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We propose a simple model for the total pp/pp̄ cross-section, which is
a generalization of the minijet model with the inclusion of a window in
the pT-spectrum associated to the saturation physics. Our model implies
a natural cutoff for the perturbative calculations which modifies the energy
behavior of this component, so that it satisfies the Froissart bound. Includ-
ing the saturated component, we obtain a satisfactory description of the
very high energy experimental data.

PACS numbers: 12.38.Lg, 13.60.Hb, 13.85.–t, 13.85.Dz

Long ago a QCD based explanation for the growth of the hadronic
cross-sections was proposed by Gaisser and Halzen [1]. In their approach,
called minijet model, the total cross-section can be decomposed as σtot =
σ0 + σpQCD where σ0 characterizes the nonperturbative contribution and
σpQCD is calculable in perturbative QCD. Unfortunately, this approach im-
plies a power-like energy behavior for the total cross-section, violating the
Froissart bound. Several attempts were made to reduce this too fast
growth [2].

At high energies the small-x gluons in a hadron wavefunction should
form a Color Glass Condensate (CGC) [3]. This new state of matter is
characterized by gluon saturation and by a typical momentum scale, the
saturation scale Qs, which determines the critical line separating the linear
and saturation regimes of the QCD dynamics.
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Some attempts to reconcile the QCD parton picture with the Froissart
limit using saturation physics were proposed in recent years [4]. Here we
generalize the minijet model assuming the existence of a saturation window
between the nonperturbative and perturbative regimes of QCD, which grows
when the energy increases, since Qs grows with the energy. The cross-section
is then written as:

σtot = σ0 + σsat + σpQCD , (1)

where the saturated component, σsat, contains the dynamics of the interac-
tions at scales lower than the saturation scale. In our approach the saturation

scale is a cutoff at low transverse momenta of the perturbative cross-section,
σpQCD, which is given by:
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where fi(x,Q2) is the parton density of the species i, with fractional mo-
mentum x1 (or x2) in the proton and σ̂ij is the elementary parton–parton
cross-section. We have used the MRST parton distributions [5]. The satu-
ration scale is given by Q2

s (x) = Q2
0(x0/x)λ, where the parameters Q2

0 = 0.3
GeV2 and x0 = 0.3× 10−4 were fixed by fitting the ep HERA data. Follow-
ing [6] we take x = q2

0/s and q0 = 1.4 GeV. Therefore we have

Q2
s (s) ∝ sλ .

In Fig. 1 we show in arbitrary units the energy behavior of the ratio
σpQCD/ ln2 s (solid lines) and σsat/ ln2 s (dashed lines) for two choices of λ.
As it can be seen the choice λ = 0.25 leads to a fast growth of σpQCD until√

s = 104 GeV. From this point on, it grows slower than ln2 s. A slight
increase in λ (= 0.3) is enough to tame the growth of σpQCD already at√

s ≃ 103 GeV. On the other hand, a decrease in λ (= 0.1) would postpone
the fall of the ratio to very high energies

√
s ≃ 106 GeV. Although the

energy at which the behavior of the cross-section becomes “sub-Froissart”
may depend on λ, one conclusion seems very robust: once λ is finite, at

some energy the growth of the cross-section will become weaker than ln2 s.
For the saturated component we shall use the model proposed in Ref. [6]:

σsat =

∫

d2r⊥|Ψp(r⊥)|2σdip(x, r⊥) , (3)

where the proton wave function Ψp is chosen to be a gaussian with the typical
size of the proton [7] and the dipole-proton cross-section reads:

σdip(r⊥, x) = 2

∫

d2bN (x, r⊥, b) . (4)
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Fig. 1. Perturbative (solid lines) and saturated components (dashed lines) of the

total cross-section (normalized by ln2 s).

We take the dipole scattering amplitude from [8] (we call it IIM) and, fol-
lowing [6], introduce the b dependence by witting:

N (x, r⊥, b) = 1 − e−κS(b)/S(0) , (5)

where the parameter κ is related to the b = 0 solution through κ = − ln[1−
N (b = 0)]. In (5), the profile function is assumed to be S(b) = e(−b2/R2

p
),

where Rp = 0.7 fm is the proton radius.
In Fig. 2 we present our results for the total cross-section for different

values of λ and compare them with experimental data. For references and
details see [7]. σ0 was assumed to be energy independent [9], important only
at lower energies and therefore was not included in our calculations. There is
only a small range of values of λ which allow us to describe the experimental
data. If, for instance, λ = 0.4 the resulting cross-section is very flat and
clearly below the data, while if λ = 0.1 (not shown in figure) the cross-
section grows very rapidly deviating strongly from the experimental data.
The best choice for λ is in the range 0.25–0.30, which is exactly the range
predicted in theoretical estimates using CGC physics and usually obtained
by the saturation models for the ep HERA data. In [7] we have replaced
the IIM dipole cross-section by the more modern ones given in [10] but the
results do not change very much.
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Fig. 2. Energy behavior of the total pp/pp̄ cross-section for different values of λ.
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