometrical scaling, and the dominance of the run-
ning coupling effects over the ones introduced by loops of Pomerons.

PACS numbers: 11.15.Kc, 12.38.Cy, 13.60.Hb

1. Short introduction and outline

One of the main active fields of research in Quantum Chromodynamics
is the study of its behavior in the high energy limit. In general, a scattering
process is considered as a high energy one, when the square of the total
energy s of the colliding objects is much larger than the momentum transfer
Q? between them. Then one hopes to approach the problem via analytical
methods, since in this limit there is the possibility of a large kinematical
window 5 > Q% > A?QCD where one can apply weak coupling methods.
In lepton—hadron deep inelastic scattering (DIS) the high energy limit is
equivalent to the small Bjorken-z limit since z = Q2/s.

The BFKL (Balitsky, Fadin, Kuraev, Lipatov) equation [1] is the starting
point for any approach to the high energy limit of QCD. It resums the
Feynman diagrams in perturbation theory which are enhanced by logarithms
of the energy and when the equation is solved a total cross-section growing
as a power of the energy emerges. At least a posterior: this growth is not
so surprising since at high energies the wavefunction of a hadron contains
a large number of partons, mostly gluons, due to the available phase space
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for virtual fluctuations and due to the triple-gluon coupling in QCD. For
such a wavefunction description one mostly relies on the dipole picture [2]
which gives the evolution with the energy of the dipole density (and of higher
density moments) of a hadron.

However, even though QCD at high energy will be in general charac-
terized by high densities and increasing cross-sections, one needs to find
a mechanism to tame the too steep increase as predicted by the BFKL equa-
tion. The gluon density at a given momentum should saturate [3] and never
exceed a value of order O(1/a) (modulo factors which are logarithmic in
energy) and equivalently the scattering at a given impact parameter should
not exceed unity. The BK (Balitsky, Kovchegov) equation [4,5] derived from
QCD adds a nonlinear term to the BFKL equation leading naturally to the
fulfillment of the saturation and unitarity constraints. The B-JIMWLK hier-
archy [6-9] (Balitsky, Jalilian Marian, Iancu, McLerran, Weigert, Leonidov,
Kovner) is a specific generalization of the BK equation, but it seems not to
lead to different results [10] and therefore we will not discuss it at all.

Saturation of parton densities might play a significant role at experiments
in current and future colliders. Saturation models [11,12] and geometrical
scaling [13], which is a consequence of BFKL dynamics in the presence of sat-
uration [14-16], are consistent with the description of the small-z DIS data
at HERA and high-p | spectra in deuteron-gold collisions at RHIC are again
explained by properties of saturation [17]. One expects the phenomenon to
be more relevant at the LHC not only in proton—nucleus collisions but also
in proton—proton ones, for example in the production of dijets separated by
a large rapidity interval (Mueller—Navelet jets) [18-20].

Even though the BK equation may give a correct qualitative description,
it does not give the correct quantitative one and perhaps this is not so sur-
prising, since it corresponds to a leading order approximation. And in fact
there are two sources of large corrections, loops of Pomerons [21-24] and
next to leading order (NLO) contributions [25-27]. Both the BK and the
B-JIMWLK equations do not properly describe the hadronic wavefunction
in regimes where the density is low and fluctuations become important. Even
though we are primarily not interested in this region of phase space, the evo-
lution is nonlocal and thus is affected by these low-density high-momentum
modes. Extra terms, which give rise to the formation of Pomeron loops,
need to be added to the BK equation and these terms strongly modify the
fixed coupling evolution even at the qualitative level. In practice, however,
it just happens that when running coupling corrections are also taken into
account, the Pomeron loop effects are delayed up to super-high energies [28].

These lecture notes are based on just two one-hour presentations, and
therefore we shall not be able to enter detailed calculations, nevertheless we
will try to show the direction to all the steps that need to be taken. Further-
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more, it is assumed that the reader is already familiar with the formalism,
the concepts and the results at the level of the leading order approximation.
Otherwise we refer the reader to either the original papers or to existing
lectures and reviews [29-32]. We divide the main body of the paper in four
parts. In Sec. 2 we describe the efforts made towards the derivation of the
NLO nonlinear equation and in particular the issues related to the argument
of the running of the coupling. In Sec. 3 we restrict ourselves to the linear
equation and we show, through the Pomeron intercept evaluation in a sim-
plified problem, how the evolution becomes sensitive to infrared physics. In
Sec. 4 we deal with the nonlinear equation and the energy dependence of
the saturation momentum. We see how geometric scaling emerges and how
physics becomes insensitive to the infrared behavior. Finally, in Sec. 5 we
compare the effects of the running of the coupling to the ones introduced by
loops of Pomerons, showing that the former dominate.

2. Towards the NLO nonlinear equation

There are various versions of the BFKL equation depending on the “ob-
servable” or the quantity considered and the representation (momentum or
coordinate space). For example one can consider the amplitude in quark—
quark scattering (in momentum space), or in dipole-dipole scattering (in
coordinate space), or the gluon density in a hadronic wavefunction, or the
dipole density in a heavy onium wavefunction. When we take into account
the nonlinear effects, there is presumably a unique route to follow, since
the corresponding evolution equations acquire a relatively simple form only
when we consider the problem of the scattering of a small in size color dipole
off a generic hadron. For this particular quantity it is also easy to give a (not
rigorous) derivation of the nonlinear equation, which also serves as a bench-
mark for the derivation of the one at next to leading order.

Let us assume that we are in a frame where most of the energy is carried
by the hadron, so that the color dipole (x,y), with « and y the corre-
sponding coordinates of the quark and the antiquark, is “bare”. That is,
its wavefunction does not contain any higher order components. When the
total energy, or equivalently the rapidity difference between the two collid-
ing objects increases, we prefer to give the extra amount of energy to the
dipole. Then its wavefunction evolves in a way that we can follow and in
fact calculate. If dY = dk; /k4 is the rapidity increment, then, to lowest
order in adY’, either the quark or the antiquark emits a soft a gluon, with
k4 its longitudinal momentum. By taking into account the four diagrams
in Fig. 1, we can calculate the differential probability for the emission of the
soft gluon in the interval dY d?z, where z is the gluon position. We find [2]
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with @ = aN./m and where N, is the number of colors. In the multi-
color limit one can view the gluon as a quark—antiquark pair, and thus the
state of the evolved “parent” dipole consists of two “child” dipoles (x, z) and
(z,vy). This two-dipole configuration scatters of the target and therefore the
change dSz, in the S-matrix for the dipole-hadron scattering will be equal
to f 5 AP Sz2Sy. There is also a term which corresponds to diagrams where
the emitted gluon is absorbed before the scattering takes place. This term
which normalizes the dipole wavefunction is equal to — [ » AP Sy and we
arrive at the first Balitsky equation [4]

ot — o [ Moy (S0xS2y — Sen) @)
z

In principle, one should perform an average of all terms in the above equation
over the target hadron wavefunction. With the mean field approximation
(SezSzy) = (Sxz)(S2y) We obtain a closed equation, the Kovchegov equa-
tion [5]. Thus, in accordance with the natural conventions we refer to (2)
as the BK equation. Throughout our discussion we shall assume this factor-
ization to be valid, and in Sec. 5 we will try to examine whether or not this
is a good approximation!. We immediately notice that S = 1 is an unstable
fixed point, since any small initial amplitude, defined as T = 1 — S, will
start to grow, while S = 0 is a fixed one which corresponds to the unitarity
limit.

+ ! + Q.0 =+ 0'0
: ‘

Fig. 1. Soft gluon emission from a color dipole.

At this leading order approximation the value of the coupling & is as-
sumed to be a small, but unknown, fixed number. This undesirable freedom
forces us to put a running coupling by hand, but we are immediately lead
to ambiguities since the evolution kernel Mg, is nonlocal in the transverse
space, and therefore an infinite number of combinations of the parent and

! Therefore for notational economy we do not write the average brackets.
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dipole sizes could appear as the scale of the argument of the coupling?®. Thus
there is no other way out than to proceed to the calculation of higher order
corrections to the BK equation [25-27]. Nevertheless, we need to say in
advance that in general we are interested in the physics around the satura-
tion scale Js, defined as the borderline between the region where the BFKL
equation applies and the region where nonlinear effects become important
and we approach the unitarity limits. Then we expect the dominant be-
havior of the S-matrix (and other observables) to be determined by letting
a — a(Q?) in the BK equation, and where Q itself needs to be evaluated
from the same equation. If this was not the case, then one might worry
about the consistency of the whole construction. But let us postpone this
analysis until Sec. 4 and return to our original task.

In order to see what kind of contributions we need to calculate, we expand
the QCD running coupling around its value at some fixed scale u as

Q2
2
where 8 = (11N, — 2N¢)/127 is the leading order QCD f-function with
Ny the number of flavors. In terms of the parameters of the theory the
diagrams in Fig. 1 are of order «,. Diagrams with a quark-loop will be of
order of azN , diagrams with two quark loops will be of order of aiN]% and
so on, and match with the order of the terms in Eq. (3). Then we sum all the
a,u(a,Np)k terms for k > 1 and we let —2N; — 11N, —2N; = 1273 in order
to account for the gluon loop contributions®. Finally we can read off the scale
in the argument of the coupling and in order to obtain that properly it should
be clear from the above that we need to focus in logarithmic contributions,
like the ones in Eq. (3), in the transverse space.

There are two classes of diagrams of order o> N + as shown in Fig. 2. The
first class, shown in the left panel of the figure, contains typical running
coupling corrections; the soft gluon splits into a ¢—¢ pair which recombines
before the time of interaction and thus the state at that time is the same as
in the leading order case. Thus, from diagrams of this type we expect just
a modification to the kernel of the leading order equation. In the second
class of diagrams, shown in the right panel of the figure, the soft gluon splits
into a ¢—¢ pair which does not recombine and therefore, when compared to
the leading order, we have a new state at the time of interaction. Thus, the
full NLO equation will have a more complicated structure which will involve

2
a(QQ):au—aiﬁln +aiﬁzln2%—---, (3)

2 Notice that this is in sharp contrast to the situation encountered in the DGLAP
equations; in that case the object of interest is a parton distribution function f(z, Q?),
with Q? a resolution scale. The evolution is local in the transverse space and thus
Q? arises naturally as the scale in the argument of the running coupling.

3 The gluon loop contribution has already been calculated [27].
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a double two-dimensional integration over the transverse coordinates z; and
z9 of the quark and the antiquark of the pair. At a first glance it seems that
these diagrams do not contribute to the running of the coupling, however
this is not true as we will shortly see.

Fig. 2. Left: Typical NLO diagram containing running coupling corrections. Right:
Typical NLO diagram giving rise to a new state at the time of interaction.

Let us first consider the “simple” diagrams of the first class. While we
can integrate over the longitudinal momentum in the loop, the integration
over the transverse momentum k? is UV divergent. Using, for example,
dimensional regularization and at the end letting 1/¢ — Inu? [25] we find
the desired contribution to the running of the coupling.

Turning our attention to the more “complicated” diagrams of the sec-
ond class let us see what happens when the pair shrinks to a point, which
means that the loop transverse momentum becomes very large. Perhaps not
unexpectedly, since it is hard to distinguish a zero-size pair from a gluon,
we find that in this limit the diagram diverges and in fact this UV behav-
ior also contributes to the running of the coupling. Therefore we subtract
this divergent piece from the diagram in order to obtain a UV finite result
which corresponds to the new channel. Then we add it again to find the
contribution to the running of the coupling.

The issue here is that there is not a unique way to do this separation
of the infinities, since the “point” of subtraction can be chosen as a general
combination of the quark and antiquark positions. Of course there is no
issue regarding the NLO equation which is unique. Unfortunately it is not
a closed equation; one also needs to write an evolution equation for the
new state, which will involve another more complicated state, and so on.
On the contrary, restricting ourselves to the running coupling contributions
we obtain a closed equation which however is not unique. Since the task of
deriving the NLO equation was pursued by two different groups two different
schemes were used. Without any prejudice, but just because the equation
is more compact we shall write here (part of) the result as given in [26]. In
this “B-scheme” the NLO equation reads
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The second term in the square bracket of the first line corresponds to the
running coupling contribution and one may already suspect that in this
scheme the inverse of the parent dipole size sets the scale of the coupling
(but not always as we shall shortly see). The second line corresponds to
the formation and the interaction of the new state composed of the original
quark and antiquark at x and y respectively, and the emitted quark and
antiquark at z; and zs. We will not deal with these new channel terms
from now on.

The result of [25] is slightly more complicated and the main difference
when compared to the one given above in Eq. (4) amounts to the replacement

1 1 —>l R2(’I"1,’T‘2)
"E g el
Yy)p 1rap

: (5)

where R(71,72) is a known function of r; =& — z and ro = z — y.
Finally, we need to resum the bubble diagrams shown in Fig. 3 in order
to obtain the structure given in Eq. (3). Notice that formally these dia-
grams correspond to N"LO corrections with n > 2, but their resummation
is equivalent to the setting of the scale in the coupling. At this point one may
wonder about the number of resummations that we need to perform. The
BFKL equation resumes (aY)" enhanced terms, the nonlinear terms arise
from the resummation of the high density effects in the target hadron wave-
funtion, the bubble resummation is necessary to get the running coupling.
Furthermore, we have to mention that one may need to perform a “pole

o o

Fig. 3. Typical bubble diagrams which need to be resummed in order to set the
scale in the argument of the running coupling.
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resummation” since it is well known that the NLO BFKL kernel has a bad
collinear behavior*. Thus one may be very enthusiastic about the high level
of sophistication, but also may worry about the amount of control we have
on the results after all these manipulations.

Taking into account the bubble diagrams we arrive at the nonlinear equa-
tion which, in the B-scheme, reads

0Szy a(r?) 1 [a(r])
oY - o / Mmyz‘i’r_% T’f‘%) —1|+1<2 (szszy_sa:y) 3 (6)
z

with » = & — y the parent dipole size. In this B-scheme it is straightforward
to see that the parent dipole size 7 sets the scale when r; = ry, while it is the
smallest of the two child dipoles which sets the scale as r~, when r« < r (so
that 7~ ~ 7). In the scheme of [25], and in view of Eq. (5), the r.h.s. of the
nonlinear equation is proportional to the triumvirate of running couplings
a(r})a(r3) -
a(R?)

Before closing this section let us comment on possible problems that we may
face because of the IR behavior of the coupling. So long as we are at fixed
order az, cf. Eq. (4), large dipoles (with size bigger than A_éD) need to be
cut only in principle; they do not obstruct us to perform the integrations.
When bubbles are resummed, cf. Eq. (6), there is a non-integrable singular-
ity. We need to introduce some type of an IR cutoff and, if we claim we have
a sensible effective theory, we should be able to check cutoff-independence
at the end. This will turn out to be true thanks to the dynamically gener-
ated saturation momentum @)s. This scale becomes much larger than Agcp
at high energies, and therefore the r.h.s. of the NLO equation is extremely
small when we start to approach the pole at Agcp.

3. Pomeron intercept and infrared sensitivity

Restricting ourselves to the linear part of the evolution equation, that
is to the BFKL equation with running coupling, we would like to find the
behavior of the dipole-hadron scattering amplitude. More precisely, given
a dipole of fixed size r, we wish to find how fast the amplitude increases
with rapidity. Here, and in the remaining sections too, we shall neglect any
dependence on the impact parameter of the process. In analogy to the fixed
coupling problem [1] we expect an increase of the form exp(wpY’), with wp

4 And still, after all these resummations loops of Pomerons have not been taken into
account.
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to be determined. Just for reasons of simplicity in the presentation, we shall
not try to deal with the running coupling BFKL equation, rather we will try

to solve the equation
1\2
1+ <3p + 5)

with a(p) the running coupling and where we have defined the logarithmic
variable p = In 1/1"2/1(2;2013. We notice that the eigenfunctions exp(—vp)
of the operator K are the same as the ones of the BFKL operator. The
eigenvalue spectrum Y(7) = 1+ (v — 1/2)? has roughly the same shape® as
the BFKL one, which we recall is given by x(v) = 2¢(1) —¢(y) —¢¥(1—7) [1]
with 1(v) = dIn I'(vy)/d~; for real v both y and y are convex functions with
a minimum at v = 1/2. We could choose some more general coefficients in
Eq. (8) or even a more general form, however our final conclusion would not
change.

With a = 1/p (we let § = 1 without any loss of generality) we can write
the general solution to Eq. (8) in terms of the Airy function. We have

or

oy = a(p) T=alp)KT, (8)

T(p,Y)= Zw:c(w) exp <wY - g) Ai (%},’1) , 9)

where ¢(w) should be determined from the initial conditions. Now we need to
enforce a boundary condition to cut the infrared contributions, e.g. T'(py) =
const. with pg > 0, and, again for simplicity, we choose this constant to be
zero. Then, for a given position of the boundary, w can take only discrete
values which are related to the zeros —|&,| of the Airy function. One needs
to solve a transcendental equation to determine these allowed values of w,
but for our purposes we can simply give them in the form of the series

1 n
=) 0P ) )
£0 Po

Then our solution becomes
() P .
T(p,Y)= Z c(wp) exp (wnY - 5) Ai <—\§nl +wlB(p— p0)> . (11)
n=1

The rightmost zero of the Airy function at —|&;| = —2.33 gives the largest
value of w, the n = 1 term dominates as ¥ — oo, and therefore w; as

5 In fact the spectrum of K behaves better than the BFKL one, since the latter diverges
for v — 0,1 violating energy conservation.
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determined from Eq. (10) is the Pomeron intercept wp. The difference in
QCD lies in the coefficients of the series expansion in Eq. (10) and the
Pomeron intercept reads [33]

/3

" 1
T B%x* (ve) X" (vp) &)+, (12)

N2

wp =4In2a(po) — [£1]

with vp = 1/2, x(yp) = 4In2 and x"(yp) = 14¢(3). It is a simple exercise
to show that the n = 1 term dominates up to values of p such that p — pg <
[a(po)Y]z/ 3 so that for large Y, p can be in the perturbative region. On
the one hand this is good, since the most one can achieve is to calculate the
amplitude for dipole sizes much smaller than 1/Aqcp. On the other hand
our solution cannot be trusted since it depends strongly on the cutoff; the
Pomeron intercept is determined by the coupling which in turn is evaluated
at pg. Perhaps this should not come as a surprise, since Eq. (8) is similar to
the Schrodinger equation with an attractive linear potential.

We could have imposed something “milder” than the absorptive bound-
ary, like a coupling which freezes to a fixed value when reaching Aqcp.
Still, diffusion to the IR takes place and for any perturbative dipole p > pg
the main contribution comes again from the region where the coupling is
strongest, that is from momenta of order Agcp. Therefore BFKL evolution
with running coupling is not self-consistent.

4. The saturation momentum and geometric scaling

Now we turn our attention to the problem of determining the saturation
momentum Qs(Y"), which can be defined as T'(r = 1/Qs(Y)) = const. where
the constant is of order of O(1) but smaller than 1, as shown in Fig. 4. In
terms of the hadronic target wavefunction, it corresponds to the borderline
between the low density momentum modes and the ones which are saturated.

In order to specify the energy dependence of ()5 and the form of the
amplitude for the scattering of dipoles with a size r < 1/Qs off the target
hadron, it is enough to analyze the linear equations, but with appropriate
boundary conditions which will play the role of the nonlinear effects [15].
One needs to be careful here since the boundary conditions are Y-dependent
as may be suspected from Fig. 4. Since the expectation is that the nonlin-
ear terms will cut the diffusion to the IR, and more precisely to momenta
(or inverse dipole sizes) smaller than )5, one needs to put an absorptive
boundary just “behind” Q.
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T = const T = const
~O(1) ~ O(a?)

2 1 .
— In— —»/C
{ 1-— Qg

In(1/a?)

wp

|

Fig. 4. The saturation line in the logarithmic plane. With Pomeron loops included
the evolution for determining the amplitude in the linear regime is restricted be-
tween the saturation and the critical line (see Sec. 5).

0 In1/r?A?

For specifying the leading behavior of ()s the detailed implementation
of the boundary should not be crucial since the diffusion mechanism in the
BFKL equation is an important but subdominant effect. Furthermore, we
expect that the physics for momenta around g line should be determined
by Qs itself, otherwise our whole approach to the small-x problem would not
be very meaningful. Thus at the moment we will let & — «(Qs) and under
this replacement it is obvious that any scheme (as introduced in Sec. 2) will
lead to the same answer. Therefore we shall write our linear equation as

ar 1
oY Pps

x(1 +ap)Ta (13)

with the obvious notation ps = In Q2/ A?QCD and the task is to find the line
ps(Y) along which the amplitude T is constant. There are four straightfor-
ward steps that we take: (i) we change variable from p to z = p — ps(Y),
(i) we expand the function y around the point ~s which is not known yet,
(7ii) on the Lh.s. of Eq. (13) we set the derivative of the amplitude w.r.t. ¥
equal to zero and, (i) we set the constant term and the coefficient of 0,
on the r.h.s. equal to zero. This last condition gives rise to two equations
which determine both the anomalous dimension s and the saturation mo-
mentum Qg(Y"). It is not hard to find that the leading Y-dependence of the
saturation momentum is |3, 14-16]

QY) = Mip exp [\/ 2XONe (g (14)

31 — )
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with Yy an integration constant and where the anomalous dimension is
given by

X(9s) + (1= )X (1 —7) = 0= 75 = 0.372, (15)

which also leads to x(7s)/(1 —vs) = 4.88. The form of the amplitude will
be given shortly. We notice that, as a consequence of BFKL dynamics,
7s is a pure number. This number is smaller than yp = 1/2 which is the
anomalous dimension corresponding to the line of fastest increase in the
(p,Y) plane (i.e. the Pomeron intercept line), a fact which one could have
anticipated by inspection of Fig. 4.

A couple of comments should be made with respect to the behavior
of the saturation momentum. The first is that it increases slower than in
the fixed coupling analysis (recall that in the latter scenario the increase
is exponential in Y [14,15]). This is natural since the system evolves to
higher rapidities along the saturation line; thus the momentum scale in-
creases and the coupling decreases. We should perhaps mention here that
Eq. (14) is locally consistent with the fixed coupling result; indeed we have
dln(Qg/AéCD)/dY = [x(7s)/(1—s)]@(Q?). The second observation is that
at very high energies ()5 becomes the same for every hadron. For example
in a large nucleus with atomic number A one expects an enhancement of the
saturation momentum by a factor of A3, For not too high rapidities this
is true, but this A-dependence which is hidden in the integration constant
Yy, becomes a subdominant effect for Y > Y.

Now we would like to go one step beyond and calculate the first pre-
asymptotic correction to the saturation momentum given in Eq. 14). To this
end, we need to expand any running coupling appearing in the nonlinear
equation as

1 z
Bos  Bp2’

Since different schemes correspond to different arguments of the running
coupling, it is obvious that they will lead to different equations due to the
second term of the expansion in Eq. (16). Still, one can show that also the
first correction to Qs is scheme-independent [34]. Choosing a scheme, e.qg.
the B-scheme where it is a bit easier to perform the calculation, we need
to solve (approximately) a second order partial differential equation with
Y -dependent boundary conditions. We find that the saturation momentum
now reads [15, 16|

a(p) = (16)

QY) = Myepexp [\/ AT (v v - B iyl an
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while the scattering amplitude for the dipole-hadron scattering for z > 0
(that is for dipoles such that r < 1/Qs) reads [15,16]

T ) = + %) exp =1 =202 A (i + e ) - (09

where A = {[X"(7)]?N./[273(1 — v)x(7s)]}/¢ with x"(vs) = 48.5, ¢ is
a constant of order O(1) and Y is an integration constant which we will
occasionally neglect from now on. Since the effect of the nonlinear term is to
cut contribution coming from momenta smaller than (), it is not surprising
that the correction to g leads to an overall slower increase.

Now we notice in Eq. (18) that within a distance ~ Y/ (in logarithmic
units) above the saturation line the amplitude becomes a function of a sin-
gle variable z = In1/72Q?. More precisely, by letting r — 1/Q (just for
illustration), the amplitude reads

Q2 1—7s 2
T = (Q—;> <1n@ —|—c> , (19)

and we recognize the scaling form of the amplitude of the fixed coupling
analysis, except that now () is different. It is important to realize that the
scaling phenomenon persists even for momenta above (Js, even though the
diffusion radius, and therefore the region of validity of the scaling form, is
now ~ Y1/6 which is much smaller than the fixed coupling one (~ v/Y).
The good thing about the smaller diffusion radius is that the evolution is
less sensitive to ultraviolet contributions and therefore it is easier to perform
a numerical study of the nonlinear equation. One should mention here that
this scaling behavior is consistent with the interpretation of the small-x data
in electron—proton deep inelastic scattering [13|, and, since there is no way
to get geometrical scaling from the DGLAP equations, there is a hint that
BFKL dynamics and saturation may have been observed.

Now one may ask the question what happens in the full NLO calculation.
As we have done so far in this Section, let us consider NLO BFKL dynamics
(for an introduction see [35]) together with the appropriate boundary con-
ditions. The problem is that the NLO kernel is unstable as one can see in
Fig. 5; while the leading eigenvalue is positive, the NLO correction is neg-
ative and dominates®. What happens is that the higher order corrections
of the BFKL kernel do not behave properly in the collinear limit, and such
collinear contributions should be resummed to all orders in the resummed
perturbation theory [35]. Collinear physics is described by the DGLAP

6 In fact this is true for real . The saddle point in the NLO case occurs at complex
values of v leading to nonphysical oscillating cross-sections.
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equations, and therefore one should ensure that the resummed BFKL ker-
nel matches with DGLAP in the limits v — 0, 1. If we neglect quarks, the
matching condition reads

Xr(7 = 0) = 1/5" (20)

and similarly for v = 1. Eq. (20) is simply equivalent to the energy conser-
vation condition

vy(1)=0  with ~(w)= /dz 2% Pyg(w), (21)
with Pyg(w) the gluon-gluon splitting function of the DGLAP equations.
We shall not elaborate more into this, but simply say that the resummed

kernel does not show any pathologies.

Xo(7) 0 17

4log2

0 1/2 17 Xo(7)+asxi(7)

Fig.5. The characteristic function of the BFKL kernel as a function of the real
part of v at leading order (left) and at next to leading order (right).

/\S All with running coupling
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’ ¢ : L BFKL + boundary
d: L RG BFKL + boundary
b e : NL RG BFKL + boundary

0.6 ’
0,4¥
<

02r
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Fig. 6. The logarithmic derivative of the saturation momentum A =
dIn(Q?/ AéCD) /dY as a function of rapidity Y for various kernels. Line-c corre-

sponds to the running coupling result given in Eq. (17) and line-e to the collinearly
resummed NLO result.
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Due to the complicated form of the resummed NLO kernel it is im-
possible to give an analytic expression for the saturation momentum. One
observation is that at very high rapidity the full NLO result converges to the
leading order result with running coupling [36], since the coupling along Qs
decreases. Defining the logarithmic derivative of the saturation momentum
s = dIn(Q?/ A?QCD) /dY we easily find from the analytic expression (17)
that a typical value for Y ~ 10 is As ~ 0.4. Taking into account the NLO
corrections we indeed find a correction of order of O(«a) ~ 30%, as one would
estimate, and therefore As ~ 0.3 as exhibited in Fig. 6 [36]. This is also what
the fits based on QCD inspired saturation models give [11-13].

5. Running coupling versus Pomeron loop effects

Now we turn our attention to another type of corrections to the nonlinear
equation. In order to motivate the introduction of these corrections, let us
discuss some problems of the leading order evolution.

(7) The first problem is the extreme sensitivity to the ultraviolet. To un-
derstand the issue assume the coupling to be fixed and that we have evolved
our system from zero rapidity up to rapidity Y and we know the solution
T(r,Y). Now we try to reconstruct this solution by doing two (or more)
global evolution steps; we evolve from zero to, say, Y/2 to obtain T'(r,Y/2)
and then considering T'(r,Y/2) as an initial distribution we can evolve up
to rapidity Y to get T'(r,Y). We find that the solution obtained from this
procedure agrees with the one obtained from the single global evolution
step, only if we include (at least) the contribution from all dipoles such that
In1/r2Q? < /DsY in the initial condition at Y/2, with D, = 2ax” (V).
There is no reason to cut the dipoles that lie outside the diffusion radius
v DY, but this algorithm reveals the width of phase space which is impor-
tant for a self-consistent solution. The situation is quite embarrassing; with
increasing Y, the phase space opens up to smaller and smaller dipoles, and
the big numerical value of the coefficient Ds makes the problem even worse.
For instance, when one finds the saturation momentum to be a few GeV,
at the same time one is sensitive to dipoles of inverse size a few orders of
magnitudes above. This explains why in the numerical solutions, to both
the BK and the JIMWLK equation, one had to go very far to the ultravi-
olet in order to obtain a reasonably accurate solution [10]. In the running
coupling case the situation is better, since the coupling decreases at higher
momenta and thus the effects of these seemingly non-physical contributions
are reduced. Indeed, as we saw in Sec. 4, the diffusion radius increases much
slower, more precisely is proportional to Y1/, We shall come back to this
later in this section.
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(#7) The second problem is the violation of unitarity. Say we want to
calculate the amplitude close to, but above, the saturation line in the two
ways we described in the previous paragraph. We have

1
1>c=T~ 5 TT, (22)

with T, and T}, denoting the contributions of the two successive steps. It
is clear that for T, < o the above equation imposes that the second step
satisfy Ty, > 1. Thus, all the paths going through the region to the right
of the critical line in Fig. 4 violate unitarity in the intermediate steps [21].
Returning to the problem we discussed in (), and noticing that the diffusion
radius extends to the region where the amplitude can be much smaller than
o?, we see that these contributions from the ultraviolet region must be indeed
non-physical.

(#i1) The successive emissions in the BFKL evolution lead to the forma-
tion of gluon cascades inside the hadron wavefunction. The nonlinear term
in the BK equation corresponds to the merging of such cascades. Then one
may wonder how could we have many of these (necessary for saturation)
cascades. Onme possibility is that we have a large nucleus where there are
many valence quarks and antiquarks and which serve as the sources for the
generation of the gluon cascades. But of course, this is just a particular
initial condition and it does not offer the dynamical solution to the prob-
lem. One needs to find how QCD gives rise to the increase in the number of
cascades and then one can start, for example, even from a single bare dipole
and end up with a fully saturated wavefunction. We complete the theory
by including the diagrams which were “forgotten” [23| and which lead to the
splitting of cascades. Such diagrams become important in the region 7' ~ o
as needed in order to automatically solve the two problems presented in (1)
and (77). Since now we have both splitting and merging of cascades, we
speak about loops of cascades, or loops of Pomerons.

Let us now estimate the effect of these loops of Pomerons in the satu-
ration momentum (s and the form of the amplitude around @s. For the
moment we assume the coupling to be fixed. Since unphysical ultravio-
let paths need to be cut, we will solve the BFKL equation with two ab-
sorptive boundaries, one in the infrared and one in the ultraviolet. Let
A = (In1/a?)/(1 — ~s) be the distance between the two boundaries in the
logarithmic (p,Y') plane, where, by definition, within A the amplitude drops
from a value of order O(1) to a value O(a?). As usual, we make a change
of variables from p to z = p — ps(Y') and look for a Y-independent solution
to the BFKL solution. It has to obey

[X(l + 82) = As 82] T(Z) =0, (23)
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where we recall A\s = dps/dY. The real combination of solutions which
satisfies the boundary conditions is given by

T(z) ~expl—=(1—w)e) sin =2, %=, (24)

where v, and ~; are the real and imaginary parts of v. (We note that, in
contrast to the single boundary problem, this solution does not correspond
to any saddle point in the BFKL equation.) For a given value of «, and
therefore of A or ~;, the real part +. and the “intercept” Ag are uniquely
fixed by

A ——-5£1% with  Im(\s) = 0. (25)

After we solve numerically the above transcendental equation, both the en-
ergy dependence of the saturation momentum and the amplitude are deter-
mined. In case the boundary separation is extremely large, or equivalently
the coupling « is extremely small, Eq. (25) leads to

A ] 21_ S " S
A x(w) _m ?xh)' (26)
a 1 — 21n° a2

Notice that the relative correction is proportional to 1/Rgff with Reg ~
In 1/c the effective transverse space for evolution, a feature which is true in
general”.

The scaling behavior of the amplitude as given in Eq. (24) will not per-
sist at very high values of rapidity because our system becomes stochastic.
Pomeron loops modify the evolution in the region where the amplitude T
is of order of O(a?) or equivalently the target hadron dipole density is of
order O(1). In this low-density regime fluctuations become important and
they lead to stochasticity. Thus different events lead to different profiles of
the scattering amplitude as a function of 72 and at a given fixed rapidity
Y [22]. These profiles are of the same form but shifted with respect to each
other according to a probability density, which at a first approximation can
be taken as a Gaussian with a width proportional to v/Y". It is the averaging
over all the events which leads to the violation of geometrical scaling. At
this point it is useful to realize that the BK equation is deterministic and it
corresponds to a Mean Field Approximation.

So now we are ready to reach our final goal. Both running coupling
effects and Pomeron loop effects seem to be important and for practical
purposes one cannot really rely on the leading order (fixed coupling) BK

" For example one can easily check that this property holds in the running coupling
expression (17), with Reg ~ Y'/% being the diffusion radius.
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equation. Given the fact that there are no QCD evolution equations which
include both effects, we are naturally forced to look if one of the two ef-
fects dominates. A first simple estimate seems to favor the Pomeron loops
since, as we have just seen, they induce corrections which are of order of
O(1/1n? @), while running coupling corrections are a part of NLO correc-
tions® which induce corrections of order of O(a). However, instead of these
simple estimates, one would like to have a better control on such issues, for
example by performing numerical solutions. This becomes a crucial issue,
since the outcome will turn out to be not the expected one, that is, running
coupling effects dominate the evolution.

Since we do not know the full effective theory, one way to proceed is to
construct a model which contains both types of corrections, satisfies basic
properties and principles of small-z evolution (such as Lorentz invariance,
emission of a single gluon under a step dY in rapidity, saturation of the
emission rate at high gluon density, ...) and is simple enough to be solved
numerically. Such a model has been constructed [28], and in the following
we compare the results obtained from the numerical analysis of this model
when (7) both Pomeron loop and running coupling effects are included and
(7i) only running coupling effects are included. In the left panel in Fig. 7
we show the corresponding results for the logarithm of the saturation mo-
mentum In Q2/ A?QCD as a function of rapidity Y, and we see that there is
no difference between the two cases up to super-high values of the rapid-
ity. In the right panel in Fig. 7 we show the corresponding results for the
“reduced” amplitude, i.e. the amplitude without its dominant exponential
scaling behavior, as a function of the logarithmic distance from the satura-
tion line, i.e. as a function of In1/r2Q2? = p — ps. Again we see that the
difference between the two cases is tiny for all considered values of rapidity.
Notice also that variations of the particular model were considered and still
there was no change in the outcome?. Therefore we arrive at the conclusion
that up to very high values of rapidity, the evolution with both Pomeron
loop and running coupling effects included is practically the same to the
one where only running coupling effects are taken into account. This is a
highly nontrivial statement since, for the same initial conditions, in a fixed
coupling treatment the numerical solutions show that the Pomeron loops
strongly modify the results of the BK equation [37].

So now it becomes natural to try to explain why the running coupling
effects dominate the evolution. Let us compare the corrections induced by
the Pomeron loops and the running coupling in the saturation exponent As.
When Pomeron loops are considered the correction is dAs/As ~ 1/R%;, with

8 This is a bit naive estimate since bubble diagrams have been resummed to all orders.
® We mention that slightly asymmetric initial conditions, mostly resembling virtual
photon—hadron scattering, were used.
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Fig. 7. Left: The logarithm of the saturation momentum with Pomeron loops (PL)
included and in the Mean Field Approximation (MFA) for various values of the
B-function. One cannot distinguish between the two cases for the two largest val-
ues of 3. Right: The reduced amplitude as a function of the logarithmic distance
from the saturation line with Pomeron loops included and in the Mean Field Ap-
proximation.

the effective transverse space for evolution being the distance between the
two boundaries; Reg ~ Inl/c. When running coupling effects are consid-
ered the relative correction is again dAs/As ~ 1/R2%, but now the effective
transverse space for evolution is the diffusion radius; Reg ~ Y/6. So, as said
earlier, it seems that loops of Pomerons might be more important. However
the diffusion radius grows very slowly with rapidity'®, and what happens in
practice is that there is not enough longitudinal space to become equal to
(or greater than) the two-boundary width.

We might say that the final outcome is very fortunate, since the analysis
of the BK equation (even in its running coupling version) which is determin-
istic, is much easier than the analysis of the Pomeron loop equations which
represent a stochastic evolution.

I would like to thank the organizer Christophe Royon for the invitation
to lecture at the summer school. Diagrams in Figs. 2 and 3 were made with
JaxoDraw |38|.

REFERENCES

[1] L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976); E.A. Kuraev, L.N. Lipatov,
V.S. Fadin, Sov. Phys. JETP 45, 199 (1977); Ya.Ya. Balitsky, L.N. Lipatov,
Sov. J. Nucl. Phys. 28, 822 (1978).

10 In contrast to the fixed coupling dynamics where the diffusion radius increases like
VY and furthermore is enhanced by a big numerical coefficient.



2306 D.N. TRIANTAFYLLOPOULOS

[2] A.H. Mueller, Nucl. Phys. B415, 373 (1994).

[3] L.V. Gribov, EM. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983).
[4] 1. Balitsky, Nucl. Phys. B463, 99 (1996).

[5] Yu.V. Kovchegov, Phys. Rev. D60, 034008 (1999).

[6] J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Nucl. Phys. B504,
415 (1997); Phys. Rev. D59, 014014 (1999).

[7] 1. Balitsky, hep-ph/0101042.

[8] E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A692, 583 (2001); E. Fer-
reiro, E. Tancu, A. Leonidov, L. McLerran, Nucl. Phys. AT03, 489 (2002).

[9] H. Weigert, Nucl. Phys. A703, 823 (2002).
[10] K. Rummukainen, H. Weigert, Nucl. Phys. A739, 183 (2004).
[11] K. Golec-Biernat, M. Wiisthoff, Phys. Rev. D59, 014017 (1999).
[12] E. Iancu, K. Itakura, S. Munier, Phys. Lett. B590, 199 (2004).
[13] A.M. Stasto, K. Golec-Biernat, J. Kwieciniski, Phys. Rev. Lett. 86, 596 (2001).
[14] E. Iancu, K. Itakura, L. McLerran, Nucl. Phys. A708, 327 (2002).
[15] A.H. Mueller, D.N. Triantafyllopoulos, Nucl. Phys. B640, 331 (2002).
[16] S. Munier, R. Peschanski, Phys. Rev. D69, 034008 (2004).
[17] Yu.V. Kovchegov, J. Jalilian-Marian, Prog. Part. Nucl. Phys. 56, 104 (2006).
[18] A.H. Mueller, H. Navelet, Nucl. Phys. B282, 727 (1987).
[19] C. Marquet, C. Royon, Nucl. Phys. B739, 131 (2006).

[20] E. Iancu, M.S. Kugeratski, D.N. Triantafyllopoulos, Nucl. Phys. A808, 95
(2008) [arXiv:0802.0343 [hep-ph].

[21] A.H. Mueller, A.1. Shoshi, Nucl. Phys. B692, 175 (2004).
[22] E. Iancu, A.H. Mueller, S. Munier, Phys. Lett. B606, 342 (2005).

[23] E. Iancu, D.N. Triantafyllopoulos, Nucl. Phys. A756, 419 (2005); Phys. Lett.
B610, 253 (2005).

[24] A. Kovner, M. Lublinsky, Phys. Rev. D71, 085004 (2005).
[25] Yu.V. Kovchegov, H. Weigert, Nucl. Phys. A784, 188 (2007).
[26] 1. Balitsky, Phys. Rev. D75, 014001 (2007).

[27] 1. Balitsky, G.A. Chirilli, Phys. Rev. D77, 014019 (2008).

[28] A. Dumitru, E. Iancu, L. Portugal, G. Soyez, D.N. Triantafyllopoulos, J. High
Energy Phys. 0708, 062 (2007).

[29] A.H. Mueller, hep-ph/0111244.

[30] E. Iancu, R. Venugopalan, hep-ph/0303204.

[31] H. Weigert, Prog. Part. Nucl. Phys. 55, 461 (2005).

[32] D.N. Triantafyllopoulos, Acta Phys. Pol. B 36, 3593 (2005).

[33] J.R. Forshaw, D.A. Ross, Cambridge Lect. Notes Phys. 9, 1 (1997).
[34] G. Beuf, R. Peschanski, Phys. Rev. D75, 114001 (2007).

[35] G.P. Salam, Acta Phys. Pol. B 30, 3679 (1999).

[36] D.N. Triantafyllopoulos, Nucl. Phys. B648, 293 (2003).

[37] G. Soyez, Phys. Rev. D72, 016007 (2005).

[38] D. Binosi, L. Theussl, Comput. Phys. Commun. 161, 76 (2004).



