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DIFFRACTION AT HERA∗
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The article gives an introduction into deeply inelastic scattering (DIS)
at the electron–proton collider HERA and into diffraction in high-energy
particle scattering. Selected results on exclusive vectormesons and on
deeply-virtual Compton scattering (DVCS) at HERA are presented. An
overview is given on results from inclusive diffractive reactions and from
exclusive diffractive reactions with jets or heavy quarks in the final state.
Possible descriptions of the results in the framework of Regge phenomenol-
ogy or by perturbative QCD models are discussed.

PACS numbers: 13.60.Hb, 13.60.Le

1. Diffraction in high energy particle scattering

In high energy particle scattering, interactions are mediated by the ex-
change of particles between the scattering partners. Regge theory [1], and
in a wider sense Regge phenomenology [2], provides a framework for the
successful description of many peripheral high-energy hadronic reactions.
Conceptionally the most simple peripheral diffractive process is elastic scat-
tering. In Regge theory a new, hypothetical object, the pomeron (IP ) [3],
has been introduced as the exchanged object to describe elastic scattering,
in particular the rise of the cross-section with center-of-mass-energy. The
pomeron carries the quantum numbers of the vacuum with the exception of
spin. If the pomeron transfers enough energy one partner or both may disso-
ciate into a multi-particle state giving rise to inelastic diffractive reactions.
The possible reactions are visualised in Fig. 1.

Fig. 1. Diffractive scattering by Pomeron exchange showing from left to right:

elastic scattering, single dissociative diffraction, double dissociative diffraction, two

Pomeron-exchange diffraction.
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2. Kinematics of deep inelastic scattering

and diffractive deep inelastic scattering

In deep-inelastic electron–proton scattering (DIS) at the HERA col-
lider [4], we are dealing with the process which is sketched in Fig. 2. The
word electron is further used generically for electrons and positrons. The
incoming electron emits a virtual photon which interacts with one of the
quarks in the proton. The struck quark receives a transverse momentum and
separates from the remnant of the proton. A colour string stretches between
them. Finally, the colour string breaks up and the system of the proton rem-
nant, the struck quark, and the colour string fragments into hadrons which
fill the region between the initial proton direction and the struck quark direc-
tion. The kinematics of inclusive DIS is described by the following variables:

s=(k + p)2 : center-of-mass-energy squared of the electron–proton system

Q2=−q2 =−(k−k′)2: negative momentum transfer squared at the electron vertex

W 2 =M2
h =(p+q)2 : cms energy of the virtual photon and the proton,

mass of the hadronic system in the final state

x =
Q2

2p · q
: the fraction of the proton momentum carried

by the struck quark

y =
p · q

p · k
: fraction of the electron momentum transferred to

the proton in its rest system

These variables are not all independent. They are connected by the relation
Q2 = x · y · s.

Fig. 2. Diagram for inclusive deep inelastic electron–proton scattering.

In diffractive scattering, the virtual photon interacts with a pomeron, as
shown in Fig. 3. The proton remains intact or dissociates into a low-mass
hadronic system N. The virtual photon and the pomeron form a hadronic
system X. Because the systems X and p(N) are not connected by a coloured
string the hadronic system X is well separated from the proton. This leads
to a gap in (pseudo)rapidity, η = − ln tan(Θ/2), between the p(N) and the
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Fig. 3. Diagram for inclusive diffractive electron–proton scattering.

system X. Here Θ is the angle between the proton direction, called forward,
and the first detected particle from the system X. Additional variables are
needed to describe diffractive scattering:

MX : mass of the diffractively produced hadronic system X,

t = (p − p′)2 : four momentum transfer squared at the proton vertex,

xIP= (p−p′)·q
p·q

=
M2

X
+Q2

W 2+Q2 : fraction of the proton momentum carried

by the exchanged pomeron,

β = Q2

2(p−p′)·q = Q2

M2

X
+Q2

:= x
xIP

: momentum fraction of the pomeron that is involved

in the hard scattering.

3. Regge phenomenology versus perturbative QCD

Hadronic reactions in peripheral processes have been studied extensively
and can be described in the framework of Regge phenomenology. In Regge
theory, the exchanged object between the target proton and the incoming
projectile is a Regge trajectory, also called a Reggeon. A Regge trajec-
tory describes the exchange of a system of generalised particles with con-
tinuous spin but otherwise the same quantum numbers. Trajectories are
parametrised to be linear

αIR(t) = αIR(0) + α′ t .

All the trajectories, on which known particles lie, have an intercept αIR(0)
smaller than one. This has the consequence that their contribution to the
total cross-section falls with energy. It is an experimental fact that at high
energies the total hadronic cross-sections rise with energy because they in-
clude the elastic process described by pomeron exchange. At high enough
energies, this pomeron contribution will dominate. Diffractive reactions are
mediated by the pomeron trajectory. Their cross-sections are given by:
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dσ

dt
∝ eb(W ) t

(

W

W0

)4(αIP (t)−1)

, σtot ∝

(

W

W0

)2(αIP (0)−1)

with b(W ) = b0 + 4α′ ln

(

W

W0

)

.

In DIS, W is the center-of-mass-energy of the virtual photon plus the pro-
ton. From the analyses of many peripheral hadronic processes the pomeron
trajectory was found to be [5]:

αIP (t) = 1.08 + 0.25 t .

The predictions from Regge theory for soft diffractive processes are
a power-law behaviour of the total diffractive γ∗–p cross-section as σ(W ) ∝
W δ with an exponential drop of the differential cross-section as a function
of t, (note: t is negative), with an increasing slope, b(W ), as W increases.
This last fact is called shrinkage.

Diffractive deep-inelastic scattering at high photon-virtualities, Q2, (hard
diffraction) is expected to be described by perturbative QCD because high
Q2 provides a hard scale. This can be conveniently formulated in terms of
the colour-dipole picture. The virtual photon splits into a quark–antiquark
pair at an early time before the interaction and the quark–antiquark pair
interacts with the proton as shown in Fig. 4. In the simplest approach the
interaction takes place by the exchange of two gluons which form a colour
singlet. In the next order, the quark–antiquark pair radiates a gluon to
which one of the exchanged gluons couples. This is sketched in Fig. 5.

Fig. 4. Diffractive DIS in the colour-dipole picture.

In higher orders of pQCD, the exchanged gluon system is commonly
treated as a BFKL-type ladder [6]. In the colour-dipole picture, the trans-
verse separation of the q and the q̄, r, is given by the virtuality Q2, the
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quark mass mq, and the momentum fractions z and (1−z) of the quark and
antiquark, respectively:

r ∝
1

z(1 − z)Q2 + m2
q

.

Various pQCD inspired models exist for the hard diffractive-scattering. All
these models predict little or no shrinkage.

+

higher orders

+

Fig. 5. Diffractive DIS in the colour-dipole model in pQCD.

4. Exclusive vector-meson production

Exclusive vector-meson production is a diffractive process and has been
studied extensively. The vector-meson dominance model (VMD) [7] plus
Regge theory provide a framework in which exclusive vector-meson produc-
tion is understood as a quasi-elastic scattering where the incoming vector
meson is off mass shell. The situation is graphically shown in Fig. 6. In
pQCD, exclusive vector-meson production in the colour-dipole picture pro-
ceeds according to Fig. 7. Perturbative QCD is expected to be applicable
when the transverse dimension, r, of the quark–antiquark system gets small.
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*γ

Fig. 6. Exclusive vector-meson production in the VMD-Regge framework.

This happens when either Q2 or mq get big. Perturbative QCD models pre-
dict a rise of the cross-section like σ(W ) ∝ W δ with δ ≈ 0.8 which is faster
than expected from Regge theory. The slope of the t distribution is pre-
dicted to be b ≈ 4GeV−2 and α′ ≈ 0. This means no or little shrinkage.
The conditions under which exclusive vector-meson production is a hard
diffractive process that can be described by pQCD models, will be investi-
gated in the rest of this section.

γ

Fig. 7. Exclusive vector-meson production as a pQCD process.

4.1. Can the vector-meson mass be a hard scale?

Data from photoproduction at HERA permit to test the behaviour of
exclusive vector-meson production as a function of the meson mass because
Q2 = 0. Fig. 8 shows the cross-sections for photoproduction of ρ, ω, φ, J/Ψ ,
Ψ(2S), and Υ as functions of W [8–13]. The lines through the data points
are only to guide the eye and are not fit results. The W -dependence of the
light vector-mesons (ρ, ω, φ) can be described by a slope δ ≈ 0.22 in agree-
ment with Regge phenomenology. For higher vector-meson masses, the rise
with W gets steeper. This indicates the onset of hard diffraction. Therefore,
exclusive production of J/Ψ mesons should be described by pQCD model
calculations already from Q2 = 0 on. In Fig. 9 the photoproduction cross-
section for J/Ψ mesons as a function of W is compared to pQCD model cal-
culations [14]. These calculations are able to describe the data qualitatively.
Perturbative QCD models predict little or no shrinkage. Fig. 10 shows mea-
surements of slope parameters, b, for photoproduction of ρ mesons at differ-
ent W values. From these measurements one extracts α′ = 0.3± 0.4GeV−2.
Within the large uncertainty this is compatible with the value of 0.25 ex-
pected for soft processes. For the photoproduction of J/Ψ -mesons the same
is shown in Fig. 11. Here one finds α′ = (0.164 ± 0.028 ± 0.030)GeV−2

which is smaller than 0.25. This again indicates that photoproduction of
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Fig. 8. Photoproduction cross-section for ρ, ω, φ, J/Ψ , Ψ(2S), and Υ .

J/Ψ mesons is not a soft process and the vector-meson mass can provide
a hard scale which makes pQCD applicable.

Fig. 9. Cross-section of J/Ψ photoproduction as a function of W compared to

pQCD models.
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Fig. 10. Slopes of the t dependence for photoproduction of ρ mesons.

Fig. 11. Slopes of the t dependence for photoproduction of J/Ψ mesons.

4.2. Can Q2 provide a hard scale?

The cross-section for exclusive production of ρ mesons at Q2 = 0 behaves
like σ(W ) ∝ (W/W0)

δ with δ = 0.22 as shown in section 5.1. Fig. 12 (left-
hand side) shows this cross-section as a function of W for higher values of
Q2 [15]. The exponent δ increases with Q2 as shown in Fig. 12 (right-hand
side). This indicates the transition from a soft process to hard one.

In Fig. 13(a), the cross-section for J/Ψ productions is shown as a function
of W for different Q2 [16]. The dependence on W hardly changes with Q2 and
already at Q2 = 0 the exponent δ is bigger than 0.22. The δ value for J/Ψ
production is approximately equal to the value for ρ production at high Q2.
Fig. 13(b) shows the cross-section for J/Ψ production as a function of Q2.
The data are well described by pQCD models [17,18] even from Q2 = 0 on.
These models use parton distributions derived from inclusive deep-inelastic
scattering (see section 6.7). The slope b of the t distribution is supposed
to change in a transition from the Regge regime to pQCD. Figs. 14 show
this slope as a function of Q2 for ρ and J/Ψ production. For ρ production,
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Fig. 12. Left: The W dependence of DIS ρ-production for different values of Q2.

Right: The slope δ of the W dependence of DIS ρ-production.

the t slope decreases with increasing Q2 to a value of about 4 as expected
from pQCD models. For J/Ψ production this slope is constant with Q2 at
the level of about 4 which reflects the fact that J/Ψ production is a hard
process from Q2 = 0 on. One concludes that the initially soft ρ-production
becomes a hard process with increasing Q2 whereas the J/Ψ production is
a hard process from Q2 = 0 on.
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Fig. 13. (a) The W dependence of DIS J/Ψ -production for different values of Q2.

(b) The Q2 dependence of DIS J/Ψ -production for different values of Q2. See the

text for the fits.
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Fig. 14. Left: The t-slope parameter b of DIS ρ-production as a function of Q2.

Right: The t-slope parameter b of DIS J/Ψ -production as a function of Q2.

4.3. Can t provide a hard scale?

In a similar way as the square of the momentum transfer from the elec-
tron to the vector-meson, Q2, leads eventually to a hard scale which justifies
the application of pQCD one would expect that also the square of the mo-
mentum transfer from the proton to the vector-meson, t, can serve as a hard
scale. To study this, photoproduction of vector-mesons at high |t| has been
investigated. Experimentally, this leads to a small complication. All studies
presented so far have been performed with data integrated over t. Since the
differential cross-section is exponentially falling with increasing |t|, mainly
very small |t| values dominate these data. At higher |t| values, it becomes
more and more likely that the proton will dissociate into a hadronic system.
At a low mass of the hadronic system N, e.g. N being a nuclear resonance,
the particles emerging from this system leave the detector under very small
angles through the beam pipe without being detected. These events cannot
be distinguished experimentally from events in which the proton stays intact.
At higher masses of N, some of the particles of the system N emerge with high
enough transverse momenta to be seen in the detector. These events can
be recognised and excluded from the dataset. Thus at higher |t| values, one
deals with a mixture of proton dissociative and non-dissociative events. At
very high |t| values, the proton-dissociative events finally dominate. In order
to draw conclusions from such event samples for the process of diffraction
one has to assume vertex factorisation, i.e. that the ratio σγp→ρN/σγp→ρp

depends only on MN, W , and t and not on Q2. Data on this ratio are shown
in Fig. 15. Within the experimental uncertainties, vertex factorisation holds.
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Fig. 15. The ratio of proton dissociative to proton non-dissociative cross-sections

for DIS ρ-production at t = −0.06 GeV2 and t = −0.22 GeV2 .

In Fig. 16, |t| distributions are shown for proton-dissociative photopro-
duction of ρ, φ, and J/Ψ mesons from ZEUS [19]. The data are well described
by fits of the form:

dσγp→V N

dt
∝ |t|−n .

Fig. 16. Differential cross-section as a function of t for proton dissociative photo-

production of ρ, Φ and J/Ψ mesons from the ZEUS experiment.
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The data are fitted to the form dσ/d|t| ∝ (−t)−n. The fit results for the
exponents are given in the figure. The data are compared to pQCD models
of Bartels et al. [20] and Ivanov et al. [21]. It follows from the above results
that also large |t| provides a hard scale.

4.4. The pomeron trajectory

Staying within the framework of Regge theory, the best way to determine
the pomeron trajectory is to extract αIP (t) from the W dependence of the
data in different t bins according to:

dσ

dt
∝ eb(W ) t

(

W

W0

)4(αIP (t)−1)

.

Fig. 17 shows the determined pomeron trajectories for photoproduction
of ρ, φ, and J/Ψ mesons as well as the one from DIS ρ-production. The
following trajectories are derived from the data:

Fig. 17. Pomeron trajectories derived from vector-meson production and soft

hadronic processes.

ρ photoproduction: αIP (t) = 1.10 + 0.13 t ,

φ photoproduction: αIP (t) = 1.08 + 0.16 t ,

DISρ production: αIP (t) = 1.14 + 0.04 t ,

J/Ψ photoproduction: αIP (t) = 1.20 + 0.12 t .
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The αIP (0) values of ρ- and φ-photoproduction are compatible with the
soft-pomeron trajectory. The αIP (0) values of DIS ρ- and J/Ψ -production
are definitely higher.

5. Inclusive deep-inelastic diffraction at HERA

In the Regge picture, inclusive deep-inelastic diffraction at HERA pro-
ceeds via the diagram shown in Fig. 18, where it is assumed that the pomeron
has a partonic structure, following the initial idea of [23]. The exchange of

e e’

p

MX

MY

rapidity gap

t

W
xIP

ß

Fig. 18. Schematic diagram for inclusive diffractive scattering in the Regge picture.

the colourless pomeron leads to a rapidity gap between the outgoing proton,
or the proton dissociative system N with a mass MN, and the diffractively
produced system X with mass MX. In pQCD, successful descriptions of
inclusive deep-inelastic diffraction are often formulated in the colour-dipole
picture as shown in Fig. 19.

e

e’

p

W

MX

M
Y

Fig. 19. Schematic diagram for inclusive diffractive scattering in the colour-dipole

picture.

5.1. Methods to measure inclusive diffraction

There is no unique definition of a cross-section for deep inelastic diffrac-
tive scattering. Different methods exist to select diffractive events. These
methods select samples which contain different fractions of proton disso-
ciative events. cross-sections are usually given without corrections for pro-
ton dissociation. A second problem originates from the fact that also non-
diffractive events may contain a rapidity gap due to the statistical nature
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of fragmentation or from the exchange of Reggeons. Such rapidity gaps are,
however, exponentially suppressed [22]. Different selection methods may
lead to different contributions of non-diffractive events to the selected sam-
ple. The following three selection methods have been used to select inclusive
diffractive events.

• Detection of the diffractively scattered proton.
The diffractively scattered protons are detected with specialised detec-
tor parts like silicon-strip detectors very close to the proton beam-line
between 20m and 90m away from the interaction point. Fig. 20 shows
a measured spectrum of the longitudinal momentum-fraction of the de-
tected proton w.r.t. the incoming proton, xL = 1−xIP . Clearly visible
is the diffractive peak around xL ≈ 1. Events at lower xL originate
from proton-dissociative diffraction and non-diffractive processes. The
detection of the diffractively scattered proton is the only method to
measure the t distribution of inclusive diffractive-reactions:

t =
−p2

T

xL
−

(1 − xL)2

xL
m2

p .

This method has the advantage of yielding a diffractive event sample
which is practically free of proton dissociation as long as xIP is below
0.01. At higher xIP values, Reggeon contributions and proton disso-
ciation may contribute. The disadvantage of the method is its small
acceptance and therefore a small number of selected events.
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Fig. 20. Fraction xL of the incoming proton momentum carried by the diffractively

scattered proton.

• The rapidity gap method.
The (pseudo)-rapidity of a particle in an event is defined as η =
− ln(tan(Θ/2), where Θ is the scattering angle of the particle w.r.t.
the incoming proton beam. An event-display picture of a diffractive
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DIS event recorded with the H1 detector is shown in Fig. 21. There is
a rapidity gap between the proton direction and the final state particle
detected under the smallest angle Θmin, respectively ηmax. Fig. 22 is

pe

Fig. 21. A diffractive event with a rapidity gap as seen in the H1 detector.

an example of a measured ηmax distribution from H1. Also shown in
the figure as a histogram is the contribution to the data from non-
diffractive events. The region below an ηmax value of about 2 is dom-
inated by diffractive events which show an almost constant behaviour
down to small ηmax values. Applying an ηmax cut is equivalent to re-
stricting the events to low xIP values because ∆η ≈ ln(1/xIP ), where
∆η is the size of the rapidity gap. This method has the advantage
of a large acceptance yielding high statistics data samples. It has the
disadvantage that the selected data sample contains, in certain kine-
matical regions, contributions from non-diffractive processes and from
proton-dissociation events.

mostly diffractive

max

Fig. 22. Measured ηmax distribution. Shown as a histogram is the expected contri-

bution from non-diffractive events as simulated by then LEPTO MC generator.
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• The Mx method.
This method exploits the difference in the shape of the invariant mass
distribution of the final state particles seen in the detector for non-
diffractive and diffractive events.

(i) In non-diffractive events, the particles are produced evenly dis-
tributed in rapidity y = 1/2 ln[(e + pz)/(e − pz)] between ymax and
ymin. The length of the rapidity plateau is given by the center of mass
energy which is W for virtual photon scattering:

lnW 2 ∝ ymax − ymin .

However, not all final state particles are seen in the detector. The ones
which are produced with y > ylimit escape through the forward beam-
hole, where ylimit is given by the end of the detector acceptance. The
particles seen in detector lead to an invariant mass Mx given by W .
Therefore

W 2 = c0 eymax−ymin and M2
x = c0 eylimit−ymin .

The value of Mx will fluctuate due to the finite probability that no
particles are emitted between ylimit and ylimit − ∆y. This generates
a rapidity gap also in non-diffractive events. The assumption of un-
correlated particle emission leads to a Poissonian rapidity gap distri-
bution, P (∆y) = e−λ∆y. This results in an exponential behaviour in
the ln M2

x distribution of non-diffractive events,

dN

d ln M2
x

= c eb ln M2
x .

The slope parameter b and the normalisation constant c can be deter-
mined from measured data.

(ii) For diffractive events, it is known from experiments that at not
too low Mx one gets

dN

dM2
x

∝
1

(M2
x)n

with n ≈ 1 or
dN

d ln M2
x

≈ const. = D .

This can also be derived from a triple-Regge model.

(iii) Measured event samples consist of non-diffractive and diffractive
events. This results in a ln M2

x distrubution of:

dN

d ln M2
x

= D + c eb ln M2
x .
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Fig. 23 shows a ln M2
x distrubution measured in the ZEUS experi-

ment for the kinematical region 40 < Q2 < 50GeV2 and 200 < W <
245GeV. The two components are clearly visible. Shown are also
MC simulations of the non-diffractive and the diffractive contributions.
The sum of the two contributions describe well the measured data.

1

10

10 2

10 3

lnMx
2

W= 200 - 245 GeV

Q2= 40 - 50 GeV2

E
ve

nt
s

ZEUS
Fit exp(c+b(lnMX
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2))

 Diffractive + non-diffractive events

Diffractive events
• DATA

Fig. 23. A measured lnM2
x distribution. Also shown are MC simulations of non-

diffractive events (cross hatched) and of diffractive events (hatched). The analytic

form of the distribution is fitted to the data between the two vertical lines and the

fitted slope of the non-diffractive part is shown as a dotted line.

(iv) The analytic form of the ln M2
x distribution is fitted to the mea-

sured distribution over the region indicated by the two vertical lines in
Fig. 23. For the fit, D is taken to be constant. The fitted parameters
are D, c and the exponential slope b. However, the diffractive contri-
bution is not taken as D but the fitted non-diffractive contribution,
as indicated by the dotted line in Fig. 23, is statistically subtracted
from the measured data. The advantage of the lnM2

x method is that
it removes non-diffractive background and that its acceptance is high.
Like the rapidity-gap method, the ln M2

x method allows contributions
from proton-dissociative events.

5.2. Diffractive cross-section and diffractive structure-functions

The differential cross-section for diffractive processes is given by:

d4σ

dQ2dtdxIP dβ
=

2παem

βQ2
[1 − (1 − y)2] · σD(4)

r (Q2, t, xIP , β) ,
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where the reduced cross-section σ
D(4)
r (Q2, t, xIP , β) is defined as:

σD(4)
r (Q2, t, xIP , β) = F

D(4)
2 (Q2, t, xIP , β) −

y2

1 + (1−y)2
F

D(4)
L (Q2, t, xIP , β) .

Here F
D(4)
2 and F

D(4)
L are the diffractive structure-functions in analogy to F2

and FL in inclusive deep-inelastic scattering. The longitudinal contribution
becomes sizable only at very high y values. If the variable t is not measured
but integrated over the cross-section is:

d3σ

dQ2dxIP dβ
=

2πα2
em

βQ4
[1 − (1 − y)2] · σD(3)

r (Q2, xIP , β) .

In diffractive deep-inelastic scattering, QCD factorisation of the following
form has been proven [24]:

σdiff ∝
∑

q

fdiff
q (Q2, t, xIP , β) · σ̂q .

Here fdiff
q (Q2, t, xIP , β) are universal diffractive parton-distributions and

σ̂q is the perturbatively calculable cross-sections for hard parton–parton
scattering. Another factorisation is commonly used in the picture where the
pomeron has a partonic sructure [23]. This is illustrated in Fig. 24. Neglect-

Fig. 24. Schematic picture of Regge factorization.

ing the longitudinal contribution, the diffractive cross-section is expressed
by a pomeron structure-function F IP

2 and a pomeron-flux factor which is
derived from the triple-Regge formalism:

σdiff ∝ fIP/p(t, xIP ) · F IP
2 (Q2, β) with fIP/p(t, xIP ) =

eB t

x
2α(t)−1
IP

.

This Regge factorization is an assumption. No proof exists for it.
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The data selected by the LRG method or by detecting the diffractively
scattered proton may contain contributions from Reggeon exchanges which
are non-diffractive. Therefore the results are fitted to a sum of a pomeron
and of a Reggeon contribution:

F
D(4)
2 (xIP , t, β,Q2) = fIP (xIP , t) · F IP

2 (β,Q2) + nIRfIR(xIP , t) · F IR
2 (β,Q2) .

For F IR
2 (β,Q2) the pion structure-function is used and the flux factors for

pomeron and Reggeon exchanges are parametrised as given in the previous
section. The fluxes are normalised according to xIP

∫ tmin

−1 fIP/IR(xIP , t) = 1 at

xIP = 0.003 with |tmin| ≈ m2
px

2
IP /(1−xIP ). The main fit results are F IP

2 (β,Q2)
and nIR, the relative normalisation of the Reggeon contribution. Other para-
maters, like αIP/IR(0), α′

IP/IR(0), BIP/IR are either also fitted or taken from

other measurements. The above described fitting procedure can be per-
formed as well if t has not been measured but averaged over. In this case
the flux factors are also averaged over t.

In a picture in which the pomeron has a partonic structure, F IP
2 (β,Q2)

can be interpreted as the pomeron structure-function, like F2(β,Q2) as the
proton structure-function. Analogously it can be expressed as a sum of
universal pomeron parton-distribution functions (pdf):

F IP
2 (β,Q2) =

∑

i

fD
i (β,Q2) ,

where i denotes the parton species: u, d, s, gluon and the respective anti-
partons. In pQCD, these pomeron pdfs should obey the DGLAP evolution.
DGLAP fits and Regge fits are usually carried out simultaneously.

5.3. Results from the proton detection method

The H1 and the ZEUS experiments both are equipped with detector
components very close to the proton beam at a distance of up to 90m
downstream of the experiment in proton direction: the forward proton spec-
trometer, FPS (H1), and the leading proton spectrometer, LPS (ZEUS).

These spectrometers detect protons at high xL. Results for xIP σ
D(3)
r from

H1 [25] are shown in Fig. 25 and for xIP F
D(4)
2 at two different t-values from

ZEUS [26] are presented in Fig. 26 as functions of xIP for different Q2 and β
values. In general, the data rise with decreasing xIP for xIP < 0.01. In both
experiments one sees a rise of the data at high xIP due to onset of Reggeon
contributions.
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Fig. 25. H1 FPS-results for xIP σ
D(3)
r . The full lines are the result of a combined

Regge- and DGLAP-fit, the dashed line is an extrapolation to non-measured re-

gions, the dotted lines are the Pomeron contributions only.

Fig. 26. ZEUS LPS results for xIP F
D(4)
2 at t = 0.13 GeV−2 and t = 0.3 GeV2. The

lines are the result of a combined Regge- and DGLAP-fit.
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5.4. Results from the large rapidity gap method

The results from the large rapidity-gap method for inclusive diffraction
from H1 [27] and ZEUS [26] are shown in Fig. 27 and Fig. 28.
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Fig. 27. Results for inclusive diffraction from H1 from the LRG method. The lines

are the result of a Regge fit.

The reduced cross-section, xIP σ
D(3)
r , or the diffractive structure-function,

xIP F
D(3)
2 , are displayed as functions of xIP for different values of Q2 and β.

The results from both experiments show qualitatively the same features.
For not too low β, they rise towards low xIP for xIP < 0.01. At higher xIP ,
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Fig. 28. Result for inclusive diffraction from ZEUS from the LRG method as a func-

tion of xIP for various β-values and for Q2 values from 2.5 GeV2 to 255 GeV2. The

lines are the result of a Regge fit.

they may rise again slightly which is due to Reggeon contributions. The H1
and ZEUS data agree in shape. A quantitative comparison has to take into
account the different contents of proton dissociation in the data.

5.5. H1 fits of the diffractive parton distributions

As explained in 6.2, under the assumption of Regge factorisation, one
can define universal diffractive parton-distributions (dpdf), fi. The H1 col-
laboration fitted the dpdfs to the following parametrisation at Q2

0:

zfi(z,Q2
0) = Aiz

Bi(1 − z)Ci e−
0.01
1−z .

Here z is the longitudinal momentum-fraction of the parton entering the
hard subprocess. For the lowest order quark–parton model process z = β,
for higher order processes 0 < β < z. The index i stands for the different
quark flavours and the gluon. For data with Q2 > 8.5GeV2 two different
fits were performed [27]:

• Fit A: Q2
0 = 1.75GeV2 and Bgluon was set to zero;

• Fit B: Q2
0 = 2.50GeV2 and Bgluon and Cgluon were set to zero.

Both fits gave similar results, except for the diffractive gluon-distribution at
lower Q2 and high z. Fig. 29 shows the results of the fits for the singlet and
gluon dpdfs.
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Fig. 29. Results of the H1 fits for the diffraction parton distributions.

5.6. Results from the ln M2
x-method and the BEKW(mod) fit

The ZEUS collaboration measured inclusive diffraction at HERA with
the ln M2

x -method [28]. Their results for xIP F
D(3)
2 as a function of xIP for

different Q2 and β values are given in Fig. 31. Also here, the clear rise of

xIP F
D(3)
2 with decreasing xIP is visible. The lines are the results of a modified

BEKW fit. The BEKW model [29] is a coloured-dipole model. The model
takes into account terms from transverse photons, (FT

qq̄), and longitudinal

photons, (FL
qq̄). In addition it contains a contribution, (FT

qq̄g), from the
splitting of the virtual photon in a qq̄g state which interacts with the photon.
These three terms are parametrized in the following way:

xIP F
D(3)
2 (β, xIP , Q2) = cT · FT

qq + cL · FL
qq + cg · F

T
qqg ,

where

FT
qq =

(

x0

xIP

)nT(Q2)

β(1 − β) ,

FL
qq =

(

x0

xIP

)nL(Q2) Q2
0

Q2 + Q2
0

[

ln

(

7

4
+

Q2

4βQ2
0

)]2

β3(1 − 2β)2 ,

FT
qqg =

(

x0

xIP

)ng(Q2)

ln

(

1 +
Q2

Q2
0

)

(1 − β)γ .
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For FL
qq, the term (Q2

0/Q
2) provided by BEKW was replaced by the factor

(Q2
0/(Q

2 + Q2
0)) to avoid problems as Q2 → 0. The powers nT,L,g(Q

2) were
assumed by BEKW to be of the form n(Q2)=n0+n1 ln[1+ln(Q2/Q2

0)]. The
present data suggested using the form n(Q2)=n0 + n1 ln(1 + Q2/Q2

0). This
modified BEKW form will be referred to as BEKW(mod). Taking x0 = 0.01
and Q2

0 = 0.4GeV2, the BEKW(mod) form gives a good description of the
data. According to the fit, the coefficients n0 can be set to zero, and the
coefficient n1 can be assumed to be the same for T, L and g. Fig. 30 shows

the measured xIP F
D(3)
2 values for Q2 = 25–320GeV2 at different β values

as a function of xIP . Also given are the transverse, longitudinal and qq̄g

contributions from the fit. For xIP = 0.01, the dependence of F
D(3)
2 on

β is shown in Fig. 31 for all Q2 values together with the BEKW(mod) fit
results. The data points from all Q2 values fall approximately on the same
curve. The broad maximum around β = 0.5 is explained by the transverse
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Fig. 30. ZEUS results for xIP F
D(3)
2 from the ln M2

x -method as a function of xIP at

various β-values for Q2-values from 2.7 GeV2 to 25 GeV2 (left) and from 35 GeV2 to

320 GeV2 (right). The lines are the result of a BEKW fit (see text). The solid line

is the sum of all contributions, the dashed line is the transverse qq̄ contribution,

the dotted line is the longitudinal qq̄ contribution, and the dashed-dotted line is

the qq̄g contribution.
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Fig. 31. ZEUS results for xIP F
D(3)
2 from the ln M2

x -method as a function of β at

xIP = 0.01 for Q2 values fron 25 GeV2 to 320 GeV2. The data are compared to the

results of the BEKW(mod) fit showing separately the different fit contributions.

contribution which reflects the β(1−β) behaviour of the qq̄ component. For
small β values the data start to rise rapidly which is explained by the rise of
the qq̄g contribution. The indication of a rise of the data towards very high
β may be explained by the onset of the longitudinal contribution.

In Fig. 32, the measured xIP F
D(3)
2 values are plotted as a function of

Q2 for xIP = 0.01 and different β values. The lines are the results of the
BEKW(mod) fit. One sees clearly a pattern of scaling violation similar to
that of the F2 in deep-inelastic scattering. The ZEUS data are compared to
the results from H1 measuered with the LRG method. For this comparison
the H1 binning has been chosen and only those data from ZEUS are shown
which could be translated to this binning with a correction of less than 20%.
There is fair agreement between the H1 and ZEUS data.
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different β values at xIP = 0.01 multiplied by powers of 3 for better visibility. The

curves show the results of the BEKW(mod) fit to the ZEUS data.

6. Semi-inclusive deep-inelastic diffraction at HERA

Semi-inclusive deep-inelastic diffractive reactions are a good testing
ground for the universality of diffractive parton-distributions derived from
inclusive diffractive reactions. So far the production of D∗ mesons and of
two jets in the final state of diffractive reactions have been studied.

The diffractive production of D∗(2010) mesons proceeds via the process
depicted in Fig. 33.

Fig. 33. Graphical presentation of the semi-inclusive diffractive D∗ production.
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The cc̄ quark-pair from the photon–gluon fusion forms the D∗ meson
which decays into D0π and successively into Kππ. The D∗ is detected as
a peak in the distribution of the mass difference M(Kππ) − M(Kπ) where
M(Kπ) is in the mass region of D0 meson, as shown in Fig. 34.

Fig. 34. The signal of the D∗(2010) in the spectrum of the mass difference

M(Kππ) − M(Kπ).

Fig. 35 shows results from ZEUS [30] for the semi-inclusive diffractive
D∗(2010) production for several differential cross-sections. The solid line is
a NLO QCD calculation for that process using diffractive parton-distributions
which have been determined from combined H1 and ZEUS data (ATCW
fit) [31]. The dashed line is a MC-simulation using the SATRAP generator
which is based on a colour-dipole model. The NLO QCD calculation is in fair
agreement with the data. This confirms the universality of the diffractive
parton-distributions.

The semi-inclusive diffrative DIS production of two jets takes place via
photon–gluon fusion and the produced quark and antiquark form a jet each.
Fig. 36 presents results of H1 [32] on differential cross-sections of diffractive
2-jet production. The data are compared to NLO QCD calculations using
the H1 fits A and B. The calculation describes reasonably well the data.
This is another confirmation of the universality of the diffractive parton-
distributions.

The measurements of semi-inclusive diffractive 2-jet production enable
a combined QCD fit of the diffractive parton-distributions using these results
together with the results for inclusive diffraction. Fig. 37 shows the combined
fits made by the H1 collaboration with their data at Q2 = 25GeV2 and
Q2 = 90GeV2. The singlet distribution-functions are hardly changed by
the combined fits. The additional 2-jet data have an impact on the gluon
distributions. The combined fit result is closer to the old H1 fit B.
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Fig. 35. Differential cross-sections for the semi-inclusive diffractive D∗(2010) pro-

duction. The solid line is a NLO QCD calculation for that process using diffractive

parton distribution functions which have been determined from combined H1 and

ZEUS data (ATCW fit). The dashed line is a MC-simulation using the SATRAP

generator which is based on a colour-dipole model.

Fig. 36. Differential cross-sections for the semi-inclusive 2-jet production from H1.

The data are compared to NLO QCD calculations using H1 fit A (dotted line) and

H1 fit B (dashed line).
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Fig. 37. QCD fits of diffractive singlet- and gluon-distributions using the combined

inclusive diffractive and semi-inclusive 2-jet data performed by the H1 collabora-

tion. The combined fit results are compared to the H1 fits A and B from inclusive

diffractive data alone.

7. Predictions from the HERA diffractive parton-distributions

for Tevatron data

The fact that predictions of semi-inclusive diffractive processes using
the diffractive parton-distributions from inclusive diffractive-processes are
in agreement with the data from HERA within the uncertainties raises the
question how universal such parton distributions are. Can one use them
to predict diffractive processes in proton-antiproton scattering? Diffractive
2-jet cross-sections have been measured at the Tevatron [33]. The main
contribution to this process proceeds according to the diagram shown in
Fig. 38. A gluon from the proton (antiproton) and a gluon originating from

Fig. 38. Schematic diagram of inclusive 2-jet production in p-p̄ collisions.

a pomeron emitted by the the antiproton (proton) collide and form two jets
with a rapidity gap in the event. This process is described by two structure
functions, one of which is a diffractive one:

σ(p̄p → p̄X) ∝ Fjj ⊗ FD
jj ⊗ σ̂(ab → jj).
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Fig. 39. Diffractive 2-jet production as a function of β measured by CDF at the

Tevatron compared to predictions based on H1 fit A and H1 fit B to HERA data.

A determination of FD
jj (β) by the CDF collaboration from Tevatron data

is presented in Fig. 39 together with the predictions based on the diffractive
parton-distributions from the H1 fit A and H1 fit B. The data are a factor
of 5 to 7 lower than the predictions. This is not unexpected because the
QCD factorisation has not been proven for hadron–hadron scattering. In dif-
fractive hadron–hadron scattering, interactions between the proton remnant
and the pomeron remnant can occur. Particles from such interactions can
fill the rapidity gap. This leads to a gap survival probability less than one.
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