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Perturbative Quantum Chromodynamics (pQCD) predicts that the
small-x gluons in the hadron wavefunction should form a Color Glass Con-
densate (CGC), which has universal properties, which are the same for
nucleon or nuclei. Making use of the results in V.P. Goncalves, M.S. Kuger-
atski, M.V.T. Machado, F.S. Navarra, Phys. Lett. B643, 273 (2006), we
study the behavior of the anomalous dimension in the saturation models
as a function of the photon virtuality and of the scaling variable rQs, since
the main difference among the known parameterizations are characterized
by this quantity.

PACS numbers: 12.38.–t, 13.60.Hb, 25.75.Nq

1. Introduction

Signals of parton saturation have already been observed both in e–p deep
inelastic scattering at HERA and in d–Au collisions at RHIC. As the satu-
ration scales in HERA and RHIC are similar, we can check the universality
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property of the saturation physics in the gluon evolution in the target wave-
function, as claimed in the Color Glass Condensate formalism [2]. In other
words, the gluon evolution in the nucleon or nucleus should be the same.
In [1] we have showed that a small modification in the anomalous dimension
proposed in [3], is able to describe both sets of data: HERA and RHIC. This
can be an important signature of saturation physics.

In the first part of this note we will give some explanation about the
differences among saturation models. In the second part we will compare
the saturation models in the forward dipole cross-section. Next, we will
present how the anomalous dimension evolves with the scaling variable rQs

and with the photon virtuality.

2. Saturation models

Several models for the forward dipole cross-section have been used in
the literature in order to fit the HERA and RHIC data. (To see how the
observables measured are related with these models, see for example [1].)
In particular, the phenomenological models, for example, from Refs. [4, 5]
have been proposed in order to describe the HERA data, while those from
Refs. [3,6] have been able to describe the d–Au RHIC data. Usually, in these
models the function N has been modeled in terms of a simple Glauber-like
formula:

N (x, r) = 1 − exp
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where γ is the anomalous dimension of the target gluon distribution. The
main difference among these models comes from the predicted behavior
for the anomalous dimension (for a detailed comparison among them, see
Ref. [7]), where the form of the anomalous dimension is constructed consider-
ing known analytical solutions to the BFKL equation. In this letter we only
present the form of the anomalous dimension given by the parameterization
in Ref. [3] (which we have called by DHJ model):
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with QT = Qs(Y ) a typical hard scale in the process, λ = 0.3 and d = 1.2.
γs = 0.63 is the anomalous dimension for BFKL evolution with saturation
boundary condition [8].
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3. Results and discussion

We start with a comparison between the models: GBW [4], IIM [5],
KKT [6], KKTm [9] and DHJ [3] (for a better understanding a check in
these references is suggested). In Fig. 1 we compare the behavior for the
forward amplitude N as a function of the squared dipole size. The BK line
correspond to a numerical solution of the BK equation with no-dependence
in impact parameter [10]. The behavior of the curves IIM, KKT and GBW
we have already discussed in [7].
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Fig. 1. Forward dipole cross-section, as a function of the size dipole.

As already said before, the main difference between these parameteri-
zations is the anomalous dimension. The difference between them can be
demonstrated studying the Q2 behavior of the effective anomalous dimen-
sion, defined by γeff = d lnN (rQs, Y )/d ln(r2Q2

s/4). In Fig. 2, γeff is shown
as a function of the scaling variable rQs (a) and the virtuality Q2 (b), using
the average dipole size as r = 2/Q. We see that, while the GBW model
presents a fast convergence to the DGLAP anomalous dimension at large
Q2, the IIM parameterization has a mild growth with virtuality, converging
to γ ≈ 0.85 at large Q2. The KKTm and IIM parameterizations are similar
at large Q2, but differ at small virtualities, with the KKTm one predicting
a smaller value. On the other hand, the predictions of the DHJ and GKMN
parameterizations are similar at small Q2 and differ at large virtualities.
Here is convenient to remember that the GKMN line represents the mod-
ification in the DHJ model. We have assumed that the QT is a constant
factor, like QT = Q0 = 1 GeV, i.e. that the typical scale is energy indepen-
dent. As seen in Ref. [1], with this modification our prediction agree with
experimental data. As a last check, in this reference, we have checked that
the RHIC data are still well reproduced after these modifications.
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Fig. 2. The effective anomalous dimension as a function of the scaling variable rQs

(left) and the Q2 behavior, at x = 3 × 10−4 (right).

As a summary, in this letter we have analyzed current parameterizations
for the dipole scattering amplitude which are able to describe separately the
e–p HERA and d–Au RHIC data as well the parameterization in [1] that is
able to describe both sets of data.

This work was partially financed by the Brazilian Funding Agencies
CNPq, FAPESP and FAPERGS.

REFERENCES

[1] V.P. Goncalves, M.S. Kugeratski, M.V.T. Machado, F.S. Navarra, Phys. Lett.
B643, 273 (2006), and references therein.

[2] E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A692, 583 (2001);
E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A701, 489
(2002).

[3] A. Dumitru, A. Hayashigaki, J. Jalilian-Marian, Nucl. Phys. A765, 464
(2006); Nucl. Phys. A770, 57 (2006).

[4] K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D59, 014017 (1999); Phys. Rev.
D60, 114023 (1999).

[5] E. Iancu, K. Itakura, S. Munier, Phys. Lett. B590, 199 (2004).

[6] D. Kharzeev, Y.V. Kovchegov, K. Tuchin, Phys. Lett. B599, 23 (2004).

[7] M.S. Kugeratski, V.P. Goncalves, F.S. Navarra, Eur. Phys. J. C44, 577 (2005).

[8] E. Iancu, K. Itakura, L. McLerran, Nucl. Phys. A708, 327 (2002).

[9] M.V.T. Machado, Eur. Phys. J. C47, 365 (2006).

[10] E. Gostman, E. Levin, M. Lublinski, U. Maor, Eur. Phys. J. C27, 411 (2003).


