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In this series of three lectures, I discuss several aspects of high energy
scattering among hadrons in Quantum Chromodynamics. The first lecture
is devoted to a presentation of gluon saturation and of the Color Glass
Condensate (CGC). The second lecture describes the application of this
framework to Deep Inelastic Scattering and to proton–nucleus collisions. In
the third lecture, we present the application of the CGC to the study of high
energy hadronic collisions, with emphasis on nucleus–nucleus collisions. In
particular, we provide the outline of a proof of high energy factorization
for inclusive gluon production.

PACS numbers: 11.15.Kc, 11.80.La, 12.38.–t

1. Introduction

Quantum Chromodynamics (QCD) is very successful at describing ha-
dronic scatterings involving very large momentum transfers. A crucial el-
ement in these successes is the asymptotic freedom of QCD [1], that ren-
ders the coupling weaker as the momentum transfer scale increases, thereby
making perturbation theory more and more accurate. The other important
property of QCD when comparing key theoretical predictions to experimen-
tal measurements is the factorization of the short distance physics which can
be computed reliably in perturbation theory from the long distance strong
coupling physics related to confinement. The latter are organized into non-
perturbative parton distributions, that depend on the scales of time and
transverse space at which the hadron is resolved in the process under con-
sideration. In fact, QCD not only enables one to compute the perturbative
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hard cross-section, but also predicts the scale dependence of the parton dis-
tributions. A generic issue in the application of perturbative QCD to the
study of hadronic scatterings is the occurrence of logarithmic corrections in
higher orders of the perturbative expansion. These logarithms can be large

Fig. 1. Generic hard process in the scattering of two hadrons. Left: Leading Order.

Right: Next-to-Leading Order correction involving gluon radiation in the initial

state.

enough to compensate the extra coupling constant αs they come accompa-
nied with, thus voiding the naive, fixed order, application of perturbation
theory. Consider for instance a generic gluon–gluon fusion process, as illus-
trated on the left of figure 1, producing a final state of momentum Pµ. The
two gluons have longitudinal momentum fractions x1,2 given by

x1,2 =
M⊥√
s
e±Y , (1)

whereM⊥ ≡
√

P 2
⊥ + P 2 (P 2 ≡ PµP

µ is the invariant mass of the final state)

and Y ≡ ln(P+/P−)/2. On the right of figure 1 is represented a radiative
correction to this process, where a gluon is emitted from one of the incoming
lines. Roughly speaking, such a correction is accompanied by a factor

αs

∫

x1

dz

z

M⊥∫
d2k⊥
k2
⊥

, (2)

where z is the momentum fraction of the gluon before the splitting, and k⊥
its transverse momentum. Such corrections produce logarithms, log(1/x1)
and log(M⊥), that respectively become large when x1 is small or when
M⊥ is large compared to typical hadronic mass scales. These logarithms
tell us that parton distributions must depend on the momentum fraction x
and on a transverse resolution scale M⊥, that are set by the process under
consideration. In the linear regime1, there are “factorization theorems” —

1 We use the denomination “linear” here to distinguish it from the saturation regime
discussed later that is characterized by non-linear evolution equations.
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kt-factorization [2] in the first case and collinear factorization [3] in the
second case — that tell us that the logarithms are universal and can be
systematically absorbed in the definition of parton distributions2. The x
dependence that results from resumming the logarithms of 1/x is taken into
account by the BFKL equation [4]. Similarly, the dependence on the trans-
verse resolution scale M⊥ is accounted for by the DGLAP equation [5].

The application of QCD is a lot less straightforward for scattering at
very large center of mass energy, and moderate momentum transfers. This
kinematics in fact dominates the bulk of the cross-section at collider energies.
A striking example of this kinematics is encountered in Heavy Ion Collisions
(HIC), when one attempts to calculate the multiplicity of produced particles.
There, despite the very large center of mass energy3, typical momentum
transfers are small4, of the order of a few GeVs at most. In this kinematics,
two phenomena that become dominant are

• Gluon saturation: linear evolution equations (DGLAP or BFKL) for
the parton distributions implicitly assume that the parton densities
in the hadron are small and that the only important processes are
splittings. However, at low values of x, the gluon density may become
so large that gluon recombinations are an important effect.

• Multiple scatterings: processes involving more than one parton
from a given projectile become sizeable.

It is highly non trivial that this dominant regime of hadronic interactions
is amenable to a controlled perturbative treatment within QCD, and the
realization of this possibility is a major theoretical advance in the last decade.
The goal of these three lectures is to present the framework in which such
calculations can be carried out.

In the first lecture, we will address the evolution of the parton model to
small values of the momentum fraction x and the saturation of the gluon
distribution. After a qualitative description of the partonic structure of
a hadron at high energy, we will discuss the phenomenon of parton saturation
at small x.

In the second lecture, after illustrating the tremendous simplification of
high energy scattering in the eikonal limit, we will derive the BFKL equa-
tion and its non-linear extension, the BK equation. We end the lecture with

2 The latter is currently more rigorously established than the former.
3 At RHIC, center of mass energies range up to

√
s = 200 GeV/nucleon; the LHC will

collide nuclei at
√

s = 5.5 TeV/nucleon.
4 For instance, in a collision at

√
s = 200 GeV between gold nuclei at RHIC, 99% of

the multiplicity comes from hadrons whose p⊥ is below 2 GeV.
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a discussion of the close analogy between the energy dependence of scat-
tering amplitudes in QCD and the temporal evolution of reaction–diffusion
processes in statistical mechanics.

The third lecture is devoted to the study of nucleus–nucleus collisions
at high energy. Our main focus is the study of bulk particle production in
these reactions within the CGC framework. After an exposition of the power
counting rules in the saturated regime, we explain how to keep track of the
infinite sets of diagrams that contribute to the inclusive gluon spectrum.
Specifically, we demonstrate how these can be resummed at leading and
next-to-leading order by solving classical equations of motion for the gauge
fields. The inclusive quark spectrum is discussed as well. We conclude
the lecture with a discussion of the inclusive gluon spectrum at next-to-
leading order and outline a proof of high energy factorization in this context.
Understanding this factorization may hold the key to understanding early
thermalization in heavy ion collisions. Some recent progress in this direction
is briefly discussed.

2. Parton model, gluon saturation

In this lecture, we will begin with the simple parton model, and then
discuss the physics of gluon saturation, which becomes crucial at small x.

2.1. DIS and the birth of the parton model

The parton model appeared to explain experimental results on Deep In-
elastic Scattering (DIS). The basic idea of Deep Inelastic Scattering (DIS)
is to use a well understood lepton probe (that does not involve strong inter-
actions) to study a hadron. The interaction is via the exchange of a virtual
photon5. Variants of this reaction involve the exchange of a W± or Z0 bo-
son which become increasingly important at large momentum transfers. The
kinematics of DIS is characterized by a few Lorentz invariants (see figure 2
for the notations), traditionally defined as

ν ≡ P · q ,
s ≡ (P + k)2 ,

M2
X

≡ (P + q)2 = m2
N

+ 2ν + q2 , (3)

where m
N

is the nucleon mass (assuming that the target is a proton) and M
X

the invariant mass of the hadronic final state. Because the exchanged photon

5 If the virtuality of the photon is small (in photo-production reactions for instance),
the assertion that the photon is a “well known probe that does not involve strong
interactions” is not valid anymore. Indeed, the photon may fluctuate, for instance,
into a ρ meson.
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is space-like, one usually introduces Q2 ≡ −q2 > 0, and also x ≡ Q2/2ν.
Note that since M2

X
≥ m2

N
, we must have 0 ≤ x ≤ 1 – the value x = 1 being

reached only in the case where the proton is scattered elastically.

Fig. 2. Kinematical variables in the Deep Inelastic Scattering process. k and P are

known from the experimental setup, and k′ is obtained by measuring the deflected

lepton.

The simplest cross-section one can measure in a DIS experiment is the to-
tal inclusive electron+proton cross-section, where one sums over all possible
hadronic final states:

E′ dΣ e−N

d3k′ =
∑

states X

E′dΣe−N→e−X

d3k′ . (4)

This inclusive DIS cross-section can be written as

E′ dΣe−N

d3k′ =
1

32π3(s−m2
N

)

e2

q4
4πLµνWµν , (5)

where the leptonic tensor (neglecting the electron mass) is

Lµν ≡
〈
u(k′)γµu(k)u(k)γνu(k′)

〉
spin

= 2(kµk′ν + kνk′µ − gµν k · k′) , (6)

and Wµν – the hadronic tensor — is defined as

4πWµν ≡
∫
d4y eiq·y

〈〈
N(P )

∣∣J†
ν(y)Jµ(0)

∣∣N(P )
〉〉

spin
. (7)

An important point is that Wµν cannot be calculated by perturbative meth-
ods. This rank-2 tensor can be expressed simply in terms of two independent
structure functions:

Wµν = −F1

(
gµν − qµqν

q2

)
+

F2

P · q

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)
. (8)
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As scalars, F1,2 only depend on Lorentz invariants, namely, the variables x
and Q2. The inclusive DIS cross-section in the rest frame of the proton can
be expressed in terms of F1,2 as

dΣe−N

dE′dΩ
=

α2
em

4m
N
E2 sin4(θ/2)

[
2F1 sin2 θ

2
+
m2

N

ν
F2 cos2 θ

2

]
, (9)

where Ω represents the solid angle of the scattered electron and E′ its energy.

Two major experimental results from SLAC [7] in the late 1960’s played
a crucial role in the development of the parton model. The left plot of
figure 3 shows the measured values of F2(x,Q

2) as a function of x. Even
though the data covers a significant range in Q2, all the data points seem
to line up on a single curve, indicating that F2 depends very little on Q2

in this regime. This property is now known as Bjorken scaling [8]. In the
right plot of figure 3, one sees a comparison of F2 with the combination6

F
L
≡ F2 − 2xF1. Although there are few data points for F

L
, one can see

that it is significantly lower than F2 and close to zero7. As we shall see
shortly, these two experimental facts already tell us a lot about the internal
structure of the proton.
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Fig. 3. SLAC results on DIS.

2.2. Parton model at small x

Let us now compute the hadronic tensor W µν for the DIS reaction on
a point-like free fermion i carrying the fraction x

F
of the proton momen-

tum. Because we ignore interactions for the time being, this calculation (in

6 F
L
, the longitudinal structure function, describes the inclusive cross-section between

the proton and a longitudinally polarized proton.
7 From current algebra, it was predicted that F2 = 2xF1; this relation is known as the

Callan–Gross relation [9].
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contrast to that for a proton target) can be done in closed form. We obtain,

4πW µν
i = 2πx

F
δ(x− x

F
) e2i

[
−

(
gµν− qµqν

q2

)

+
2x

F

P · q

(
Pµ − qµP · q

q2

)(
P ν − qν P · q

q2

)]
, (10)

where ei is the electric charge of the parton under consideration. Let us
now assume that in a proton there are fi(xF

)dx
F

partons of type i with
a momentum fraction between x

F
and x

F
+dx

F
, and that the photon scatters

incoherently off each of them. We would thus have

W µν =
∑

i

1∫

0

dx
F

x
F

fi(xF
)W µν

i . (11)

(The factor x
F

in the denominator is a “flux factor”.) At this point, we can
simply read the values of F1,2,

F1 =
1

2

∑

i

e2i fi(x) , F2 = 2xF1 . (12)

We thus see that the two experimental observations of (i) Bjorken scaling
and (ii) the Callan–Gross relation are automatically realized in this naive
picture of the proton8.

In the 1970’s, after the advent of Quantum Chromodynamics and the
discovery of asymptotic freedom by Gross, Politzer and Wilczek in 1973 [1],
a more rigorous theoretical basis of the parton model has been developed.
In particular, the Operator Product Expansion applied to the DIS reaction
indicates that there are some violations to Bjorken scaling, and that these
violations can be calculated using QCD perturbation theory via the DGLAP
equation [5]. This machinery has now been pushed to higher orders (NNLO),
leading to a very solid quantitative agreement between QCD predictions
and measurements in DIS experiments, as illustrated in figure 4 (see for
instance [13] for more details).

8 In particular, F
L

= 0 in this model is intimately related to the spin 1/2 structure of
the scattered partons. Scalar partons, for instance, would give F1 = 0, at variance
with experimental results.
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Fig. 4. Comparison of the measured F2 with QCD fits.

2.3. Gluon evolution at small x

Before we proceed further, let us describe in qualitative terms (see [10]
for instance) what a proton constituted of fermionic constituents bound by
interactions involving the exchange of gauge bosons may look like. In the left
panel of figure 5 are represented the three valence partons (quarks) of the
proton. These quarks interact by gluon exchanges, and can also fluctuate
into states that contain additional gluons (and also quark–antiquark pairs).
These fluctuations can exist at any space-time scale smaller than the proton
size (∼ 1 fermi). (In this picture, one should think of the horizontal axis as

Fig. 5. Cartoons of the valence partons of a proton, and their interactions and

fluctuations. Left: proton at low energy. Right: proton at high energy.
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the time axis.) When one probes the proton in a scattering experiment, the
probe (e.g. the virtual photon in DIS) is characterized by certain resolutions
in time and in transverse coordinate. The shaded area in the picture is
meant to represent the time resolution of the probe: any fluctuation which
is shorter lived than this resolution cannot be seen by the probe, because it
appears and dies out too quickly.

In the right panel of figure 5, the same proton is represented after a boost,
while the probe has not changed. The main difference is that all the internal
time scales are Lorentz dilated. As a consequence, the interactions among
the quarks now take place over times much larger than the resolution of the
probe. The probe therefore sees only free constituents. Moreover, this time
dilation allows more fluctuations to be resolved by the probe; thus, a high
energy proton appears to contain more gluons than a proton at low energy9.

In fact, this growth of the gluon distribution at small x is observed
experimentally,

xG(x,Q2) ∼ 1

xω
. (13)

However, the gluon distribution cannot grow at this pace indefinitely. In-
deed, at some point, the occupation number of the gluons will become large
and the recombination10 of two gluons will become important. This phe-
nomenon is known as gluon saturation [20]. In the linear regime, described
by the BFKL equation, each valence parton from the proton initiates its
own gluon ladder that evolves independently from the others. In the satu-
rated regime, these gluon ladders can merge, thereby reducing the growth of
the gluon distribution. The effect of these recombinations on the scattering
amplitude is taken into account by the non-linear term of the BK equation.

A semi quantitative criterion for gluon saturation can be obtained [20]
by comparing the surface density of gluons, ρ ∼ xG(x,Q2)/πR2, and the
cross-section for gluon recombination, Σ ∼ αs/Q

2. Saturation occurs when
1 . ρΣ , i.e. when

Q2 ≤ Q2
s , with Q2

s ∼ αsxG(x,Q2
s )

πR2
A

∼ A1/3 1

x0.3
. (14)

The quantity Qs is known as the saturation momentum. Its dependence
on the number of nucleons A (in the case of a nuclear target) comes from
the fact that xG(x,Q2) scales like the volume, while πR2 is an area. Its
x dependence is a phenomenological parameterization inspired by from fits

9 Equivalently, if the energy of the proton is fixed, there are more gluons at lower values
of the momentum fraction x

F
.

10 The DGLAP evolution equation, as well as the BFKL equation, includes only gluon
splittings.
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of HERA data. From Eq. (14), one can divide the x,Q2 in two regions, as
illustrated in figure 6. The saturated regime corresponds to the domain of
low Q and low x.

Fig. 6. Saturation domain in the x,Q2 plane.

An effective description of the wavefunction of a hadron in the satura-
tion regime, known as the Color Glass Condensate, has been developed. In
the CGC description, one divides the degrees of freedom in the proton into
fast partons (large x) and slow partons (small x) [21]. The fast partons
are affected by time dilation, and do not have any significant time evolu-
tion during the brief duration of the collision; therefore, they are treated as
static objects that carry a color source. These color sources produce a cur-
rent, Jµ = δµ+δ(x−)ρ(x⊥) , written here for a projectile moving in the +z
direction. The function ρ(x⊥) describes the distribution of color charge as
a function of the impact parameter. The slow partons, on the other hand,
have a non trivial dynamics during the collision, and must be treated as
gauge fields. The only coupling between the fast and slow partons is a cou-
pling AµJ

µ between the color current of the fast partons and the gauge fields,
which allows the fast partons to radiate slower partons by bremsstrahlung.

Because the configuration of the fast partons prior to the collision is
different in every collision, the function ρ(x⊥) must be a stochastic quantity,
for which one can only specify a distribution W

Y
[ρ]. Observables like cross-

sections must be averaged over all the possible configurations of ρ with this
distribution,

〈
· · ·

〉
≡

∫ [
Dρ

]
W

Y
[ρ] · · · . (15)

A crucial point is that the distribution W
Y
[ρ] depends on Y , the rapidity

that separates what is considered fast and slow. Because such a separation
is arbitrary, physical quantities cannot depend on it; one can derive from
this requirement a renormalization group equation for W

Y
[ρ] — known as



Gluon Saturation from DIS to Nucleus–Nucleus Collision 2429

the JIMWLK equation [22] — of the form:

∂W
Y
[ρ]

∂Y
= H[ρ]W

Y
[ρ] . (16)

The JIMWLK Hamiltonian H[ρ] contains first and second derivatives with
respect to the source ρ,

H[ρ] =

∫

x⊥

Σ (x⊥)
δ

δρ(x⊥)
+

1

2

∫

x⊥,y⊥

χ(x⊥,y⊥)
δ2

δρ(x⊥)δρ(y⊥)
, (17)

where Σ (x⊥) and χ(x⊥,y⊥) are known functionals of ρ.
In lecture II, we will derive an equivalent form of this evolution equa-

tion, known as the Balitsky’s equations, that applies directly to scattering
amplitudes — in particular to the dipole scattering amplitude,

〈T (x⊥,y⊥)〉 =

∫
[Dρ] W

Y
[ρ]

[
1 − 1

Nc
tr(U(x⊥)U †(y⊥))

]
, (18)

where the Wilson line U is evaluated in the color field generated by the
configuration ρ of the color sources.

Eq. (16) predicts the energy dependence of the distribution of sources.
However, it must be supplemented by an initial condition at some Y0. As
with the DGLAP equation, the initial condition is non-perturbative, and
one must in general model it or guess it from experimental data. In the
case of large nuclei, one often uses the McLerran–Venugopalan model, which
assumes that W

Y0
[ρ] is a Gaussian [21, 23, 24]:

W
Y0

[ρ] = exp

[
−

∫
d2x⊥

ρ(x⊥)ρ(x⊥)

2µ2(x⊥)

]
. (19)

The idea behind this model is that the color charge per unit area, ρ(x⊥),
is the sum of the color charges of the partons that sit at approximately the
same impact parameter. In a large nucleus, this will be the sum of a large
number of random charges; for Nc = 3, this leads to a Gaussian distribution
for ρ plus a small (albeit physically very relevant) contribution from the
cubic Casimir [24]. The fact that this Gaussian has only correlations local in
impact parameter is a consequence of confinement: color charges separated
by more than the nucleon size cannot be correlated. The MV model is
generally used at a moderately small x, of the order of 10−2. If the problem
under consideration requires smaller values of x, one should use the BK or
JIMWLK equations, with the MV distribution as the initial condition.
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3. Saturation in DIS

In the first lecture, we have introduced the parton model and we have
presented a qualitative introduction to gluon saturation. In this lecture, we
study more specifically saturation effects in DIS. In particular, we derive the
energy dependence of these processes, by deriving the Balitsky–Kovchegov
equation. We also show how saturation provides a natural explanation for
the observed “geometrical scaling”.

3.1. Eikonal scattering

Before going to the main subject of this lecture, let us recall an important
result concerning the high energy limit of the scattering amplitude of some
state off an external field [14]. Consider the generic S-matrix element

Sβα ≡
〈
βout

∣∣αin

〉
=

〈
βin

∣∣U(+∞,−∞)
∣∣αin

〉
, (20)

for the transition from a state α to a state β, where

U(+∞,−∞) = T+ exp
[
i

∫
d4xLint(φin(x))

]
(21)

is the evolution operator from t = −∞ to t = +∞. (T+ denotes an ordering
in the light-cone time x+.) The interaction Lagrangian Lint contains both
the self-interactions of the fields and their interactions with the external
field. Now apply a boost in the z direction to all the particles contained in
the states α and β. Formally, this can be done by multiplying the states
by exp(−iωK3), where ω is the rapidity of the boost and K3 the generator
of longitudinal boosts. Our goal is to compute the limit ω → +∞ of the
transition amplitude,

S
(∞)
βα ≡ lim

ω→+∞

〈
βin

∣∣eiωK3

U(+∞,−∞)e−iωK3∣∣αin

〉
. (22)

The behavior of scattering amplitudes in this limit is easy to understand.
The time spent by the incoming particles in the region where the external
field is acting goes to zero as the inverse of the collision energy E. If the
coupling to the external field was purely scalar, this would imply that the
scattering amplitude itself goes to zero as E−1. However, in the case of
a vector coupling, the longitudinal component of the current increases as E,
which compensates the decrease in the interaction time, thereby leading to
a finite (non-zero and non infinite) high energy limit. For this reason, let
us assume that the coupling of the fields to the external potential is of the
form gAµ(x)Jµ(x) where Jµ is a vector current built from the elementary
fields of the theory under consideration.
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The high energy limit of the transition amplitude reads

S
(∞)
βα =

∑

δ

∫ [
∏

i∈δ

dk+
i

4πk+
i

d2xi⊥

]
Ψ

†
δβ({k+

i ,xi⊥})
[
∏

i∈δ

Ui(xi⊥)

]
Ψδα({k+

i ,xi⊥}) ,

(23)
where the Ψδα and Ψδβ are the light-cone wavefunctions of the initial and
final state, for the Fock component where the intermediate state is δ. The
factors Ui(x⊥) are known as Wilson lines:

Ui(x⊥) ≡ T+ exp

[
ig

i

∫
dx+ A−

a (x+, 0,x⊥)ta
]
. (24)

Wilson lines resum multiple scatterings off the external field, as one can see
by expanding the exponential. Thus, the physical picture of high energy
scattering off some external field is that the initial state evolves from −∞
to 0, multiply scatters during an infinitesimally short time off the external
potential, and evolves again from 0 to +∞ to form the final state.

3.2. BFKL equation

Let us now derive the BFKL equation. Our derivation is inspired from
[15–19]. Consider the forward scattering off an external field of a state
α whose simplest Fock component is a color singlet quark–antiquark pair.
Thus, the transition amplitude can be written as

=
∣∣∣Ψ (0)(x⊥,y⊥)

∣∣∣
2
tr

[
U(x⊥)U †(y⊥)

]
. (25)

We will not need to specify more the light-cone wavefunction of the state
under consideration. Note that the product of the two Wilson lines is traced,
because the state α is color singlet. A crucial property of this transition am-
plitude is that it is completely independent of the collision energy. However,
as we shall see, a non trivial energy dependence arises in this amplitude
because of large logarithms in loop corrections.

Consider now the 1-loop corrections to this amplitude depicted in fig-
ure 7. These 1-loop corrections all involve one additional gluon attached to
the quark or antiquark lines. In some of the corrections, that we shall call
real corrections, the gluon is present in the state that goes through the ex-
ternal field. In the other corrections, the virtual corrections, the gluon is just
a fluctuation in the wavefunction of the initial or final state. The calculation
of these diagrams is straightforward in the impact parameter representation.
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Fig. 7. One-loop corrections to the scattering of a dipole off an external field. Only

half of the virtual corrections have been represented.

One simply needs the formula for the qq̄g vertex:

= 2gta
ǫλ · k⊥
k2
⊥

=

∫
d2r⊥ e

−ik⊥·r⊥
2ig

2π
ta

ǫλ · r⊥
r2⊥

, (26)

where ǫλ is the polarization vector of the gluon and k⊥ its transverse mo-
mentum. Armed with these tools, it is easy to obtain expressions such as

=
∣∣∣Ψ (0)(x⊥,y⊥)

∣∣∣
2
tr

[
tataU(x⊥)U †(y⊥)

]

×− 2αs

∫
dk+

k+

∫
d2z⊥
(2π)2

(x⊥ − z⊥) · (x⊥ − z⊥)

(x⊥ − z⊥)2(x⊥ − z⊥)2
. (27)

We find that the sum of all the virtual corrections reads

−Cfαs

π2

∫
dk+

k+

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
∣∣∣Ψ (0)(x⊥,y⊥)

∣∣∣
2
tr

[
U(x⊥)U †(y⊥)

]
, (28)

where Cf ≡ tata = (N2 − 1)/2N for SU(N). In this formula, k+ is the
longitudinal momentum of the gluon. As one can see, there is a logarithmic
divergence in the integration over this variable. The lower bound should
arguably be some non-perturbative hadronic scale Λ, and the upper bound
must be the longitudinal momentum p+ of the quark or antiquark that
emitted the photon. Hence we have a log(p+/Λ), which is a large factor in
the limit of high-energy (strictly speaking, the high-energy limit is ill defined
because of these corrections). The calculation of the real corrections is a bit
more involved. For instance, one has

=
∣∣∣Ψ (0)(x⊥,y⊥)

∣∣∣
2
tr

[
taU(x⊥)tbU †(y⊥)

]

× 4αs

∫
dk+

k+

∫
d2z⊥
(2π)2

Ũab(z⊥)
(x⊥ − z⊥) · (x⊥ − z⊥)

(x⊥ − z⊥)2(x⊥ − z⊥)2
,(29)
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where Ũab(z⊥) is a Wilson line in the adjoint representation that rep-
resents the eikonal phase factor associated to the gluon (z⊥ is the im-
pact parameter of the gluon). In order to simplify the real terms, we
need the following relation between fundamental and adjoint Wilson lines,

taŨab(z⊥) = U(z⊥)tbU †(z⊥) , and the Fierz identity obeyed by fundamen-
tal SU(N) matrices: tbijt

b
kl = 1

2δilδjk − 1
2N δijδkl . Thanks to these iden-

tities, one can rewrite all the real corrections in terms of the quantity
S(x⊥,y⊥) ≡ tr

[
U(x⊥)U †(y⊥)

]
/N . Collecting all the terms, and summing

real and virtual contributions, we obtain the following expression for the
1-loop transition amplitude

−αsN
2Y

2π2

∣∣∣Ψ (0)(x⊥,y⊥)
∣∣∣
2
∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
{
S(x⊥,y⊥) − S(x⊥,z⊥)S(z⊥,y⊥)

}
, (30)

where we denote Y ≡ ln(p+/Λ). This correction to the transition amplitude
is not small when α−1

s . Y , which means that n-loop contributions should
be considered in order to resum all the powers (αsY )n. Here, we are just
going to admit that this n-loop calculation amounts to exponentiating the
1-loop result. In other words, Eq. (30) is sufficient in order to obtain the
derivative ∂S/∂Y ,

∂S(x⊥,y⊥)

∂Y
= −αsNc

2π2

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
{
S(x⊥,y⊥) − S(x⊥,z⊥)S(z⊥,y⊥)

}
. (31)

It is customary to rewrite this equation in terms of T -matrix elements,
T (x⊥,y⊥) ≡ 1 − S(x⊥,y⊥). The BFKL equation [4] describes the regime
where T (x⊥,y⊥) is small, so that we can neglect the terms that are qua-
dratic in T . It reads:

∂ T (x⊥,y⊥)

∂Y
=

αsNc

2π2

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
{
T (x⊥,z⊥) + T (z⊥,y⊥) − T (x⊥,y⊥)

}
. (32)

One can verify easily that T = 0 is a fixed point of this equation (the right
hand side vanishes if one sets T = 0), but that this fixed point is unstable
(if one sets T = ǫ > 0, the right hand side is positive). Since there are
no other fixed points, solutions of the BFKL have an unbounded growth in
the high energy limit (Y → +∞). This behavior, however, is not physical
because the unitarity of scattering amplitude implies that T (x⊥, y⊥) should
not become greater than unity.
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3.3. Balitsky–Kovchegov equation

The solution to the above problem was in fact already contained in
Eq. (31). When written in terms of T without assuming that T is small,

∂ T (x⊥,y⊥)

∂Y
=
αsNc

2π2

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
{
T (x⊥,z⊥) + T (z⊥,y⊥) − T (x⊥,y⊥) − T (x⊥,z⊥)T (z⊥,y⊥)

}
, (33)

it has a non-linear term that confines T to the range [0, 1]. Indeed, the
presence of this quadratic term makes T = 1 a stable fixed point of the
equation. Therefore, the generic behavior of solutions of Eq. (33) is that
T starts at small values at small Y and asymptotically reaches the value
T = 1 in the high energy limit. Eq. (33) is known as the Balitsky–Kovchegov
equation [17, 18].

The interaction of a color singlet dipole with an external color field is
a possible description of DIS, in a frame in which the virtual photon splits
into a quark–antiquark pair long before it collides with the proton (the
external color field would represent the proton target). Although it is le-
gitimate to treat the proton as a frozen configuration of color field due to
the brevity of the interaction, we do not know what this field is. More-
over, since this field is created by the partons inside the proton, that have
a complicated dynamics, this color field must be different for each collision,
and should therefore be treated as random. Therefore, in order to turn our
dipole scattering amplitude into an object that we could use to compute the
DIS cross-section at high-energy, we must average over all the possible con-
figurations of the external field. Let us denote by

〈
· · ·

〉
this average. The

effect of this average on the energy dependence of the amplitude is simply
taken into account by taking the average of Eq. (33). However, one sees that
the evolution equation for

〈
T

〉
involves in its right hand side the average of

a product of two T ’s,
〈
TT

〉
. Therefore, we do not have a closed equation

anymore. An evolution equation for
〈
TT

〉
could be obtained by the same

procedure, which would depend on yet another new object, and so on. At the
end of the day, one in fact obtains an infinite hierarchy of nested equations,
known as Balitsky’s equations [18]. This hierarchy of evolution equations is
equivalent to the JIMWLK equation — presented in the previous lecture.

It is only if one assumes that the averages of products of amplitudes
factorize into products of averages, 〈T T 〉 ≈ 〈T 〉 〈T 〉 , that this hierarchy
can be truncated into a closed equation which is identical to Eq. (33) —
the BK equation — with T replaced by

〈
T

〉
. This approximation amounts

to drop certain correlations among the target fields, and is believed to be
a good approximation for a large nucleus in the limit of a large number of
colors [17].
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3.4. Analogies with reaction–diffusion processes

There are interesting analogies between the evolution equations that gov-
ern the energy dependence of scattering amplitude in QCD and simple mod-
els of reaction–diffusion processes [25]. The simplest setting in which these
correspondences can be seen is to consider the dipole scattering amplitude
off a large nucleus, and to assume translation and rotation invariance in
impact parameter space. It is useful to define its Fourier transform as

N(Y, k⊥) ≡ 2π

∫
d2x⊥ e

ik⊥·x⊥

〈T (0,x⊥)〉
Y

x2
⊥

. (34)

(Note the factor 1/x2
⊥ included in this definition.) It turns out that for this

object N , the BK equation has a very simple non-linear term,

∂N(Y, k⊥)

∂Y
=
αsNc

π

[
χ(−∂L)N(Y, k⊥) −N2(Y, k⊥)

]
. (35)

In this equation, L ≡ ln(k2
⊥/k

2
0) and χ(γ) ≡ 2ψ(1) − ψ(γ) − ψ(1 − γ) with

ψ(z) ≡ d ln Γ (z)/dz. The function χ(γ) has poles at γ = 0 and γ = 1, and
a minimum at γ = 1/2. By expanding it up to quadratic order around its
minimum, and by defining new variables,

t ∼ Y , z ∼ L+
αsNc

2π
χ′′

(
1

2

)
Y , (36)

the BK equation simplifies into

∂tN = ∂2
zN +N −N2 , (37)

known as the Fisher–Kolmogorov–Petrov–Piscounov (FKPP) equation. This
equation has been extensively studied in the literature, because it is the
simplest realization of the so-called reaction–diffusion processes. It describes
the evolution of a number N of objects that live in one spatial dimension.
The diffusion term ∂2

zN describes the fact that these entities can hop from
one location to neighboring locations. The positive linear term +N means
that an object can split into two, and the negative quadratic term −N2

that two objects can merge into a single one. One can easily check that this
equation has two fixed points, N = 0 which is unstable and N = 1 which is
stable.

An important property of this equation is that it admits asymptotic
traveling waves as solutions. Let us assume that the initial condition N(t0, z)
goes to 1 at z → −∞ and to 0 at z → +∞, with an exponential tail
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N(t0, z) ∼
z→+∞

exp(−βz). If the slope of the exponential obeys β > 1, the

solution at late time depends only on a single variable,

N(t, z) ∼
t→+∞

N

(
z − 2t− 3

2
ln(t)

)
. (38)

When t→ +∞, the logarithm can be neglected in front of the term linear in
time, and one has a traveling wave moving at a constant velocity dz/dt = 2
without deformation. Moreover, this velocity is independent of the details
of the initial condition for a large class of initial conditions.

Going back to the dipole scattering amplitude, this result implies the
following scaling behavior at large Y :

〈T (0,x⊥)〉
Y

= T (Qs(Y )x⊥) , (39)

with a saturation scale of the form Q2
s (Y ) = k2

0 Y
−δ eωY . (The exponential

comes from the constant in the velocity of the traveling wave, and the power
law correction comes from the subleading logarithm.) This scaling prop-
erty has an interesting phenomenological consequence for the inclusive DIS
cross-section, that one can express in terms of the forward dipole scattering
amplitude thanks to the optical theorem:

Σγ∗p(Y,Q
2) = Σ0

∫
d2x⊥

1∫

0

dz
∣∣ψ(z, x⊥, Q

2)
∣∣2 〈T (0,x⊥)〉

Y
. (40)

In this formula, ψ(z, x⊥, Q
2) is the light-cone wave function for a photon

of virtuality Q2 that splits into a quark–antiquark dipole of size x⊥, the
quark carrying the fraction z of the longitudinal momentum of the photon.
This wavefunction can be calculated in QED, and its only property that we
need here is that it depends only on the combination [m2 +Q2z2(1− z)2]x2

⊥
where m is the quark mass. If one neglects the quark mass, then Eq. (39)
implies a simple scaling for the γ∗p cross-section itself: Σγ∗p(Y,Q

2) =
Σγ∗p(Q

2/Q2
s (Y )). Such a geometrical scaling [26] has been found in the DIS

experimental results11, as shown in figure 8. A comment is in order here;
as the approach based on collinear factorization and the DGLAP equation
succeeds at reproducing much of the inclusive DIS data, it certainly also
reproduces this scaling that is present in the data. However, this approach
does not provide an explanation for the scaling. It arises via some fine tuning
of the initial condition for the DGLAP evolution. In contrast, in the Color
Glass Condensate description of DIS, this scaling is almost automatic.

11 In addition to explaining geometrical scaling, saturation inspired fits of DIS data are
quite successful at small x. See [27].
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Fig. 8. Photon–proton total cross-section measured at HERA, displayed against

τ ≡ Q2/Q2

s
(Y ).

4. Nucleus–nucleus collisions

4.1. Introduction

Up to now, we only considered DIS, in which a possibly saturated proton
or nucleus is probed by an elementary object12 — a virtual photon that has
fluctuated into a quark–antiquark dipole. In such a situation, the scattering
amplitude can be written in closed form as a product of Wilson lines, and
its energy dependence can be obtained either from Balitsky’s equations or
from the JIMWLK evolution of the distribution of sources that produce
the color field of the proton. There are, however, interesting problems that
involve two densely occupied projectiles. The archetype of such a situation is
a high-energy nucleus–nucleus collision. In these collisions, one of the main
challenges is to calculate the multiplicity of the particles (gluons at leading
order) that are produced at the impact of the two nuclei. In the Color Glass
Condensate framework, one has to couple the gauge fields to a current that
receives contributions from the color sources of the two projectiles,

Jµ = δµ+δ(x−)ρ1(x⊥) + δµ−δ(x+)ρ2(x⊥) . (41)

The fact that there are two strong sources leads to complications that are
two-fold:

12 Proton–nucleus collisions also belong to this category. Examples of processes have
been studied in [28].



2438 F. Gelis

• there is no explicit formula that gives the multiplicity (or any other
observable) in terms of Wilson lines in the collision of two saturated
projectiles,

• if one is interested by the particle spectrum at some rapidity Y , one
must evolve the two projectiles from their respective beam rapidity
to Y . The question of the factorization of the large logarithms of 1/x
is now much more complicated than in DIS.

The complications one is facing in this problem are illustrated in figure 9.
In the saturated regime, reactions initiated by more than one parton (color
source in the CGC description) in each projectile are important, and there
can be a superposition of many independent scatterings, that will appear as
disconnected graphs.

Fig. 9. Typical contributions to gluon production in hadronic collisions. The dots

denote the color sources. Left: dilute regime. Right: saturated regime.

4.2. Power counting and bookkeeping

In the saturated regime, the color density ρ (represented by dots in
figure 9) is non-perturbatively large ρ ∼ g−1. This is due to the fact that
the occupation number, proportional to

〈
ρρ

〉
, is of order α−1

s in this regime.
Thus for a connected graph, the order in g is given by

1

g2
gng g2n

L , (42)

where ng is the number of produced gluons and n
L

the number of loops. One
can see that this formula is independent of the number of sources ρ attached
to the graph. Indeed, since each source brings a factor g−1 and is attached
at a vertex that brings a factor g, each source counts as a factor 1. If the
diagram under consideration is made of several disconnected subgraphs, one
should apply Eq. (42) to each of them separately.

Among all the diagrams that appear in the calculation of particle produc-
tion, a special role is played by the so-called vacuum diagrams — diagrams
that have ng = 0 external gluons. They only connect sources of the two
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projectiles, and are thus contributions to the vacuum-to-vacuum amplitude〈
0out

∣∣0in

〉
, hence their name. The order of connected vacuum diagrams is

g2(n
L
−1). An extremely useful property is that the sum of all the vacuum

diagrams (connected or not) is the exponential of those that are connected
(that we denote iV [j] where j is the external current due to the color sources
of the two projectiles)

∑ (
all the vacuum

diagrams

)
= exp

{∑ ( connected

vacuum diagrams

)}
≡ eiV [j] . (43)

The reason why vacuum diagrams are important in our problem is that it
is possible to write all the time ordered products of fields — that enter in
the reduction formulas for gluon production amplitudes — as derivatives of
exp(iV [j])

〈
0out

∣∣TA(x1) · · ·A(xn)
∣∣0in

〉
=

δ

iδj(x1)
· · · δ

iδj(xn)
eiV [j] . (44)

Thanks to this property, one can write a very compact formula for the prob-
ability Pn of producing exactly n gluons in the collision [29–31],

Pn =
1

n!
Dn eiV [j+] e−iV ∗[j−]

∣∣∣
j+=j−=j

, (45)

where the operator D is defined by13





D ≡
∫

x,y

G0
+−(x, y) �x�y

δ

δj+(x)

δ

δj−(y)
,

G0
+−(x, y) ≡

∫
d3p

(2π)32Ep
eip·(x−y) .

An important point to keep in mind about Eq. (45) is that the external
currents must be kept distinct in the amplitude and complex conjugate am-
plitude until all the derivatives contained in D have been taken. Only then
one is allowed to set j+ and j− to the physical value of the external current.
The propagator G0

+−, that has only on-shell momentum modes, is the usual
cut propagator that appears in Cutkosky’s cutting rules [12,32]. The opera-
tor D acts on cut vacuum graphs by removing two sources (one on each side
of the cut, i.e. a j+ and a j−), and by connecting the points where they were

13 We are a bit careless here with the Lorentz indices, polarization vectors, etc., because
our main goal is to highlight the general techniques for keeping track of the diagrams
that contribute to particle production in the saturated regime.
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attached by the cut propagator G0
+−. In fact, since Pn is obtained by acting

n times with the operator D, it is the sum of all the cut vacuum diagrams in
which exactly n propagators are cut. Eq. (45) also makes obvious the fact
that the probabilities Pn do not have a meaningful perturbative expansion
in the saturated regime, because the sum iV [j] of the connected vacuum
diagrams starts at the order g−2.

By summing Eq. (45) from n = 0 to ∞ while keeping j+ and j− distinct,
one obtains the sum of all the cut vacuum diagrams with the current j+ in
the amplitude and j− in the complex conjugate amplitude to be

∑ (
all the cut

vacuum diagrams

)
= eD eiV [j+] e−iV ∗[j−] . (46)

When we set j+ = j−, this sum becomes
∑

n Pn, and therefore it should be
equal to 1 because of unitarity. Eq. (45) is very useful, because it allows
to replace infinite sets of Feynman diagrams by simple algebraic equations.
Similarly, the fact that Eq. (46) is 1 when j+ = j− corresponds to a cancel-
lation of an infinite set of graphs14, that would be very difficult to see at the
level of diagrams.

4.3. Inclusive gluon spectrum

Eq. (45) leads to compact formulas for moments of the distribution
of produced particles. The first moment — the average multiplicity —
reads [29]

N =
∞∑

n=0

nPn = D
{
eD eiV [j+] e−iV ∗[j−]

}

j+=j−=j
. (47)

With the help of Eq. (46), this formula tells us that N is given by the action
of the operator D on the sum of all the cut vacuum diagrams. In plain
English, this translates into: take a cut vacuum diagram (connected or not),
remove a source on each side of the cut, and put a cut propagator where the
sources were attached. Depending on whether the cut vacuum diagram one
starts from is connected or not, one gets two different topologies, displayed
in figure 10. Each of the blobs in these diagrams can be any connected
graph, and must be cut in all the possible ways15. Thus, only connected
graphs contribute to the multiplicity.

14 This cancellation is closely related to the Abramovsky–Gribov–Kancheli cancellation
[33].

15 Note that by not performing the d3p integration contained in the explicit cut prop-
agator, one obtains the inclusive gluon spectrum dN/d3p instead of the integrated
multiplicity.
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Fig. 10. The two topologies contributing to the average gluon multiplicity N . In

each blob, one must sum over all the possible ways of cutting the propagators.

An important point is that, even though the perturbative expansion for
the Pn is not well defined, the multiplicity (and more generally any moment
of the distribution Pn) can be organized in a sensible perturbative series16.
The Leading Order is obtained by keeping only the leading order vacuum
graphs, i.e. those that have no loops:

N
LO

=
∑

trees

∑

cuts

tree

tree

. (48)

Thus N starts at the order g−2. In Eq. (48), for each tree diagram, one
must sum over all the possible ways of cutting its lines. The simplest way
of doing this is to use Cutkosky’s rules:

• assign + or − labels to each vertex and source of the graph, in all
the possible ways (there are 2n terms for a graphs with n vertices and
sources). A + vertex has a coupling −ig and a − vertex has a coupling
+ig,

• the propagators depend on which type of labels they connect. In mo-
mentum space, they read:

G0
++(p) = i/(p2 + iǫ) (standard Feynman propagator)

G0
−−(p) = −i/(p2 − iǫ) (complex conjugate of G0

++(p))

G0
+−(p) = 2πθ(−p0)δ(p2) , G0

−+(p) = 2πθ(p0)δ(p2) . (49)

A quick analysis shows that, when one sets j+ = j−, summing over the ±
labels at each vertex produces combinations of propagators,

G0
++(p) −G0

+−(p) = G0
R
(p) , G0

−+(p) −G0
−−(p) = G0

R
(p) , (50)

16 The fact that this is possible for N but not for the Pn’s themselves is due to the fact
that the only graphs that contribute to N are connected. This is a consequence of
the AGK cancellation.
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where G0
R
(p) is the retarded propagator17. Thus, for a given tree graph,

doing the sum over the cuts simply amounts to replacing all its propagators
by retarded propagators. The last step is to perform the sum over all the
trees. It is a well known result that the sum of all the tree diagrams that
end at a point x is a solution of the classical equations of motion of the field
theory under consideration. In our case, this sum is a color field Aµ(x) that
obeys the Yang–Mills equations

[Dµ,Fµν ] = Jν , (51)

where Jν is the color current associated to the sources ρ1,2 that represent
the incoming projectiles (see Eq. (41)). The boundary conditions obeyed
by Aµ(x) depend on the nature of the propagators that entered in the sum
of tree diagrams. When these propagators are all retarded, one gets a re-
tarded solution of the Yang–Mills equations, that vanishes in the remote
past, limx0→−∞Aµ(x) = 0. The precise formula for the gluon spectrum in
terms of this solution of the Yang–Mills equations reads

dN
LO

dY d2p⊥
=

1

16π3

∫
d4xd4y eip·(x−y) �x�y

∑

λ

ǫµλǫ
ν
λ Aµ(x)Aν(y) . (52)

Solving the Yang–Mills equations is an easy problem in the case of a single
source ρ, but turns out to be very challenging when there are two sources
moving in opposite directions. The Schwinger gauge, defined by the con-
straint Aτ ≡ x+A− + x−A− = 0, is quite useful because it alleviates the
need to ensure that the current Jν is covariantly conserved18. In this gauge,
A+ = 0 where J− 6= 0 and conversely, which makes this condition trivial.
Moreover, in this gauge, one can find the value of the gauge field on a time-
like surface just above the light-cone (at a proper time τ = 0+) simply by
matching the singularities across the light-cone. These initial conditions [34]
can be written as19

Ai(τ = 0,x⊥) = Ai
1(x⊥) + Ai

2(x⊥) ,

Aη(τ = 0,x⊥) = − ig
2

[
Ai

1(x⊥) , Ai
2(x⊥)

]
,

Aτ = 0 (gauge condition) , (53)

17 In momentum space, G0
R
(p) = i/(p2 + i sign(p0) ǫ). Therefore, in coordinate space, it

is proportional to θ(x0 − y0), hence its name.
18 In general gauges, one has to enforce the condition

ˆ

Dµ, Jµ
˜

= 0 (this is a consequence
of Jacobi’s identity for commutators). Because this relation involves a covariant
derivative rather than an ordinary derivative, the radiated field leads to modifications
of the current itself.

19 An interesting feature of the gauge fields at early times after the collision — a phase
recently named “glasma” — is that the chromo-electric and magnetic fields are purely
longitudinal, while they were transverse to the beam axis just before the collision [35].
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where Aη ≡ τ−2(x−A+ − x=A−). In this formula, Ai
1(x⊥) and Ai

2(x⊥) are
the gauge fields created by each nucleus 20 below the light-cone:

Ai
1 =

i

g
U1(x⊥)∂iU †

1 (x⊥) , U1(x⊥) = T+ exp ig

∫
dx+T a 1

∇
2
⊥
ρa
1(x

+,x⊥) ,

Ai
2 =

i

g
U2(x⊥)∂iU †

2 (x⊥) , U2(x⊥) = T− exp ig

∫
dx−T a 1

∇
2
⊥
ρa
2(x

−,x⊥) .

(54)

Therefore, the problem of solving the Yang–Mills equations from x0 = −∞
to x0 = +∞ is reduced to solving them in the forward light-cone from
a known initial condition21.

Since our problem is invariant under boosts in the z direction, one can
completely eliminate the space-time rapidity η from the equations of motion
(and the initial conditions in Eq. (53) are also η-independent). Thus, in the
forward light-cone, one has to solve numerically [36] equations of motion in
time and two spatial dimensions, and then to evaluate Eq. (52). The result
of this computation is displayed in figure 11. In this computation, the MV
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Fig. 11. The gluon spectrum at leading order in the CGC framework.

model was used as the distribution of the sources ρ1 and ρ2. Therefore, the
dependence of the spectrum on the momentum rapidity Y of the produced
gluon cannot be obtained in this calculation, and only the k⊥ dependence
is shown. The main effect of gluon recombinations on this spectrum is that
it reduces the yield at low transverse momentum, k⊥ . Qs. Indeed, in

20 Because retarded solutions are causal, the field below the light-cone cannot depend
simultaneously on ρ1 and ρ2.

21 At τ > 0, the YM equations are the vacuum ones, since all the sources are on the
light-cone.
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a fixed order calculation in perturbative QCD, the spectrum would behave
as k−4

⊥ . In the CGC picture, the singularity of the spectrum at low k⊥ is
only logarithmic22, and is therefore integrable.

Note that a similar study has also been performed for the initial pro-
duction of quarks in nucleus–nucleus collisions [37]. The inclusive quark
spectrum can be calculated by solving the Dirac equation on top of the
classical field A, also with retarded boundary conditions.

4.4. Loop corrections to the gluon spectrum

The only quantities that have been evaluated in this framework so far
are the gluon and the quark spectra, both at leading order. However, we
a priori know what diagrams contribute to the gluon and quark multiplicities
to all orders. There is therefore a well defined and systematic procedure
to compute corrections to the previous results. Loop corrections to gluon
production are very relevant for the following reasons:

• They contain terms that are divergent due to unbounded integrals over
longitudinal momenta, very similar to the divergences encountered in
the derivation of the BK equation. One should verify whether these
divergences can be absorbed in the distributions W [ρ1] and W [ρ2] of
the color sources of each projectile. This factorization is crucial for
the internal consistency of the CGC framework.

• It has been noted recently that the boost invariant solution Aµ(x) of
the Yang–Mills equations is unstable23; rapidity dependent perturba-
tions to this solution grow exponentially in time. Loop corrections
generate this kind of rapidity dependent perturbations. Tracking all
these terms and resumming them is very important in order to get
meaningful answers from the CGC regarding the momentum distribu-
tion of the produced gluons, and may be relevant in the problem of
thermalization in heavy ion collisions.

Note that these two items address very different stages of the collision pro-
cess. The first relates to the incoming wavefunctions (and as such should
be independent of the subsequent collision), while the second issue is about
what happens in the final state after the collision. Therefore, we should aim
at writing the 1-loop corrections in a way that separates the initial and final
state as clearly as possible.

22 If the final Fourier decomposition is performed at a finite time τ , the spectrum is
completely regular when k⊥ → 0.

23 This instability is very similar to the Weibel instability that occurs in anisotropic
plasmas [40,41].
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Let us start by listing the relevant diagrams: the 1-loop corrections to the
average multiplicity are shown in the diagrams of figure 12. The topology

Fig. 12. 1-loop diagrams contributing to the gluon spectrum.

on the left is very similar to the one already encountered at tree level, except
that one of the blobs has now a loop correction in it. The topology on the
right is new; but it is in fact similar to what we had to evaluate in the case of
the quark spectrum [37,38], except that the quark loop must be replaced by
a gluon loop. The NLO contribution to the gluon spectrum can be written
as

dN
NLO

dY d2p⊥
=

1

16π3

∫
d4xd4y eip·(x−y) �x�y

∑

λ

ǫλµǫ
λ
ν

[
Aµ(x)δAν(y)

+δAµ(x)Aν(y) +Gµν
+−(x, y)

]
. (55)

The first two terms are the contribution of the diagram on the left of figure 12
(the loop can be in either of the two blobs), and the last term on the second
line comes from the diagram on the right. The field δA that appears on the
first line is the 1-loop correction to A; and it obeys the linearized equation
of motion for small fluctuations. Gµν

+− is the cut propagator of a gluon, with
the classical field A in the background.

Let us now illustrate how one can separate the initial state from the final
state in the term that contains Gµν

+−(x, y). First, by analogy with the case
of quark production [37], we can write

∫
d4xd4yeip·(x−y)�x�y

∑

λ

ǫλµǫ
λ
ν G

µν
+−(x, y) =

∑

λ,λ′

∫
d3q

(2π)32Eq

∣∣∣T λλ′

R
(p,q)

∣∣∣
2
,

T λλ′

R
(p,q) ≡ lim

x0→+∞

∫
d3x eip·x (∂0

x − iEp) ǫλµ a
µ
λ′q

(x) , (56)

where aµ
λ′q(x) is a small fluctuation of the gauge field on top of Aµ, with

initial condition ǫµλ′eiq·x when x0 → −∞. The equation of motion of this
fluctuation is obtained by writing the Yang–Mills equations for A + a and
by linearizing it in a. A central formula in order to separate the initial and
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final states is the following24

a(x) =

∫

τ=0+

d3y
[
a(0,y) · T y

]
A(x) , (57)

where (0,y) denotes a point located on the light-cone (τ = 0) (y represents
any set of three coordinates that map the light-cone) and where T y is the
generator of translations of the initial fields at the point y on the light-
cone. In this formula, the classical field A is considered as a functional
of its initial condition A(0,y) on the light-cone. The proof of Eq. (57) is
straightforward25 , but its diagrammatic interpretation is more interesting.
Note first that Aµ(x), seen as a functional of its initial condition on the light-
cone, can also be represented by tree diagrams, as illustrated in the left panel
of figure 13. (This can be seen from the Green’s formula for A(x).) The
action of the operator T y on the classical field A(x) is to replace one of the

A(x) a(x)

a(0,y)

Fig. 13. Left: diagrammatic representation of A as a function of its initial condition

on the light-cone (the open dots represent the initial A(0,y)). Right: propagation

of a small fluctuation on top of the classical field.

open dots in figure 13 by the fluctuation a(0,y), represented by a filled dot
in the right panel of figure 13. The diagram one gets after this is nothing but
a contribution to the propagation of a small fluctuation over the classical

24 To avoid encumbering the equations with indices of various kinds, we are suppressing
all the indices in this and the following formula.

25 Write the Green’s formula that expresses A(x) in terms of the initial A(0, y), insert
it in Eq. (57), and check that this leads to the Green’s formula that relates a(x) to
its initial condition a(0, y).
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field. Plugging Eq. (57) in Eq. (56), this quantity becomes

lim
x0=y0→+∞

∫
d3xd3y eip·(x−y) (∂0

x − iEp)(∂0
y + iEp)

∑

λ

ǫλµǫ
λ
ν

×
∫

τ=0+

d3ud3v
∑

λ′

∫
d3q

(2π)32Eq

×
[[
aλ′q(0,u) · T u

]
Aµ(x)

] [[
a∗λ′q(0,v) · T v

]
Aν(y)

]
. (58)

The brackets are crucial in this formula, in order to limit the scope of the
derivatives contained in the operators T u and T v. Note that, if it were not
for these brackets, the first line and the two A’s of the second line would be
nothing but the LO gluon spectrum. It turns out that, after one adds the
first two in Eq. (55), the NLO correction to the spectrum can be written as

dN
NLO

dY d2p⊥
=




∫

τ=0+

d3u
[
δA(0,u) · T u

]

+

∫

τ=0+

d3ud3v
[
Σ (u,v) · T uT v

]

 dN

LO

dY d2p⊥
, (59)

where the LO spectrum is considered as a functional of the initial classical
field on the light-cone. In this equation, δA(0,u) is the value of δA on the
light-cone, and the 2-point Σ (u,v) is defined as

Σ (u,v) ≡ 1

2

∑

λ′

∫
d3q

(2π)32Eq

aλ′q(0,u)a∗λ′q(0,v) . (60)

Note that δA(0,u) and Σ (u,v) are in principle calculable analytically.
Eq. (59) realizes the separation we were seeking of the initial and final
states. Indeed, the operator in the square bracket depends only on what
happens below the light-cone, i.e. before the collision. On the contrary, the
LO spectrum seen as a functional of the initial classical field A depends
only on the final state dynamics. The other benefit of this formula is that is
expresses the NLO correction as a perturbation of the LO one; this property
— that seems generalizable to other inclusive observables — suggests the
universality of the initial state divergences and their factorizability.

From Eq. (59), it is easy to see that the coefficients δA(0,u) and Σ (u,v)
are formally infinite. For Σ (u,v) for instance, the integration over the lon-
gitudinal component of the momentum q in Eq. (60) diverges. A similar
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divergence occurs in the loop contained in δA(0,u). The fact that these
divergences arise in the first factor of Eq. (59) indicates that they are re-
lated to the evolution of the initial projectiles prior to the collision. These
divergences can be momentarily regularized by introducing cutoffs Y0, Y

′
0 in

rapidity around the rapidity Y at which the spectrum is calculated. Thus,
δA(0,u) and Σ (u,v) become finite but depend on these unphysical cutoffs.
To be consistent, the distribution of the sources ρ1 and ρ2 should be evolved
from the beam rapidities to Y0 and Y ′

0 , respectively. Thus, the complete
formula for the LO+NLO spectrum, including the average over the sources,
should be

dN
LO+NLO

dY d2p⊥
=

∫ [
Dρ1

][
Dρ2

]
W

Ybeam−Y0
[ρ1]WYbeam+Y ′

0

[ρ2]

×


1+

∫

τ=0+

d3u
[
δA(0,u) · T u

]
+

∫

τ=0+

d3ud3v
[
Σ (u,v) · T uT v

]



Y0

Y ′

0︸ ︷︷ ︸

dN
LO

dY d2p⊥
,

OY0

Y ′

0
[ρ1, ρ2] (61)

where the subscript Y ′
0 and superscript Y0 indicate that the momentum

integrals contained in the bracket have cutoffs in rapidity. Recall that the
LO spectrum in the right hand side is a function of A on the light-cone,
which is itself a function of ρ1,2. The factorizability of these divergences in
the initial state is equivalent to the independence of the previous formula
with respect to the unphysical Y0 and Y ′

0 . Recent work indicates that

∂OY0

Y ′

0
[ρ1, ρ2]

∂Y0
= H†[ρ1] , (62)

which is enough to ensure a cancellation of the leading Y0 dependence.
A similar relation holds, that eliminates the dependence on Y ′

0 .
Eq. (59) also allows us to discuss the issue of the instability of the boost

invariant classical solution. These instabilities manifest themselves in the
fact that the action of T u on A(x) diverges when the time x0 goes to infinity.
Indeed,

T uA(x) ∼ δA(x)

δA(0,y)
(63)

is a measure of how A(x) is sensitive to its initial condition. Therefore, if the
solution A(x) is unstable, small perturbations of its initial condition lead to
exponentially growing changes in the solution. From the numerical study of
these instabilities (see figure 14), one gets [40] T uA(x) ∼ e

√
µτ , where µ is



Gluon Saturation from DIS to Nucleus–Nucleus Collision 2449

0 500 1000 1500 2000 2500 3000 3500
g

2 µ τ

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

m
ax

 τ
2  T

ηη
 / 

g4
 µ

3  L
2

c
0
+c

1
 Exp(0.427 Sqrt(g

2 µ τ))

c
0
+c

1
 Exp(0.00544 g

2 µ τ)

Fig. 14. Time dependence of small fluctuations on top of the boost independent

classical field.

of the order of the saturation momentum. This means that, although the
1-loop corrections are suppressed by a factor αs compared to the LO, some
of these corrections are enhanced by factors that grow exponentially in time
after the collision. At first sight, one may expect a complete breakdown of

the CGC description at τmax ∼ Q−1
s ln2

(
1
αs

)
, i.e. the time at which the

1-loop corrections become as large as the LO contribution. The only way
out of this conclusion is to resum all these enhanced corrections in the hope
that the resummed series is better behaved when τ → +∞. Let us assume
for the time being that we have performed this resummation, and that the
sum of these enhanced terms generalize Eq. (59) to read

dN resummed

dY d2p⊥
= Z[T u]

dN
LO

[A(0,u)]

dY d2p⊥
, (64)

where Z[T u] is a certain functional of the operator T u. In the right hand
side, we have emphasized the fact that the LO spectrum is a functional of
the initial classical field on the light-cone. This formula can be written in
a more intuitive way by performing a Fourier transform of Z[T u],

Z[T u] ≡
∫ [

Da(u)
]
ei

R

τ=0+
d3u

[
a(u)·Tu

]
Z̃[a(u)] . (65)

In this formula, the functional integration [Da(u)] is in fact an integration
over two fields: the fluctuation a(u) itself and its derivative normal to the
light-cone (n · ∂u)a(u). Thanks to the fact that T u is the generator of
translations of the initial conditions on the light-cone, the exponential in
the previous formula is the translation operator itself. Therefore, when this
exponential acts on a functional of the initial classical field A(0,u), it gives
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the same functional evaluated with a shifted initial condition A(0,u)+a(u).
Therefore, we can write

dN resummed

dY d2p⊥
=

∫ [
Da(u)

]
Z̃[a(u)]

dN
LO

[A(0,u) + a(u)]

dY d2p⊥
. (66)

We see that the effect of the resummation is simply to add fluctuations to the
initial conditions of the classical field, with a distribution that depends on the
details of the resummation26. It is easy to understand why these fluctuations
are crucial in the presence of instabilities: despite the fact that they are
suppressed by an extra power of αs, the instabilities make them grow and
eventually become as large as the LO. One can also see that the resummation
has the effect of lifting the time limitation τ ≤ τmax. Indeed, after the
resummation, the fluctuation a(u) has entered in the initial condition for
the full Yang–Mills equation, whose non-linearities prevent the solution from
blowing up. A very important question is whether these instabilities fasten
the local thermalization of the system formed in heavy ion collisions.

4.5. Summary and outlook

If the initial state factorization works as expected, and after the resum-
mation of the leading contributions of the instability, the formula for the
gluon spectrum should read

dN

dY d2p⊥
=

∫ [
Dρ1] [Dρ2

]
W

Ybeam−Y
[ρ1]WYbeam+Y

[ρ2]

×
∫ [

Da
]
Z̃[a]

dN
LO

[A(0,u)+a(u)]

dY d2p⊥
. (67)

This formula resums the most singular terms at each order in αs. Because
of their relation to the physics of the initial and final state, respectively, the

distributions W [ρ] generalize parton distributions, while Z̃[a] plays a role
similar to that of a fragmentation function27.

Note that, even after the resummations performed in the initial and
final states of Eq. (67), this formula still suffers from the usual problem of
collinear gluon splitting in the final state. This is not a serious concern in
heavy ion collisions though, because collinear singularities occur only when
one takes the τ → +∞ limit, and we do expect to have to switch to another
description (like hydrodynamics) long before this becomes a problem. In

26 In a recent work by one of the authors, using a completely different approach, the
spectrum of initial fluctuations was found to be Gaussian [42].

27 Naturally, this function has nothing to do with a gluon fragmenting into a hadron.
Instead, it is related to how classical fields become gluons.
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fact, the initial condition for hydrodynamics should be specified in terms of
the energy-momentum tensor, which is infrared and collinear safe because
it measures only the flow of energy and momentum.

A more important problem, that has still not received a satisfactory
answer, is to understand how the initial particle spectrum — or the local
energy momentum-tensor — reaches a state of local thermal equilibrium.

I would like to thank the organizers of the school — and in particular
C. Royon — for their invitation to present these lectures, and for their
efforts in creating an enjoyable and stimulating atmosphere. This work is
supported in part by Agence Nationale de la Recherche via the programme
ANR-06-BLAN-0285-01.
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