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We discuss the solutions of QCD evolution equations with saturation
in the high energy limit. We present a general argument showing that,
in the running coupling case, the Next-to-Leading-Logarithmic (NLL) and
higher order terms are irrelevant for the universal asymptotic features of
the solutions.
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1. Introduction

The BFKL equation [1] is known to provide an incomplete description
of the hadronic or nuclear collisions in the high energy limit of QCD. That
evolution equation relies indeed on the assumption of a dilute partonic con-
tent of incoming particles, but it inevitably leads to denser and denser ones.
It also violates the Froissart bound and therefore unitarity. At high density,
and hence at very high energy, coherent collective effects modify the BFKL
equation by reducing the emission of additional soft gluons. That mecha-
nism of gluon saturation tames the BFKL growth of the cross sections, and
is expected to restore unitarity. Several evolution equations with saturation
have been derived, like the B-JIMWLK [2, 3] or the BK [2, 4] equations,
implementing nonlinear effects on top of the BFKL equation. However, the
result discussed here is independent of the precise saturation mechanism at
work.
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The features of gluon saturation are well known at the leading logarith-
mic accuracy (LL) with fixed QCD coupling. The saturation scale Qs(Y ),
which is the typical momentum scale for the onset of nonlinear effects, is
related to the color correlation length in the transverse plane. Hence, that
scale plays the role of an infrared cut-off for the gluons radiation. By anal-
ogy with the Fisher and Kolmogorov–Petrovsky–Piskounov equation, it has
been understood [5] that gluon saturation also back-reacts onto the dilute
linear regime.By linearity, the solutions of the fixed couplingBFKLequation
can be decomposed as sum of wave solutions, interpreting formally the
rapidity Y as time and L = log k2

T/Λ2 as space position for the wave (kT

being the gluon’s transverse momentum). If a saturation mechanism is at
work, one of these waves solutions, the critical one, is selected dynamically in
a L interval which is growing with Y . Therefore, the solution loses memory
of its initial condition during the evolution, even in the linear domain. The
asymptotic shape of the solution and the asymptotic evolution of the satura-
tion scale are then universal. That selection mechanism provides a natural
explanation for the geometric scaling [6] observed in the HERA data, as the
critical wave solution has precisely that scaling property.

One should also consider the effect of running QCD coupling and of
higher logarithmic orders, in order to do reliable studies. A first step in that
direction consists in replacing by hand the fixed coupling in the LL equation
by a running coupling, taken for example at a scale equal to the parent gluon
transverse momentum kT. In that case, the mechanism of selection of the
critical wave solution seems to hold. However, the running coupling leads to
a quite different universal asymptotic behavior of the solution [5, 7] (see [8]
for a review). The evolution is slower, and in particular the saturation scale

behaves as log Q2
s (Y ) ∝

√
Y , instead of Y in the fixed coupling case.

On the other hand, one can introduce NLL contributions to the ker-
nel, but keeping the coupling fixed, so that the linear part of the evolution
equation writes formally

∂Y N(L, Y ) = ᾱ
[

χLL(−∂L) + ᾱ χNLL(−∂L) + O(ᾱ2)
]

N(L, Y ) , (1)

where ᾱ = Nc αs/π, and N is the Fourier conjugate of the dipole target
amplitude. In that case, the asymptotic behavior of the solution is similar
to the one in the fixed coupling LL case, except that the value of the critical
parameters are changed, and depends on the NLL kernel eigenvalues [9].

2. Saturation with running coupling and a NLL kernel

Let us now discuss the most complete case, with both running coupling
and higher orders. The result presented here was first found in Ref. [10]
and Ref. [11]. It is possible to resumm some of the NLL and higher order
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contributions by letting the coupling run, for example at the scale kT, i.e.

taking ᾱ(k2
T) = 1/bL. Then, Eq. (1) rewrites

∂Y N(L, Y )=
1

bL

[

χLL(−∂L)+
1

bL
χ(1)(−∂L)+O

(

(

1

bL

)2
)]

N(L, Y ) . (2)

Using the ω-expansion method of Ref. [12], one replaces Eq. (2) by the
effective equation

∂Y N(L, Y ) =
1

bL
χeff(−∂L, ∂Y )N(L, Y ) , (3)

with a kernel whose eigenvalues are

χeff(γ, ω) = χLL(γ)

[

1 +
ω χ(1)(γ)

χ2
LL(γ)

+ O
(

ω2
)

]

. (4)

In the brackets in the previous expression, the terms of n-th order ωn are
supposed to have poles of order n at most, at γ = 0 and γ = 1. Hence, that
ω-expansion is safe only when ω ≪ γ, 1 − γ. Assuming that condition to
be fulfilled, if one tries to solve Eq. (3) in the large Y limit using Laplace
transform, one gets the position of the saddle-point ωs ∼ Y −1/2. Thus, for
large enough Y (in practice several rapidity units), the ω-expansion will be

safe, and we will have log N ∝
√

Y and log Q2
s (Y ) ∝

√
Y . Expanding the

kernel of Eq. (3) around ω = 0 and changing variable Y into
√

Y , one gets

bL

2
√

Y
∂√Y N(L, Y ) = χeff(−∂L, 0) N(L, Y )

+

[

1

2
√

Y
χ̇eff(−∂L, 0)∂√Y +O

(

∂2√
Y

)

]

N(L, Y ) , (5)

where χ̇eff stands for the derivative with respect to ω. Thanks to Eq. (4),
the first line in Eq. (5) is the LL BFKL equation with running coupling, and
the second line contains the higher order terms. The relevant regime de-
termining the universal asymptotic properties of the solution corresponds to
L ∝

√
Y ≫ 1, and more precisely to τ ∼ Y 1/6 ≫ 1, with τ = log(k2

T/Q2
s (Y ))

being the geometric scaling variable. Solving Eq. (5) perturbatively at
large Y , one finds that the three leading orders, corresponding to O(Y 0),
O(Y −1/6) and O(Y −1/3), features only terms from the first line of Eq. (5).
The leading order give the dispersion relation between γ and ω. In the case
of the critical wave solution, which will be the relevant asymptotic solution
in the presence of gluon saturation, the second order selects γ = γc, solution
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of χLL(γc) = γc χ′
LL(γc). It determines the leading term of log N(L, Y ) and

of log Q2
s (Y ). Their next-to-leading terms are given by the O(Y −1/3) order

terms in Eq. (5). In N(L, Y ), it corresponds to the Airy diffusion factor.
Up to that order, the NLL kernel has not been relevant.

Therefore, we have shown that in the running coupling case, the universal
asymptotic solution in the linear regime derived in Refs. [5, 7] is valid not
only for LL evolution equations with saturation but also for NLL ones (or
even all orders ones). NLL terms in the kernel can modify the solution only
at subleading orders not calculated in Refs. [5, 7]. For example, the third
term in the large Y expansion of log Q2

s (Y ), which will be of order O(Y −1/6),
will be NLL dependant.

Saturation and running coupling are thus essential ingredients to un-
derstand the high energy limit of the partonic content of hadrons, whereas
other NLL or higher order contribution are not. One should however notice
that the behavior of the solutions of saturation equations is more subtle in
the running coupling case, and not fully understood [13], by contrast to the
fixed coupling case.
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