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The forward electroproduction of two light vector mesons is the first
example of a collision process between strongly interacting colorless parti-
cles for which the amplitude can be written completely within perturbative
QCD in the Regge limit with next-to-leading accuracy. This amplitude can
be written as a convolution of two impact factors for the virtual photon
to light vector meson transition with the BFKL Green’s function. In this
lecture we first describe how the relevant impact factor is calculated, then
we perform the convolution with the BFKL Green’s function and illustrate
the numerical procedure to obtain a well-behaved amplitude.

PACS numbers: 12.38.Bx, 13.60.Le, 11.55.Jy

1. Introduction

In the BFKL approach [1], both in the leading logarithmic approximation
(LLA), which means resummation of leading energy logarithms, all terms
(αs ln(s))n, and in the next-to-leading approximation (NLA), which means
resummation of all terms αs(αs ln(s))n, the (imaginary part of the) ampli-
tude for a large-s hard collision process can be written as the convolution
of the Green’s function of two interacting Reggeized gluons with the impact
factors of the colliding particles (see, for example, Fig. 1).

The Green’s function is determined through the BFKL equation. The
NLA singlet kernel of the BFKL equation has been achieved in the forward
case [2], after the long program of calculation of the NLA corrections [3]
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Fig. 1. Schematic representation of the amplitude for the γ∗(p) γ∗(p′) →
V (p1)V (p2) forward scattering.

(for a review, see Ref. [4]). For the non-forward case the ingredients to the
NLA BFKL kernel have been known since a few years for the color octet
representation in the t-channel [5]. This color representation is very impor-
tant for the check of consistency of the s-channel unitarity with the gluon
reggeization, i.e. for the “bootstrap” [6, 7]. Recently there was completed
also the calculation of the non-forward NLA BFKL kernel in the singlet color
representation, i.e. in the Pomeron channel, relevant for physical applica-
tions [8].

On the other side, NLA impact factors have been calculated for colliding
partons [9, 10] and for forward jet production [11]. Among the impact fac-
tors for transitions between colorless objects, the most important one from
the phenomenological point of view is certainly the impact factor for the
virtual photon to virtual photon transition, i.e. the γ∗ → γ∗ impact factor,
since it would open the way to predictions of the γ∗γ∗ total cross section.
Its calculation is rather complicated and it was completed after year-long
efforts [12–14].

A considerable simplification can be gained if one considers instead the
impact factor for the transition from a virtual photon γ∗ to a light neutral
vector meson V = ρ0, ω, φ. In this case, indeed, a close analytical expres-
sion can be achieved in the NLA, up to contributions suppressed as inverse
powers of the photon virtuality [15]. In particular, it turns out that (a) the
dominant helicity amplitude is that for the transition from longitudinally
polarized virtual photon to longitudinally polarized vector meson; (b) the
impact factor, both in the LLA and in the NLA, factorizes into the convo-
lution of a hard scattering amplitude, calculable in perturbative QCD, and
a meson twist-2 distribution amplitude [15].

The knowledge of the γ∗ → V impact factor allows for the first time
to determine completely within perturbative QCD and with NLA accuracy
the amplitude of a physical process, the γ∗γ∗ → V V reaction [16, 17]. This
possibility is interesting first of all for theoretical reasons, since it can shed
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light on the role and the optimal choice of the energy scales entering the
BFKL approach. Moreover, it can be used as a test-ground for comparisons
with approaches different from BFKL, such as DGLAP, and with possible
next-to-leading order extensions of phenomenological models, such as color
dipole and kt-factorization. But it could be interesting also for the possible
applications to the phenomenology. Indeed, the calculation of the γ∗ → V
impact factor is the first step towards the application of BFKL approach
to the description of processes such as the vector meson electroproduction
γ∗p → V p, being carried out at the HERA collider, and the production of
two mesons in the photon collision, γ∗γ∗ → V V or γ∗γ → V J/Ψ , which can
be studied at high-energy e+e− and eγ colliders.

In this paper we concentrate on the NLA forward amplitude for the γ∗γ∗

→V V reaction (Sec. 2). Such a process has been studied in Ref. [18] in the
Born (two-gluon exchange) limit for arbitrary transverse momentum and,
for the forward case only, in Ref. [19] with LLA plus an estimate of NLA
effects1.

First of all, we show how the available results for the γ∗ → V impact
factor (Sec. 3) and the BFKL Green’s function can be put together to build
up the NLA amplitude of the γ∗γ∗ → V V process in the MS scheme (Sec. 4).
Then we restrict ourselves to the particular case of collision of virtual pho-
tons with equal virtualities and present some numerical estimates of our
result, aimed at showing the extent of the contributions to the NLA ampli-
tude from the impact factor and from the NLA kernel and the dependence
on the energy scale introduced in the BFKL approach and on the renormal-
ization scale which appears in the MS scheme. We show that, despite being
the NLA corrections large and of opposite sign with respect to the leading
order, it is possible to achieve a well-behaved form of the amplitude, by a
suitable choice of the energy and renormalization scale parameters (Sec. 5).

Then, we compare different procedures to optimize the perturbative re-
sult and different representations of the amplitude, in order to have an es-
timate of the systematic effects which underlie our determination (Sec. 6).
Finally, we calculate the differential cross section at the minimum squared
momentum transfer and compare it with the approach of Ref. [19] (Sec. 7).

The use in our approach of the BFKL kernel improved by the inclu-
sion of subleading terms generated by renormalization group analysis, which
has been suggested to cure the instabilities in the behavior of the BFKL
Green’s function in the next-to-leading approximation [21], has been stud-
ied in Ref. [22] and is presented in Ref. [23]. The use of such an improvement
has allowed for the numerical determination of the amplitude also in the case
of colliding photons with strongly ordered virtuality.

1 The QCD factorization properties of this amplitude have been studied in Ref. [20].
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2. The amplitude for the electroproduction of two light

vector mesons: kinematics and BFKL structure

We consider the production of two light vector mesons (V = ρ0, ω, φ) in
the collision of two virtual photons,

γ∗(p)γ∗(p′) → V (p1)V (p2) . (2.1)

Here, p1 and p2 are taken as Sudakov vectors satisfying p2
1 = p2

2 = 0 and
2(p1p2) = s; the virtual photon momenta are instead

p = αp1 −
Q2

1

αs
p2 , p′ = α′p2 −

Q2
2

α′s
p1 , (2.2)

so that the photon virtualities turn to be p2 = −Q2
1 and (p′)2 = −Q2

2. We
consider the kinematics when

s≫ Q2
1,2 ≫ Λ2

QCD , (2.3)

and

α = 1 +
Q2

2

s
+ O(s−2) , α′ = 1 +

Q2
1

s
+ O(s−2) . (2.4)

In this case vector mesons are produced by longitudinally polarized pho-
tons in the longitudinally polarized state [15]. Other helicity amplitudes are
power suppressed, with a suppression factor ∼ mV /Q1,2. We will discuss
here the amplitude of the forward scattering, i.e. when the transverse mo-
menta of produced V mesons are zero or when the variable t = (p1 − p)2

takes its maximal value t0 = −Q2
1Q

2
2/s + O(s−2).

The forward amplitude in the BFKL approach may be presented as fol-
lows

Ims (A) =
s

(2π)2

∫

d2~q1
~q 2
1

Φ1(~q1, s0)

∫

d2~q2
~q 2
2

Φ2(−~q2, s0) (2.5)

×
δ+i∞
∫

δ−i∞

dω

2πi

(

s

s0

)ω

Gω(~q1, ~q2) .

This representation for the amplitude is valid with NLA accuracy. Here
Φ1(~q1, s0) and Φ2(−~q2, s0) are the impact factors describing the transitions
γ∗(p) → V (p1) and γ∗(p′) → V (p2), respectively. The Green’s function
in (2.5) obeys the BFKL equation

δ2(~q1 − ~q2) = ωGω(~q1, ~q2) −
∫

d2~q K(~q1, ~q)Gω(~q, ~q2) , (2.6)
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whereK(~q1, ~q2) is the BFKL kernel. The scale s0 is artificial. It is introduced
in the BFKL approach at the time to perform the Mellin transform from
the s-space to the complex angular momentum plane and must disappear in
the full expression for the amplitude at each fixed order of approximation.
Using the result for the meson NLA impact factor such cancellation was
demonstrated explicitly in Ref. [15] for the process in question.

3. The impact factor for the virtual photon

to light vector meson transition

The definition of impact factor (IF) has been given in Ref. [6]; in the case
of scattering of the particle A off a reggeized gluon with momentum q1, for
transverse momentum ~∆ and singlet color representation in the t-channel,
the IF has the form [9]

ΦA→A′(~q1, ~∆, s0) =
δcc′

√

N2
c −1





(

s0
~q 2
1

)
1

2
ω(−~q 2

1
)
(

s0

(~q1 − ~∆)2

) 1

2
ω(−(~q1−~∆)2)

×
∑

{f}

∫

dκ

2π
θ(sΛ − κ)dρfΓ

c
A{f}

(

Γ c′

A′{f}

)∗





− 1

2

∫

dD−2k

~k2(~k− ~∆)2
ΦBorn

A→A′ (~k, ~∆, s0)KBorn
r (~k, ~q1, ~∆) ln

(

s2Λ

s0(~k−~q1)2

)

. (3.1)

Here ω(t) is the reggeized gluon trajectory in the LLA. The integration in the
first term of Eq. (3.1) is done over the phase space dρf and over the squared
invariant mass κ of the system {f} produced in the fragmentation region
of the particle A, Γ c

A{f} are the related particle–Reggeon effective vertices.

The second term in Eq. (3.1) is the counterterm for the LLA part of the first
one, so that the logarithmic dependence of both terms on the intermediate
parameter sΛ → ∞ disappears in their sum. The scale s0 is artificial and
must disappear in the amplitude, to the given accuracy. The definition (3.1)
guarantees the infrared finiteness of the IFs of colorless particles [24].

Here we study the NLA forward ( ~∆ = 0) IF for the transition of a virtual
photon to a light neutral meson Φγ∗→V , V = ρ0, ω, φ (see Fig. 1). We
use the auxiliary Sudakov vectors p1 and p2, such that p2

1 = p2
2 = 0 and

2(p1p2) = s. The virtual photon momentum is p = p1 − (Q2/s)p2, while
Reggeon momenta are:
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q =
κ+Q2 + ~q 2

s
p2 + q⊥ , q2 = q2⊥ = −~q 2 ,

q′ =
κ+ ~q 2

s
p2 + q⊥ . (3.2)

In the forward case under consideration the momentum transfer vector has
only the longitudinal component, q − q′ = ζp2. Both the square of the
Reggeon transverse momentum ~q 2 and the virtuality of the photon Q2 are
assumed to be much larger than any hadronic scale. Thus we neglect all
power suppressed contributions and, therefore, the mass of the vector meson
mass is put equal to zero and its momentum is identified with the Sudakov
vector p1. L(p)

q q
zp1��zp1�k(z) �L(p1)

�
Fig. 2. The kinematics of the virtual photon to vector meson impact factor.

It is possible to show (see Ref. [15] for details) that in this kinematics
the IF can be calculated in the collinear factorization framework [25–27]
which was developed for the QCD description of hard exclusive processes.
It turns out that the dominant helicity amplitude is a transition of the
longitudinally polarized photon γ∗L into the longitudinally polarized meson
VL, and that both in LLA and in NLA the expression for the IF factorizes
into the convolution2

Φγ∗

L
→VL

(α, s0) = −4πeqfV δ
cc′

NcQ

1
∫

0

dz TH(z, α, s0, µF, µR)φ‖(z, µF) (3.3)

of a perturbatively calculable hard-scattering amplitude, TH, and a meson
twist-2 distribution amplitude, φ‖(z) [28]. Here µ2

F ∼ Q2, ~q 2 is a factoriza-
tion scale at which soft and hard physics factorizes according to Eq. (3.3).
The variable z corresponds to the longitudinal momentum fraction carried
by the quark, for the antiquark the fraction is z̄ = 1 − z. Finally, we intro-
duced the ratio α = ~q 2/Q2. For the cases of ρ0, ω and φ meson production,
eq in Eq. (3.3) should be replaced by e/

√
2, e/(3

√
2) and −e/3, respectively.

2 Here and in the following we consider the color unprojected IF.
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We perform calculations with unrenormalized quantities, the bare strong

coupling constant αS and the bare meson distribution amplitude φ
(0)
‖ (z).

Therefore, the NLA expression for the hard-scattering amplitude TH ex-
pressed in terms of these quantities contains both ultraviolet and infrared
divergences, appearing as poles in the common dimensional regularization
parameter ε. The ultraviolet divergences disappear after the strong coupling
constant renormalization. The surviving infrared divergences are only due
to collinear singularities, the soft singularities cancel as usual after summing
the “virtual” and the “real” parts of the radiative corrections. Since IFs
should be infrared-finite objects for physical transitions, it must be possible
to absorb the remaining infrared divergences into the definition of the non-
perturbative distribution amplitude. This is achieved by the substitution of
the bare distribution amplitude by the renormalized one (see Ref. [15] for
details).

The calculation of the lowest order contribution to the IF is straightfor-
ward (see Ref. [15]). For leading power asymptotics, the dominant contri-
bution is given by the production of a longitudinally polarized meson. The
LLA result for the hard-scattering amplitude entering the IF is

T
(0)
H (z, α, s0, µF, µR) = αS

α

α+ zz̄
. (3.4)

Due to the collinear factorization, which effectively puts some fermion lines
on the mass-shell, the complexity of the intermediate state contributing to
the IF is reduced in comparison to the case of the virtual photon IF Φγ∗→γ∗ .
Actually things go as if we had one particle less in the intermediate state.

In the NLA there are two contributions to the IF, from the two-particle
quark–antiquark (qq̄) and from three-particle quark–antiquark–gluon (qq̄g)
intermediate states:

T
(1)
H = T (qq̄) + T (qq̄g) . (3.5)

To calculate the IF in the NLA one has to know the (qq̄) production vertices
with NLA accuracy and the (qq̄g) ones at the Born level. To calculate T (qq̄)

one needs to convolute the NLA photon–Reggeon vertex Γ
(1)
γ∗

L
qq̄ [13] with the

Born Reggeon–meson vertex Γ
(0)
V ∗

L
qq̄ [15] and the Born photon–Reggeon vertex

Γ
(0)
γ∗

L
qq̄ [13, 29] with the NLA Reggeon–meson vertex Γ

(1)
V ∗

L
qq̄ [15]. To evaluate

T (qq̄g) one needs to convolute Born photon–Reggeon vertex Γ
(0)
γ∗

L
qq̄g [13] with

the Born Reggeon–meson vertex Γ
(0)
V ∗

L
qq̄g [15].

Taking also into account the so-called sΛ-counterterm (last term in
Eq. (3.1)) and summing up all the contributions, one gets for the renor-

malized hard scattering amplitude:
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TH(z, α, s0, µF, µR)|α→0 = αS(µR)
α

α+ zz̄

{

1 +
αS(µR)

4π
[τ(z) + τ(z̄)]

}

,

(3.6)
where the expression for τ(z) is given in Ref. [15].

Using this result and the forward BFKL Green’s function it is possible
to build the forward amplitude of the process γ∗1(Q2

1)γ
∗
2(Q2

2) → ρ1ρ2 in
the NLA.

4. Building up the amplitude

It is convenient to work in the transverse momentum representation,
where “transverse” is related to the plane orthogonal to the vector mesons
momenta. In this representation, defined by

~̂q |~qi〉 = ~qi|~qi〉 (4.1)

〈~q1|~q2〉 = δ(2)(~q1 − ~q2) , 〈A|B〉 = 〈A|~k〉〈~k|B〉 =

∫

d2kA(~k)B(~k) , (4.2)

the kernel of the operator K̂ is

K(~q2, ~q1) = 〈~q2|K̂|~q1〉 (4.3)

and the equation for the Green’s function reads

1̂ = (ω − K̂)Ĝω (4.4)

its solution being
Ĝω = (ω − K̂)−1 . (4.5)

The kernel is given as an expansion in the strong coupling,

K̂ = ᾱsK̂
0 + ᾱ2

s K̂
1 , (4.6)

where

ᾱs =
αsNc

π
(4.7)

and Nc is the number of colors. In Eq. (4.6) K̂0 is the BFKL kernel in the

LLA, K̂1 represents the NLA correction.
The impact factors are also presented as an expansion in αs

Φ1,2(~q)=αsD1,2

[

C
(0)
1,2 (~q 2) + ᾱsC

(1)
1,2 (~q 2)

]

, D1,2 =−4πeqfV

NcQ1,2

√

N2
c −1 , (4.8)
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where fV is the meson dimensional coupling constant (fρ ≈ 200MeV) and

eq should be replaced by e/
√

2, e/(3
√

2) and −e/3 for the case of ρ0, ω and
φ meson production, respectively.

In the collinear factorization approach the meson transition impact factor
is given as a convolution of the hard scattering amplitude for the production
of a collinear quark–antiquark pair with the meson distribution amplitude
(DA). The integration variable in this convolution is the fraction z of the
meson momentum carried by the quark (z̄ ≡ 1−z is the momentum fraction
carried by the antiquark):

C
(0)
1,2 (~q 2) =

1
∫

0

dz
~q 2

~q 2 + zz̄Q2
1,2

φ‖(z) . (4.9)

The NLA correction to the hard scattering amplitude, for a photon with
virtuality equal to Q2, is defined as follows

C(1)(~q 2) =
1

4Nc

1
∫

0

dz
~q 2

~q 2 + zz̄Q2
[τ(z) + τ(1 − z)]φ‖(z) , (4.10)

with τ(z) given in the Eq. (75) of Ref. [15]. C
(1)
1,2(~q 2) are given by the

previous expression with Q2 replaced everywhere in the integrand by Q2
1

and Q2
2, respectively.

The distribution amplitude may be presented as an expansion in Gegen-
bauer polynomials

φ‖(z, µF)=6z(1−z)
[

1+a2(µF)C
3/2
2 (2z−1)+a4(µF)C

3/2
4 (2z−1) + . . .

]

.

(4.11)
The scale dependence of an(µF) is well known [25–27]:

an(µF) = Lγn/β0an(µ) , (4.12)

where L = αs(µF)/αs(µ) and

β0 =
11Nc

3
− 2nf

3
(4.13)

is the leading coefficient of the QCD β-function, with nf the number of active
quark flavors. The anomalous dimensions γn are positive and grow with n.
Therefore, any DA approaches the asymptotic form φas

‖ (z) = 6z(1 − z) at

large µF
3.

3 The dependence of the resulting amplitude on µF is subleading. Due to the collinear
counterterm, see Eq. (72) of [15], the NLA correction to the meson impact factor
contains a term proportional to ln(µF), see Eq. (75) of [15], which compensates in
the amplitude with NLA accuracy the effect of the meson DA variation with µF.
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Below we will use the DA in the asymptotic form. Besides the simplicity
of the following presentation, the reason is twofold. Presumably, the form
of DA chosen at low µF will affect mainly only the overall normalization of
the amplitude but not the sum of BFKL energy logarithms and the result-
ing dependence of the amplitude on the energy in which we are primarily
interested in this study. Another point is that, according to QCD sum rules
estimates [28], a2(1 GeV) is 0.18 ± 0.10 for ρ and 0 ± 0.1 for φ. Therefore,
φas
‖ may be indeed a good approximation for the DA of light vector mesons.

Integrating over z in (4.9) with φ‖(z, µ
2
F) = φas

‖ (z), we obtain, for photon

virtuality Q2,

C(0)

(

α =
~q 2

Q2

)

= 6α

[

1 − α

c
ln

2c+ 1

2c− 1

]

, (4.14)

where c =
√

α+ 1/4 . C
(0)
1,2 are given by the previous expression with Q2

replaced by Q2
1 and Q2

2, respectively. For the NLA term C
(1)
1,2 (~q 2) the inte-

gration over z can be performed by a numerical calculation.
To determine the amplitude with NLA accuracy we need an approximate

solution of Eq. (4.5). With the required accuracy this solution is

Ĝω =(ω−ᾱsK̂
0)−1+(ω−ᾱsK̂

0)−1
(

ᾱ2
s K̂

1
)

(ω−ᾱsK̂
0)−1+O

[

(

ᾱ2
s K̂

1
)2
]

.

(4.15)
The basis of eigenfunctions of the LLA kernel,

K̂0|ν〉 = χ(ν)|ν〉 , χ(ν) = 2ψ(1) − ψ

(

1

2
+ iν

)

− ψ

(

1

2
− iν

)

, (4.16)

is given by the following set of functions:

〈~q|ν〉 =
1

π
√

2

(

~q 2
)iν− 1

2 , (4.17)

for which the orthonormality condition takes the form

〈ν ′|ν〉 =

∫

d2~q

2π2

(

~q 2
)iν−iν′−1

= δ(ν − ν ′) . (4.18)

The action of the full NLA BFKL kernel on these functions may be expressed
as follows:

K̂|ν〉 = ᾱs(µR)χ(ν)|ν〉 + ᾱ2
s (µR)

(

χ(1)(ν) +
β0

4Nc
χ(ν) ln(µ2

R)

)

|ν〉

+ ᾱ2
s (µR)

β0

4Nc
χ(ν)

(

i
∂

∂ν

)

|ν〉 , (4.19)
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where the first term represents the action of LLA kernel, while the second
and the third ones stand for the diagonal and the non-diagonal parts of the
NLA kernel. The function χ(1)(ν), calculated in Ref. [2], is conveniently
represented in the form

χ(1)(ν) = − β0

8Nc

(

χ2(ν) − 10

3
χ(ν) − iχ′(ν)

)

+ χ̄(ν) , (4.20)

where

χ̄(ν) = −1

4

[

π2 − 4

3
χ(ν) − 6ζ(3) − χ′′(ν) − π3

cosh(πν)

+
π2 sinh(πν)

2 ν cosh2(πν)

(

3 +

(

1 +
nf

N3
c

)

11 + 12ν2

16(1 + ν2)

)

+ 4φ(ν)

]

, (4.21)

φ(ν) = 2

1
∫

0

dx
cos(ν ln(x))

(1 + x)
√
x

[

π2

6
− Li2(x)

]

,

Li2(x) = −
x
∫

0

dt
ln(1 − t)

t
. (4.22)

Here and below χ′(ν) = d(χ(ν))/dν and χ′′(ν) = d2(χ(ν))/d2ν.
We will need also the |ν〉 representation for the impact factors, which is

defined by the following expressions

C
(0)
1 (~q 2)

~q 2
=

+∞
∫

−∞

d ν ′ c1(ν
′)〈ν ′|~q〉 , C

(0)
2 (~q 2)

~q 2
=

+∞
∫

−∞

d ν c2(ν) 〈~q|ν〉 ,

(4.23)

c1(ν) =

∫

d2~q C
(0)
1 (~q 2)

(

~q 2
)iν− 3

2

π
√

2
,

c2(ν) =

∫

d2~q C
(0)
2 (~q 2)

(

~q 2
)−iν− 3

2

π
√

2
, (4.24)

and by similar equations for c
(1)
1 (ν) and c

(1)
2 (ν) from the NLA corrections to

the impact factors, C
(1)
1 (~q 2) and C

(1)
2 (~q 2).

Using (4.15) and (4.19) one can derive, after some algebra, the following
representation for the amplitude:
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Ims (A)

D1D2
=

s

(2π)2

+∞
∫

−∞

dν

(

s

s0

)ᾱs(µR)χ(ν)

α2
s (µR)c1(ν)c2(ν)

×
[

1 + ᾱs(µR)
(c

(1)
1 (ν)

c1(ν)
+
c
(1)
2 (ν)

c2(ν)

)

+ ᾱ2
s (µR) ln

(

s

s0

)

×
(

χ̄(ν) +
β0

8Nc
χ(ν)

[

− χ(ν) +
10

3
+ i

d ln( c1(ν)
c2(ν))

dν
+ 2 ln(µ2

R)

])]

.(4.25)

We find that

c1,2(ν) =

(

Q2
1,2

)±iν− 1

2

√
2

Γ 2[32 ± iν]

Γ [3 ± 2iν]

6π

cosh(πν)
, (4.26)

c1(ν)c2(ν) =
1

Q1Q2

(

Q2
1

Q2
2

)iν
9π3(1 + 4ν2) sinh(πν)

32 ν (1 + ν2) cosh3(πν)
, (4.27)

i
d ln( c1(ν)

c2(ν))

dν
= 2

[

ψ(3 + 2iν) + ψ(3 − 2iν) − ψ

(

3

2
+ iν

)

−ψ

(

3

2
− iν

)

− ln (Q1Q2)
]

. (4.28)

It can be useful to separate from the NLA correction to the impact factor
the terms containing the dependence on s0 and on β0,

C(1)(~q 2) =

1
∫

0

dz
~q 2

~q 2 + zz̄Q2
φ‖(z)

[

1

4
ln

(

s0
Q2

)

ln

(

(α+ zz̄)4

α2z2z̄2

)

+
β0

4Nc

(

ln

(

µ2
R

Q2

)

+
5

3
− ln(α)

)

+ . . .

]

. (4.29)

Accordingly, one can write

c
(1)
1,2(ν) = c̃

(1)
1,2(ν) + c̄

(1)
1,2(ν) , (4.30)

where c̃
(1)
1,2(ν) are the contributions from the terms isolated in the previous

equation and c̄
(1)
1,2(ν) represent the rest. After straightforward calculations

we found that:
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c̃
(1)
1 (ν)

c1(ν)
+
c̃
(1)
2 (ν)

c2(ν)
= ln

(

s0
Q1Q2

)

χ(ν)+
β0

2Nc

[

ln

(

µ2
R

Q1Q2

)

+
5

3
+ψ(3 + 2iν)

+ψ(3 − 2iν) − ψ

(

3

2
+ iν

)

− ψ

(

3

2
− iν

)

]

. (4.31)

Using Eq. (4.25) we construct the following representation for the am-
plitude

Q1Q2

D1D2

ImsA
s

=
1

(2π)2
αs(µR)2

×
[

b0+
∞
∑

n=1

ᾱs(µR)nbn

(

ln

(

s

s0

)n

+ dn(s0, µR) ln

(

s

s0

)n−1)]

, (4.32)

where the coefficients

bn
Q1Q2

=

+∞
∫

−∞

dν c1(ν)c2(ν)
χn(ν)

n!
, (4.33)

are determined by the kernel and the impact factors in LLA. Note that

b0 =
9π

4
(7ζ(3) − 6) , (4.34)

therefore, in the Born (the two-gluon exchange) limit our result coincides
with that of Ref. [18].

The coefficients

dn = n ln

(

s0
Q1Q2

)

+
β0

4Nc

(

(n+ 1)
bn−1

bn
ln

(

µ2
R

Q1Q2

)

− n(n− 1)

2

+
Q1Q2

bn

+∞
∫

−∞

dν (n+ 1)f(ν)c1(ν)c2(ν)
χn−1(ν)

(n− 1)!

)

+
Q1Q2

bn





+∞
∫

−∞

dνc1(ν)c2(ν)
χn−1(ν)

(n−1)!

[

c̄
(1)
1 (ν)

c1(ν)
+
c̄
(1)
2 (ν)

c2(ν)
+(n−1)

χ̄(ν)

χ(ν)

]



(4.35)

are determined by the NLA corrections to the kernel and to the impact
factors. Here we use the notation

f(ν) =
5

3
+ ψ(3 + 2iν) + ψ(3 − 2iν) − ψ

(

3

2
+ iν

)

− ψ

(

3

2
− iν

)

. (4.36)
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One should stress that both representations of the amplitude (4.32)
and (4.25) are equivalent with NLA accuracy, since they differ only by next-
to-NLA (NNLA) terms. Actually there exist infinitely many possibilities
to write a NLA amplitude. For instance, another possibility could be to
exponentiate the bulk of the kernel NLA corrections

Ims (A)

D1D2
=

s

(2π)2

+∞
∫

−∞

dν

(

s

s0

)ᾱs(µR)χ(ν)+ᾱ2
s (µR)

“

χ̄(ν)+
β0

8Nc
χ(ν)[−χ(ν)+ 10

3
]
”

×α2
s (µR)c1(ν)c2(ν)

[

1 + ᾱs(µR)

(

c
(1)
1 (ν)

c1(ν)
+
c
(1)
2 (ν)

c2(ν)

)

+ ᾱ2
s (µR) ln

(

s

s0

)

β0

8Nc
χ(ν)

(

i
d ln( c1(ν)

c2(ν))

dν
+2 ln(µ2

R)

)



 . (4.37)

This form of the NLA amplitude was used in Ref. [30] (see also [31]), without
account of the last two terms in the second line of (4.37), for the analysis of
the total γ∗γ∗ cross section.

Since as we will shortly see the NLA corrections are very large, the choice
of the representation for the NLA amplitude becomes practically important.
In the present situation, when an approach to the calculation of the NNLA
corrections is not developed yet, the series representation (4.32) is, in our
opinion, a natural choice. It includes in some sense the minimal amount of
NNLA contributions; moreover, its form is the closest one to the initial goal
of the BFKL approach, i.e. to sum selected contributions in the perturbative
series.

It is easily seen from Eqs. (4.32)–(4.36) that the amplitude is independent
in the NLA from the choice of energy and strong coupling scales. Indeed,
with the required accuracy,

ᾱs(µR) = ᾱs(µ0)

(

1 − ᾱs(µ0)β0

4Nc
ln

(

µ2
R

µ2
0

))

(4.38)

and therefore terms ᾱn
s lnn−1 s ln s0 and ᾱn

s lnn−1 s lnµR cancel in (4.32).
One can trace the contributions to each dn coefficient coming from the

NLA corrections to the BFKL kernel and from the NLA impact factors:

dn = dker
n + dIF

n , (4.39)
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dIF
n = n ln

(

s0
Q1Q2

)

+
β0

4Nc

× 2





bn−1

bn
ln

(

µ2
R

Q1Q2

)

+
Q1Q2

bn

+∞
∫

−∞

dν f(ν)c1(ν)c2(ν)
χn−1(ν)

(n − 1)!





+
Q1Q2

bn





+∞
∫

−∞

dν c1(ν)c2(ν)
χn−1(ν)

(n − 1)!

[

c̄
(1)
1 (ν)

c1(ν)
+
c̄
(1)
2 (ν)

c2(ν)

]



 . (4.40)

The first coefficient, d1, is entirely due to the NLA corrections to the impact
factors,

d1 = dIF
1 , dker

1 = 0 . (4.41)

Let us note that in the BFKL formalism the NLA contribution to the impact
factors guarantees not only independence of the amplitude from the energy
scale, s0, but it also contains a term proportional to lnµR which is important
for the renorm-invariance of the predicted results, i.e. the dependence of the
amplitude on µR and s0 is subleading to the NLA accuracy.

5. Numerical results

In this Section we present some numerical results for the amplitude given
in Eq. (4.32) for the Q1 = Q2 ≡ Q kinematics, i.e. in the “pure” BFKL
regime. The other interesting regime, Q1 ≫ Q2 or vice-versa, where collinear
effects could come heavily into the game, will not be considered here. We
will emphasize in particular the dependence on the renormalization scale µR

and s0 in the NLA result.
In all the forthcoming figures the quantity on the vertical axis is the

left-hand side of Eq. (4.32), Ims(A)Q2/(sD1D2). In the numerical analysis
presented below we truncate the series in the right-hand side of Eq. (4.32) to
n = 20, after having verified that this procedure gives a very good approx-
imation of the infinite sum for the Y values Y ≤ 10. We use the two-loop
running coupling corresponding to the value αs(MZ) = 0.12.

We have calculated numerically the bn and dn coefficients for nf = 5 and
s0 = Q2 = µ2

R, getting

b0 = 17.0664
b1 = 34.5920 b2 = 40.7609 b3 = 33.0618 b4 = 20.7467
b5 = 10.5698 b6 = 4.54792 b7 = 1.69128 b8 = 0.554475

d1 = −3.71087 d2 = −11.3057 d3 = −23.3879 d4 = −39.1123
d5 = −59.207 d6 = −83.0365 d7 = −111.151 d8 = −143.06 .

(5.1)
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In this case contributions to the dn coefficients originating from the NLA
corrections to the impact factors are

dIF
1 = −3.71087 , dIF

2 = −8.4361 , dIF
3 = −13.1984 , dIF

4 = −18.0971 ,

dIF
5 = −23.0235 , dIF

6 = −27.9877 , dIF
7 = −32.9676 , dIF

8 = −37.9618 .
(5.2)

Thus, comparing (5.1) and (5.2), we see that the contribution from the kernel
starts to be larger than the impact factor one only for n ≥ 4.

These numbers make visible the effect of the NLA corrections: the dn

coefficients are negative and increasingly large in absolute values as the per-
turbative order increases. The NLA corrections turn to be very large. In
this situation the optimization of perturbative expansion, in our case the
choice of the renormalization scale µR and of the energy scale s0, becomes
an important issue. Below we will adopt the principle of minimal sensitivity
(PMS) [32]. Usually PMS is used to fix the value of the renormalization
scale for the strong coupling. We suggest to use this principle in a broader
sense, requiring in our case the minimal sensitivity of the predictions to the
change of both the renormalization and the energy scales, µR and s0.

Since the dependence of results on s0 is a feature typical of the BFKL
approach and is somewhat new for the application of PMS, we will first
illustrate the success of PMS in this respect on the following QED result
known since a long time. In 1937 Racah calculated the total cross section
for the production of e+e− pairs in the collisions of two heavy ions at high
energies [33],

σ =
28α4

EMZ
2
1Z

2
2

27πm2
e

(

l3 +Al2 +Bl + C
)

+ O
(

1

(p1p2)

)

, (5.3)

here Z1,2 are the ions charges, me is electron mass, the ions’ four-momenta
are p1,2,

l = ln
2(p1p2)

m1m2
, (5.4)

is the energy logarithm and m1,2 are the masses of the ions. The contribu-
tions suppressed by the power of energy are denoted as O(1/(p1p2)).

The coefficients in front of the subleading logarithms are large and have
alternating signs

A = −178/28 = −6.35714 ,

B =
1

28
(7π2 + 370) = 15.6817 ,

C = − 1

28

(

348 +
13

2
π2 − 21ζ(3)

)

= −13.8182 . (5.5)
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To illustrate the application of PMS, imagine that we know only the coeffi-
cient A in front of the first subleading logarithm. Then using this knowledge
we can construct the following approximation

σapp = σ0

(

(l−l0)3+(A+3l0)(l−l0)2
)

, σ0 =
28α4

EMZ
2
1Z

2
2

27πm2
e

, (5.6)

(an analog of NLA in the BFKL approach) where we shift the energy scale
introducing the parameter l0. Note that the dependence of the cross section
on l0 is subleading in the approximation used in Eq. (5.6). We fix l0 by
requiring the minimal sensitivity of (5.6) to the change of this parameter.
It is not difficult to find that this procedure gives l0 = −A/3 = 2.119054.
In Fig. 3 we present three curves for σ/σ0 as a function of the energy log-
arithm l; the first one was calculated using the exact result of Racah (with
all subleading logarithms), the other two curves were calculated using (5.6)
with l0 = 0 and with the PMS value l0 = 2.11905.

2 4 6 8 10
l

50

100

150

Σ�Σ0

exact

PMS

l0=0

Fig. 3. σ/σ0 as a function of the energy logarithm l for the cases of exact result

of Racah, approximated result with l0 = −A/3 (PMS optimal choice) and l0 = 0

(kinematical scale for energy logarithms).

We see that the PMS approach gives a very good approximation to the
Racah result5. On the other hand the procedure with l0 = 0, which means
that a kinematical scale for energy logarithms is used in the approximate
formula, makes an awfully bad job for the whole l range presented in the
figure.

4 Note that in this example PMS gives the value of the parameter l0 for which the
correction to the lowest approximation, (l − l0)

3, vanishes. Therefore, in this case
PMS gives a result which coincides with the one given by another alternative approach
to optimize the approximation, the fast apparent convergence prescription [34].

5 The negative cross section at l < 2 is due to the fact that terms subleading in energy,
O(1/(p1p2)) in (5.3), are not taken into account.
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Returning to our problem, we apply PMS to our case requiring the min-
imal sensitivity of the amplitude (4.32) to the variation of µR and s0. More
precisely, we replace in (4.32) ln(s/s0) with Y − Y0, where Y = ln(s/Q2)
and Y0 = ln(s0/Q

2), and study the dependence of the amplitude on Y0.
The next two figures illustrate the dependence on these parameters for

Q2 = 24GeV2 and nf = 5. In Fig. 4 (left) we show the dependence of
amplitude on Y0 for µR = 10Q, when Y takes the values 10, 8, 6, 4, 3.

2 4 6 8 10
Y0

-0.04

-0.02

0.02

0.04

0.06 Y=10.

Y=8.

Y=6.
Y=4.

Y=3.

20 40 60 80 100
ΜR@GeVD

-0.08

-0.06

-0.04

-0.02

0.02
Y0=3.

Y0=0.

Fig. 4. Left: Ims(A)Q2/(sD1D2) as a function of Y0 at µR = 10Q. The different

curves are for Y values of 10, 8, 6, 4 and 3. The photon virtuality Q2 has been fixed

to 24 GeV2 (nf = 5). Right: Ims(A)Q2/(sD1D2) as a function of µR at Y = 6.

The different curves are, from above to below, for Y0 values of 3, 2, 1 and 0. The

photon virtuality Q2 has been fixed to 24 GeV2 (nf = 5).

We see that for each Y the amplitude has an extremum in Y0 near which
it is not sensitive to the variation of Y0, or s0. Our choice of µR for this
figure is motivated by the study of µR dependence. In Fig. 4 (right) we
present the µR dependence for Y = 6; the curves from above to below are
for Y0 = 3, 2, 1, 0.

Varying µR and Y0 we found for each Y quite large regions in µR and Y0

where the amplitude is practically independent on µR and Y0. We use this
value as the NLA result for the amplitude at given Y . In Fig. 5 we present
the amplitude found in this way as a function of Y . The resulting curve is
compared with the curve obtained from the LLA prediction when the scales
are chosen as µR = 10Q and Y0 = 2.2, in order to make the LLA curve
the closest possible (of course it is not an exact statement) to the NLA one
in the given interval of Y . The two horizontal lines in Fig. 5 are the Born
(two-gluon exchange) predictions calculated for µR = Q and µR = 10Q.

Similar procedure was applied to a lower value of the photon virtuality,
Q2 = 5GeV2 and nf = 4 (see Ref. [16] for details).

We stress that one should take with care BFKL predictions for small val-
ues of Y , since in this region the contributions suppressed by powers of the
energy should be taken into account. At the lowest order in αs such contri-
butions are given by diagrams with quark exchange in the t-channel and are
proportional in our case to αEMαsf

2
V /Q

2. At higher orders power suppressed
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2 4 6 8 10
Y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

NLA

LLA, Y0=2.2, ΜR=10Q

Born, ΜR=Q

Born, ΜR=10Q

Fig. 5. Ims(A)Q2/(sD1D2) as a function of Y for optimal choice of the energy

parameters Y0 and µR (curve labeled by “NLA”). The other curves represent the

LLA result for Y0 = 2.2 and µR = 10Q and the Born (two-gluon exchange) limit

for µR = Q and µR = 10Q. The photon virtuality Q2 has been fixed to 24 GeV2

(nf = 5).

contributions contain double logarithms, terms ∼ αn
s ln2n s, which can lead

to a significant enhancement. Such contributions were recently studied for
the total cross section of γ∗γ∗ interactions [35].

If the NLA (and LLA) curves in Fig. 5 are compared with the Born (two-
gluon exchange) results, one can conclude that the summation of BFKL
series gives negative contribution to the Born result for Y < 6 if one chooses
for the scale of the strong coupling in the Born amplitude the value given
by the kinematics, µR = Q. We believe that our calculations show that
one should at least accept with some caution the results obtained in the
Born approximation, since they do not give necessarily an estimate of the
observable from below.

Another important lesson from our calculation is the very large scale for
αs (and therefore the small αs itself) we obtain using PMS. It appears to be
much bigger than the kinematical scale and looks unnatural since there is
no other scale for transverse momenta in the problem at question exceptQ.
Moreover, one can guess that at higher orders the typical transverse mo-
menta are even smaller than Q since they “are shared” in the many-loop
integrals and the strong coupling grows in the infrared. In our opinion the
large values of µR we found is not an indication of the appearance of a new
scale, but is rather a manifestation of the nature of the BFKL series. The
fact is that NLA corrections are large and then, necessarily, since the exact
amplitude should be renorm- and energy scale invariant, the NNLA terms
should be large and of the opposite sign with respect to the NLA. We guess
that if the NNLA corrections were known and we would apply PMS to the
amplitude constructed as LLA + NLA-corrections + NNLA-corrections, we
would obtain in such calculation more natural values of µR.
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In the last years strong efforts have been devoted to the improvement of
the NLA BFKL kernel as a consequence of the analysis of collinear singu-
larities of the NLA corrections and by the account of further collinear terms
beyond NLA [21,36]. This strategy has something in common with ours, in
the sense that it is also inspired by renormalization-group invariance and it
also leads to the addition of terms beyond the NLA. These extra-terms are
large and of opposite sign with respect to the NLA contribution, so that they
partially compensate the NLA corrections. The findings of the present work
suggest, however, that the corrections to the impact factors heavily con-
tribute to the NLA amplitude, being even dominating in some interval of
non-asymptotically high energies. Moreover, by inspection of the structure
of the amplitude in the regime of strongly asymmetric photon virtualities,
one can deduce that also the impact factors generate collinear terms which
add up to those arising from the kernel, see e.g. Eqs. (84) and (85) of
Ref. [15]. This leads us to the conclusion that in the approaches based on
kernel improvement the additional information coming from impact factors
should somehow be taken into account when available. These issues cer-
tainly deserve further investigation and we believe that useful hints in this
direction can be gained from the study of the γ∗γ∗ → V V amplitude in the
regime of strongly ordered photon virtualities [22, 23].

We conclude this section with a comment on the possible implications
of our results for mesons electroproduction to the phenomenologically more
important case of the γ∗γ∗ total cross section. By numerical inspection
we have found that the ratios bn/b0 we got for the meson case agree for
n = 1 ÷ 10 at 1 ÷ 2% accuracy level with the analogous ratios for the
longitudinal photon case and at 3.5÷ 30% accuracy level with those for the
transverse photon case. Should this similar behavior persist also in the NLA,
our predictions could be easily translated to estimates of the γ∗γ∗ total cross
section.

6. Study of systematic effects

It is important to have an estimate of the systematic uncertainty which
plagues our determination of the energy behavior of the amplitude. The
main sources of systematic effects are given by the choice of the represen-
tation of the amplitude and by the optimization method adopted. In the
following, we compare the determination of the amplitude at Q2 = 24 GeV2

(nf = 5) through the PMS method, given in Fig. 5, with other determina-
tions obtained changing either the representation of the amplitude or the
optimization method.

At first, we compare the series and the “exponentiated” determinations
using in both case the PMS method. The procedure we followed to determine
the energy behavior of the “exponentiated” amplitude is straightforward: for
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each fixed value of Y we determined the optimal choice of the parameters
µR and Y0 for which the amplitude given in Eq. (4.37) is the least sensitive
to their variation. Also in this case we could see wide regions of stability of
the amplitude in the (µR, Y0) plane. The optimal values of µR and Y0 are
quite similar to those obtained in the case of the series representation, with
only a slight decrease of the optimal µR. In Fig. 6 (left) we show the result
and compare it to the PMS determination from the series representation.
The two curves are in good agreement at the lower energies, the deviation
increasing for large values of Y . It should be stressed, however, that the
applicability domain of the BFKL approach is determined by the condition
ᾱs(µR)Y ∼ 1 and, for Q2 = 24GeV2 and for the typical optimal values of
µR, one gets from this condition Y ∼ 5. Around this value the discrepancy
between the two determinations is within a few percent.

2 4 6 8 10
Y

0.01

0.02

0.03

0.04

0.05

0.06
exp. rep’n

series rep’n

2 4 6 8 10
Y

0.01

0.02

0.03

0.04

0.05

FAC

PMS

Fig. 6. Left: Ims(A)Q2/(sD1D2) as a function of Y at Q2=24 GeV2 (nf = 5) from

series and “exponentiated” representations, in both cases with the PMS optimiza-

tion method. Right: Ims(Aseries)Q
2/(sD1D2) as a function of Y at Q2=24 GeV2

(nf = 5) from the series representation with PMS and FAC optimization methods.

As a second check, we changed the optimization method and applied it
both to the series and to the “exponentiated” representation. The method
considered is the fast apparent convergence (FAC) method [34], whose strat-
egy, when applied to a usual perturbative expansion, is to fix the renormal-
ization scale to the value for which the highest order correction term is
exactly zero. In our case, the application of the FAC method requires an
adaptation, for two reasons: the first is that we have two energy parameters
in the game, µR and Y0, the second is that, if only strict NLA corrections
are taken, the amplitude does not depend at all on these parameters.

Therefore, in the case of the series representation, Eq. (4.32), we choose
to put to zero the sum

1

(2π)2
αs(µR)2

∞
∑

n=1

ᾱs(µR)n bn dn(s0, µR) ln

(

s

s0

)n−1



2412 D.Yu. Ivanov, A. Papa

and found for each fixed Y the values of µR and Y0 for which the vanishing
occurs. This gives a line of values in the (µR, Y0) plane, among which the
optimal choice is done applying a minimum sensitivity criterion. The result
is shown in Fig. 6 (right). The agreement with the series representation with
the PMS method is rather good over a wide energy range.

In the case of the “exponentiated” amplitude”, Eq. (4.37), we proceeded
in the same way, but requiring the vanishing of the expression given by the
right-hand side of Eq. (4.37) minus the LLA amplitude, i.e.

Ims (Aexp)

D1D2
− s

(2π)2

+∞
∫

−∞

dν

(

s

s0

)ᾱs(µR)χ(ν)

α2
s (µR)c1(ν)c2(ν) .

In Fig. 7 (left) the result is compared with series representation in the PMS
method: there is nice agreement over the whole energy range considered.
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Fig. 7. Left: Ims(A)Q2/(sD1D2) as a function of Y at Q2 = 24 GeV2 (nf = 5)

from the series representation with the PMS optimization method and from

the “exponentiated” representation with the FAC optimization method. Right:

Ims(A)Q2/(sD1D2) as a function of Y at Q2 = 24 GeV2 (nf = 5) from the series

representation with PMS and BLM optimization methods.

Another popular optimization procedure is the Brodsky–Lepage–Mac-
kenzie (BLM) method [37], which amounts to perform a finite renormaliza-
tion to a physical scheme and then choose the renormalization scale in order
to remove the β0-dependent part. We applied this method only to the se-
ries representation, Eq. (4.32), and proceeded as follows: we first performed
a finite renormalization to the momentum (MOM) scheme with ξ = 0 (see
Ref. [30]),

αs → αs

[

1 + TMOM(ξ = 0)
αs

π

]

, TMOM(ξ = 0) = T conf
MOM + T β

MOM ,

T conf
MOM =

Nc

8

17

2
I , T β

MOM = −β0

2

[

1 +
2

3
I

]

, I ≃ 2.3439 ,
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then, we chose Y0 and µR in order to make the term proportional to β0 in the
resulting amplitude vanish. We observe that the β0-dependence in the series
representation of the amplitude is hidden into the dn coefficients, Eq. (4.35).
Among the resulting pairs of values for Y0 and µR, we determined the optimal
one according to minimum sensitivity. This method has a drawback in our
case, since for each fixed Y , the optimal choice for Y0 turned to be always
Y0 ≃ Y . However, if one blindly applies the procedure above, one gets
a curve which slightly overshoots the one for the series representation with
the PMS method, see Fig. 7 (right).

7. The differential cross section at the minimum |t|:
comparison with an approach based on collinear improvement

The γ∗γ∗ → ρρ process at the lowest order (two-gluon exchange in the
t-channel) was studied in Ref. [18]. At that level our results coincide, see
also [16]. The same process with the inclusion of NLA BFKL effects has
been considered in Ref. [19]. In that paper, the amplitude has been built
with the following ingredients: leading-order impact factors for the γ∗ → ρ
transition, BLM scale fixing for the running of the coupling in the prefactor of
the amplitude (the BLM scale is found using the NLA γ∗ → ρ impact factor
calculated in Ref. [15]) and renormalization-group-resummed BFKL kernel,
with resummation performed on the LLA BFKL kernel at fixed coupling [38].
In Ref. [19] the behavior of dσ/dt at t = t0 was determined as a function of√
s for three values of the common photon virtuality, Q = 2, 3 and 4 GeV.

In order to make a comparison with the findings of Ref. [19], we computed
dσ/dt at t = t0 for Q = 2 and Q = 4GeV as functions of

√
s. We used

fρ = 216MeV, αEM = 1/137 and the two-loop running strong coupling
corresponding to the value αs(MZ) = 0.12. The results are shown in the
linear-log plots of Figs. 8, which show disagreement. This is not surprising
in consideration of the approximations adopted in Ref. [19],

It would be interesting to understand to what extent this disagreement
is due to the use in Ref. [19] of LLA impact factors instead of the NLA ones
or to the way the collinear improvement of the kernel is performed.

In order to understand to what extent the discrepancy is due to the use
of leading order (LO) impact factors instead of next-to-leading order (NLO)
ones, we repeated our determination of dσ/dt at t = t0 for Q = 2 and
Q = 4GeV, using LO impact factors and keeping from the their NLO con-
tribution only the terms proportional to ln[s0/(Q1Q2)] and to ln[µ2

R/(Q1Q2)]
which are universal and needed to guarantee the s0- and µR-independence
of the amplitude with NLA accuracy. The result is that dσ/dt at t = t0
increases roughly by an order of magnitude with respect to our previous de-
termination (see Figs. 9) and therefore the disagreement with [19] becomes
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Fig. 8. Left: Linear-log plot of dσ/dt|t=t0 [pb/GeV2] as a function of
√
s at Q2 =

16 GeV2 (nf = 4) from the series representation with the PMS optimization method

(solid line) compared with the determination from the approach in Ref. [19] (dashed

line). Right: The same as (left) at Q2 = 4 GeV2 (nf = 3).

even worse. This is not surprising: impact factors give a sizable contribution
to the NLA part of the amplitude which is negative with respect to the LLA
part; if they are kept at LO, the NLA part of the amplitude is less negative
and the total amplitude is, therefore, increased.
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Fig. 9. Left: Linear plot of dσ/dt|t=t0 [pb/GeV2] as a function of
√
s at Q2 =

16 GeV2 (nf = 4) from the series representation with the PMS optimization method

using NLO impact factors (solid line) and LO impact factors (dashed line). Right:

The same as (left) at Q2 = 4 GeV2 (nf = 3).

8. Conclusions

We have determined the amplitude for the forward transition from two
virtual photons to two light vector mesons in the Regge limit of QCD with
next-to-leading order accuracy. This amplitude is the first one ever written
in the next-to-leading approximation for a collision process between strongly
interacting colorless particles. It is given as an integral over the ν parameter,
which labels the eigenvalues of the leading order forward BFKL kernel in
the singlet color representation. This form is suitable for numerical evalua-
tions. The result obtained is independent on the energy scale s0, and on the
renormalization scale µR within the next-to-leading approximation.
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Using a series representation of the amplitude which includes the de-
pendence on the energy scale and on the renormalization scale at subleading
level, we performed a numerical analysis in the kinematics when the two col-
liding photons have the same virtuality, i.e. in the “pure” BFKL regime. We
have found that the next-to-leading order corrections coming from the kernel
and from the virtual photon to light vector meson impact factors are both
large and of opposite sign with respect to the leading order contribution.

An optimization procedure, based on the principle of minimal sensitivity
method, has proved to work nicely and has lead to stable results in the
considered energy interval, which allows us to predict the energy behavior of
the forward amplitude. The procedure consists in evaluating the amplitude
at values of the energy parameters for which it is the least sensitive to
variations of them. We have found that there are wide regions of values of
s0 and µR where the amplitude remains almost flat.

The optimal choices of s0 and µR are much larger that the kinemati-
cal scales of the problem. More than being the indication of appearance
of another scale in the problem, this could be related to the nature of the
BFKL series. The renorm- and energy scale invariance, together with the
large next-to-leading approximation corrections, call for large next-to-next-
to-leading order corrections, which are most probably mimicked by unnatu-
ral optimal values for s0 and µR.

The use of other optimization methods and/or different (but equivalent
in the NLA) representations of the amplitude gives results does not change
the behaviour of the amplitude with energy and allows for an estimate of
the systematic uncertainty of our determinations.
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